]> git.proxmox.com Git - qemu.git/blob - cpu-all.h
qapi: modify visitor code generation for list iteration
[qemu.git] / cpu-all.h
1 /*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
21
22 #include "qemu-common.h"
23 #include "cpu-common.h"
24
25 /* some important defines:
26 *
27 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28 * memory accesses.
29 *
30 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
31 * otherwise little endian.
32 *
33 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
34 *
35 * TARGET_WORDS_BIGENDIAN : same for target cpu
36 */
37
38 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
39 #define BSWAP_NEEDED
40 #endif
41
42 #ifdef BSWAP_NEEDED
43
44 static inline uint16_t tswap16(uint16_t s)
45 {
46 return bswap16(s);
47 }
48
49 static inline uint32_t tswap32(uint32_t s)
50 {
51 return bswap32(s);
52 }
53
54 static inline uint64_t tswap64(uint64_t s)
55 {
56 return bswap64(s);
57 }
58
59 static inline void tswap16s(uint16_t *s)
60 {
61 *s = bswap16(*s);
62 }
63
64 static inline void tswap32s(uint32_t *s)
65 {
66 *s = bswap32(*s);
67 }
68
69 static inline void tswap64s(uint64_t *s)
70 {
71 *s = bswap64(*s);
72 }
73
74 #else
75
76 static inline uint16_t tswap16(uint16_t s)
77 {
78 return s;
79 }
80
81 static inline uint32_t tswap32(uint32_t s)
82 {
83 return s;
84 }
85
86 static inline uint64_t tswap64(uint64_t s)
87 {
88 return s;
89 }
90
91 static inline void tswap16s(uint16_t *s)
92 {
93 }
94
95 static inline void tswap32s(uint32_t *s)
96 {
97 }
98
99 static inline void tswap64s(uint64_t *s)
100 {
101 }
102
103 #endif
104
105 #if TARGET_LONG_SIZE == 4
106 #define tswapl(s) tswap32(s)
107 #define tswapls(s) tswap32s((uint32_t *)(s))
108 #define bswaptls(s) bswap32s(s)
109 #else
110 #define tswapl(s) tswap64(s)
111 #define tswapls(s) tswap64s((uint64_t *)(s))
112 #define bswaptls(s) bswap64s(s)
113 #endif
114
115 /* CPU memory access without any memory or io remapping */
116
117 /*
118 * the generic syntax for the memory accesses is:
119 *
120 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
121 *
122 * store: st{type}{size}{endian}_{access_type}(ptr, val)
123 *
124 * type is:
125 * (empty): integer access
126 * f : float access
127 *
128 * sign is:
129 * (empty): for floats or 32 bit size
130 * u : unsigned
131 * s : signed
132 *
133 * size is:
134 * b: 8 bits
135 * w: 16 bits
136 * l: 32 bits
137 * q: 64 bits
138 *
139 * endian is:
140 * (empty): target cpu endianness or 8 bit access
141 * r : reversed target cpu endianness (not implemented yet)
142 * be : big endian (not implemented yet)
143 * le : little endian (not implemented yet)
144 *
145 * access_type is:
146 * raw : host memory access
147 * user : user mode access using soft MMU
148 * kernel : kernel mode access using soft MMU
149 */
150
151 /* target-endianness CPU memory access functions */
152 #if defined(TARGET_WORDS_BIGENDIAN)
153 #define lduw_p(p) lduw_be_p(p)
154 #define ldsw_p(p) ldsw_be_p(p)
155 #define ldl_p(p) ldl_be_p(p)
156 #define ldq_p(p) ldq_be_p(p)
157 #define ldfl_p(p) ldfl_be_p(p)
158 #define ldfq_p(p) ldfq_be_p(p)
159 #define stw_p(p, v) stw_be_p(p, v)
160 #define stl_p(p, v) stl_be_p(p, v)
161 #define stq_p(p, v) stq_be_p(p, v)
162 #define stfl_p(p, v) stfl_be_p(p, v)
163 #define stfq_p(p, v) stfq_be_p(p, v)
164 #else
165 #define lduw_p(p) lduw_le_p(p)
166 #define ldsw_p(p) ldsw_le_p(p)
167 #define ldl_p(p) ldl_le_p(p)
168 #define ldq_p(p) ldq_le_p(p)
169 #define ldfl_p(p) ldfl_le_p(p)
170 #define ldfq_p(p) ldfq_le_p(p)
171 #define stw_p(p, v) stw_le_p(p, v)
172 #define stl_p(p, v) stl_le_p(p, v)
173 #define stq_p(p, v) stq_le_p(p, v)
174 #define stfl_p(p, v) stfl_le_p(p, v)
175 #define stfq_p(p, v) stfq_le_p(p, v)
176 #endif
177
178 /* MMU memory access macros */
179
180 #if defined(CONFIG_USER_ONLY)
181 #include <assert.h>
182 #include "qemu-types.h"
183
184 /* On some host systems the guest address space is reserved on the host.
185 * This allows the guest address space to be offset to a convenient location.
186 */
187 #if defined(CONFIG_USE_GUEST_BASE)
188 extern unsigned long guest_base;
189 extern int have_guest_base;
190 extern unsigned long reserved_va;
191 #define GUEST_BASE guest_base
192 #define RESERVED_VA reserved_va
193 #else
194 #define GUEST_BASE 0ul
195 #define RESERVED_VA 0ul
196 #endif
197
198 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
199 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
200
201 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
202 #define h2g_valid(x) 1
203 #else
204 #define h2g_valid(x) ({ \
205 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
206 __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
207 })
208 #endif
209
210 #define h2g(x) ({ \
211 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
212 /* Check if given address fits target address space */ \
213 assert(h2g_valid(x)); \
214 (abi_ulong)__ret; \
215 })
216
217 #define saddr(x) g2h(x)
218 #define laddr(x) g2h(x)
219
220 #else /* !CONFIG_USER_ONLY */
221 /* NOTE: we use double casts if pointers and target_ulong have
222 different sizes */
223 #define saddr(x) (uint8_t *)(long)(x)
224 #define laddr(x) (uint8_t *)(long)(x)
225 #endif
226
227 #define ldub_raw(p) ldub_p(laddr((p)))
228 #define ldsb_raw(p) ldsb_p(laddr((p)))
229 #define lduw_raw(p) lduw_p(laddr((p)))
230 #define ldsw_raw(p) ldsw_p(laddr((p)))
231 #define ldl_raw(p) ldl_p(laddr((p)))
232 #define ldq_raw(p) ldq_p(laddr((p)))
233 #define ldfl_raw(p) ldfl_p(laddr((p)))
234 #define ldfq_raw(p) ldfq_p(laddr((p)))
235 #define stb_raw(p, v) stb_p(saddr((p)), v)
236 #define stw_raw(p, v) stw_p(saddr((p)), v)
237 #define stl_raw(p, v) stl_p(saddr((p)), v)
238 #define stq_raw(p, v) stq_p(saddr((p)), v)
239 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
240 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
241
242
243 #if defined(CONFIG_USER_ONLY)
244
245 /* if user mode, no other memory access functions */
246 #define ldub(p) ldub_raw(p)
247 #define ldsb(p) ldsb_raw(p)
248 #define lduw(p) lduw_raw(p)
249 #define ldsw(p) ldsw_raw(p)
250 #define ldl(p) ldl_raw(p)
251 #define ldq(p) ldq_raw(p)
252 #define ldfl(p) ldfl_raw(p)
253 #define ldfq(p) ldfq_raw(p)
254 #define stb(p, v) stb_raw(p, v)
255 #define stw(p, v) stw_raw(p, v)
256 #define stl(p, v) stl_raw(p, v)
257 #define stq(p, v) stq_raw(p, v)
258 #define stfl(p, v) stfl_raw(p, v)
259 #define stfq(p, v) stfq_raw(p, v)
260
261 #define ldub_code(p) ldub_raw(p)
262 #define ldsb_code(p) ldsb_raw(p)
263 #define lduw_code(p) lduw_raw(p)
264 #define ldsw_code(p) ldsw_raw(p)
265 #define ldl_code(p) ldl_raw(p)
266 #define ldq_code(p) ldq_raw(p)
267
268 #define ldub_kernel(p) ldub_raw(p)
269 #define ldsb_kernel(p) ldsb_raw(p)
270 #define lduw_kernel(p) lduw_raw(p)
271 #define ldsw_kernel(p) ldsw_raw(p)
272 #define ldl_kernel(p) ldl_raw(p)
273 #define ldq_kernel(p) ldq_raw(p)
274 #define ldfl_kernel(p) ldfl_raw(p)
275 #define ldfq_kernel(p) ldfq_raw(p)
276 #define stb_kernel(p, v) stb_raw(p, v)
277 #define stw_kernel(p, v) stw_raw(p, v)
278 #define stl_kernel(p, v) stl_raw(p, v)
279 #define stq_kernel(p, v) stq_raw(p, v)
280 #define stfl_kernel(p, v) stfl_raw(p, v)
281 #define stfq_kernel(p, vt) stfq_raw(p, v)
282
283 #endif /* defined(CONFIG_USER_ONLY) */
284
285 /* page related stuff */
286
287 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
288 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
289 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
290
291 /* ??? These should be the larger of unsigned long and target_ulong. */
292 extern unsigned long qemu_real_host_page_size;
293 extern unsigned long qemu_host_page_size;
294 extern unsigned long qemu_host_page_mask;
295
296 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
297
298 /* same as PROT_xxx */
299 #define PAGE_READ 0x0001
300 #define PAGE_WRITE 0x0002
301 #define PAGE_EXEC 0x0004
302 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
303 #define PAGE_VALID 0x0008
304 /* original state of the write flag (used when tracking self-modifying
305 code */
306 #define PAGE_WRITE_ORG 0x0010
307 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
308 /* FIXME: Code that sets/uses this is broken and needs to go away. */
309 #define PAGE_RESERVED 0x0020
310 #endif
311
312 #if defined(CONFIG_USER_ONLY)
313 void page_dump(FILE *f);
314
315 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
316 abi_ulong, unsigned long);
317 int walk_memory_regions(void *, walk_memory_regions_fn);
318
319 int page_get_flags(target_ulong address);
320 void page_set_flags(target_ulong start, target_ulong end, int flags);
321 int page_check_range(target_ulong start, target_ulong len, int flags);
322 #endif
323
324 CPUState *cpu_copy(CPUState *env);
325 CPUState *qemu_get_cpu(int cpu);
326
327 #define CPU_DUMP_CODE 0x00010000
328
329 void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
330 int flags);
331 void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
332 int flags);
333
334 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
335 GCC_FMT_ATTR(2, 3);
336 extern CPUState *first_cpu;
337 extern CPUState *cpu_single_env;
338
339 /* Flags for use in ENV->INTERRUPT_PENDING.
340
341 The numbers assigned here are non-sequential in order to preserve
342 binary compatibility with the vmstate dump. Bit 0 (0x0001) was
343 previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
344 the vmstate dump. */
345
346 /* External hardware interrupt pending. This is typically used for
347 interrupts from devices. */
348 #define CPU_INTERRUPT_HARD 0x0002
349
350 /* Exit the current TB. This is typically used when some system-level device
351 makes some change to the memory mapping. E.g. the a20 line change. */
352 #define CPU_INTERRUPT_EXITTB 0x0004
353
354 /* Halt the CPU. */
355 #define CPU_INTERRUPT_HALT 0x0020
356
357 /* Debug event pending. */
358 #define CPU_INTERRUPT_DEBUG 0x0080
359
360 /* Several target-specific external hardware interrupts. Each target/cpu.h
361 should define proper names based on these defines. */
362 #define CPU_INTERRUPT_TGT_EXT_0 0x0008
363 #define CPU_INTERRUPT_TGT_EXT_1 0x0010
364 #define CPU_INTERRUPT_TGT_EXT_2 0x0040
365 #define CPU_INTERRUPT_TGT_EXT_3 0x0200
366 #define CPU_INTERRUPT_TGT_EXT_4 0x1000
367
368 /* Several target-specific internal interrupts. These differ from the
369 preceeding target-specific interrupts in that they are intended to
370 originate from within the cpu itself, typically in response to some
371 instruction being executed. These, therefore, are not masked while
372 single-stepping within the debugger. */
373 #define CPU_INTERRUPT_TGT_INT_0 0x0100
374 #define CPU_INTERRUPT_TGT_INT_1 0x0400
375 #define CPU_INTERRUPT_TGT_INT_2 0x0800
376
377 /* First unused bit: 0x2000. */
378
379 /* The set of all bits that should be masked when single-stepping. */
380 #define CPU_INTERRUPT_SSTEP_MASK \
381 (CPU_INTERRUPT_HARD \
382 | CPU_INTERRUPT_TGT_EXT_0 \
383 | CPU_INTERRUPT_TGT_EXT_1 \
384 | CPU_INTERRUPT_TGT_EXT_2 \
385 | CPU_INTERRUPT_TGT_EXT_3 \
386 | CPU_INTERRUPT_TGT_EXT_4)
387
388 #ifndef CONFIG_USER_ONLY
389 typedef void (*CPUInterruptHandler)(CPUState *, int);
390
391 extern CPUInterruptHandler cpu_interrupt_handler;
392
393 static inline void cpu_interrupt(CPUState *s, int mask)
394 {
395 cpu_interrupt_handler(s, mask);
396 }
397 #else /* USER_ONLY */
398 void cpu_interrupt(CPUState *env, int mask);
399 #endif /* USER_ONLY */
400
401 void cpu_reset_interrupt(CPUState *env, int mask);
402
403 void cpu_exit(CPUState *s);
404
405 bool qemu_cpu_has_work(CPUState *env);
406
407 /* Breakpoint/watchpoint flags */
408 #define BP_MEM_READ 0x01
409 #define BP_MEM_WRITE 0x02
410 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
411 #define BP_STOP_BEFORE_ACCESS 0x04
412 #define BP_WATCHPOINT_HIT 0x08
413 #define BP_GDB 0x10
414 #define BP_CPU 0x20
415
416 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
417 CPUBreakpoint **breakpoint);
418 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
419 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
420 void cpu_breakpoint_remove_all(CPUState *env, int mask);
421 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
422 int flags, CPUWatchpoint **watchpoint);
423 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
424 target_ulong len, int flags);
425 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
426 void cpu_watchpoint_remove_all(CPUState *env, int mask);
427
428 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
429 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
430 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
431
432 void cpu_single_step(CPUState *env, int enabled);
433 void cpu_reset(CPUState *s);
434 int cpu_is_stopped(CPUState *env);
435 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
436
437 #define CPU_LOG_TB_OUT_ASM (1 << 0)
438 #define CPU_LOG_TB_IN_ASM (1 << 1)
439 #define CPU_LOG_TB_OP (1 << 2)
440 #define CPU_LOG_TB_OP_OPT (1 << 3)
441 #define CPU_LOG_INT (1 << 4)
442 #define CPU_LOG_EXEC (1 << 5)
443 #define CPU_LOG_PCALL (1 << 6)
444 #define CPU_LOG_IOPORT (1 << 7)
445 #define CPU_LOG_TB_CPU (1 << 8)
446 #define CPU_LOG_RESET (1 << 9)
447
448 /* define log items */
449 typedef struct CPULogItem {
450 int mask;
451 const char *name;
452 const char *help;
453 } CPULogItem;
454
455 extern const CPULogItem cpu_log_items[];
456
457 void cpu_set_log(int log_flags);
458 void cpu_set_log_filename(const char *filename);
459 int cpu_str_to_log_mask(const char *str);
460
461 #if !defined(CONFIG_USER_ONLY)
462
463 /* Return the physical page corresponding to a virtual one. Use it
464 only for debugging because no protection checks are done. Return -1
465 if no page found. */
466 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
467
468 /* memory API */
469
470 extern int phys_ram_fd;
471 extern ram_addr_t ram_size;
472
473 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
474 #define RAM_PREALLOC_MASK (1 << 0)
475
476 typedef struct RAMBlock {
477 uint8_t *host;
478 ram_addr_t offset;
479 ram_addr_t length;
480 uint32_t flags;
481 char idstr[256];
482 QLIST_ENTRY(RAMBlock) next;
483 #if defined(__linux__) && !defined(TARGET_S390X)
484 int fd;
485 #endif
486 } RAMBlock;
487
488 typedef struct RAMList {
489 uint8_t *phys_dirty;
490 QLIST_HEAD(, RAMBlock) blocks;
491 } RAMList;
492 extern RAMList ram_list;
493
494 extern const char *mem_path;
495 extern int mem_prealloc;
496
497 /* physical memory access */
498
499 /* MMIO pages are identified by a combination of an IO device index and
500 3 flags. The ROMD code stores the page ram offset in iotlb entry,
501 so only a limited number of ids are avaiable. */
502
503 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
504
505 /* Flags stored in the low bits of the TLB virtual address. These are
506 defined so that fast path ram access is all zeros. */
507 /* Zero if TLB entry is valid. */
508 #define TLB_INVALID_MASK (1 << 3)
509 /* Set if TLB entry references a clean RAM page. The iotlb entry will
510 contain the page physical address. */
511 #define TLB_NOTDIRTY (1 << 4)
512 /* Set if TLB entry is an IO callback. */
513 #define TLB_MMIO (1 << 5)
514
515 #define VGA_DIRTY_FLAG 0x01
516 #define CODE_DIRTY_FLAG 0x02
517 #define MIGRATION_DIRTY_FLAG 0x08
518
519 /* read dirty bit (return 0 or 1) */
520 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
521 {
522 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
523 }
524
525 static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
526 {
527 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
528 }
529
530 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
531 int dirty_flags)
532 {
533 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
534 }
535
536 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
537 {
538 ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
539 }
540
541 static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
542 int dirty_flags)
543 {
544 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
545 }
546
547 static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
548 int length,
549 int dirty_flags)
550 {
551 int i, mask, len;
552 uint8_t *p;
553
554 len = length >> TARGET_PAGE_BITS;
555 mask = ~dirty_flags;
556 p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
557 for (i = 0; i < len; i++) {
558 p[i] &= mask;
559 }
560 }
561
562 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
563 int dirty_flags);
564 void cpu_tlb_update_dirty(CPUState *env);
565
566 int cpu_physical_memory_set_dirty_tracking(int enable);
567
568 int cpu_physical_memory_get_dirty_tracking(void);
569
570 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
571 target_phys_addr_t end_addr);
572
573 int cpu_physical_log_start(target_phys_addr_t start_addr,
574 ram_addr_t size);
575
576 int cpu_physical_log_stop(target_phys_addr_t start_addr,
577 ram_addr_t size);
578
579 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
580 #endif /* !CONFIG_USER_ONLY */
581
582 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
583 uint8_t *buf, int len, int is_write);
584
585 #endif /* CPU_ALL_H */