]> git.proxmox.com Git - qemu.git/blob - cpu-all.h
vga optimization (Glauber Costa)
[qemu.git] / cpu-all.h
1 /*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
22
23 #if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
24 #define WORDS_ALIGNED
25 #endif
26
27 /* some important defines:
28 *
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
31 *
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
34 *
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36 *
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 */
39
40 #include "bswap.h"
41 #include "softfloat.h"
42
43 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
44 #define BSWAP_NEEDED
45 #endif
46
47 #ifdef BSWAP_NEEDED
48
49 static inline uint16_t tswap16(uint16_t s)
50 {
51 return bswap16(s);
52 }
53
54 static inline uint32_t tswap32(uint32_t s)
55 {
56 return bswap32(s);
57 }
58
59 static inline uint64_t tswap64(uint64_t s)
60 {
61 return bswap64(s);
62 }
63
64 static inline void tswap16s(uint16_t *s)
65 {
66 *s = bswap16(*s);
67 }
68
69 static inline void tswap32s(uint32_t *s)
70 {
71 *s = bswap32(*s);
72 }
73
74 static inline void tswap64s(uint64_t *s)
75 {
76 *s = bswap64(*s);
77 }
78
79 #else
80
81 static inline uint16_t tswap16(uint16_t s)
82 {
83 return s;
84 }
85
86 static inline uint32_t tswap32(uint32_t s)
87 {
88 return s;
89 }
90
91 static inline uint64_t tswap64(uint64_t s)
92 {
93 return s;
94 }
95
96 static inline void tswap16s(uint16_t *s)
97 {
98 }
99
100 static inline void tswap32s(uint32_t *s)
101 {
102 }
103
104 static inline void tswap64s(uint64_t *s)
105 {
106 }
107
108 #endif
109
110 #if TARGET_LONG_SIZE == 4
111 #define tswapl(s) tswap32(s)
112 #define tswapls(s) tswap32s((uint32_t *)(s))
113 #define bswaptls(s) bswap32s(s)
114 #else
115 #define tswapl(s) tswap64(s)
116 #define tswapls(s) tswap64s((uint64_t *)(s))
117 #define bswaptls(s) bswap64s(s)
118 #endif
119
120 typedef union {
121 float32 f;
122 uint32_t l;
123 } CPU_FloatU;
124
125 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
126 endian ! */
127 typedef union {
128 float64 d;
129 #if defined(WORDS_BIGENDIAN) \
130 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
131 struct {
132 uint32_t upper;
133 uint32_t lower;
134 } l;
135 #else
136 struct {
137 uint32_t lower;
138 uint32_t upper;
139 } l;
140 #endif
141 uint64_t ll;
142 } CPU_DoubleU;
143
144 #ifdef TARGET_SPARC
145 typedef union {
146 float128 q;
147 #if defined(WORDS_BIGENDIAN) \
148 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
149 struct {
150 uint32_t upmost;
151 uint32_t upper;
152 uint32_t lower;
153 uint32_t lowest;
154 } l;
155 struct {
156 uint64_t upper;
157 uint64_t lower;
158 } ll;
159 #else
160 struct {
161 uint32_t lowest;
162 uint32_t lower;
163 uint32_t upper;
164 uint32_t upmost;
165 } l;
166 struct {
167 uint64_t lower;
168 uint64_t upper;
169 } ll;
170 #endif
171 } CPU_QuadU;
172 #endif
173
174 /* CPU memory access without any memory or io remapping */
175
176 /*
177 * the generic syntax for the memory accesses is:
178 *
179 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
180 *
181 * store: st{type}{size}{endian}_{access_type}(ptr, val)
182 *
183 * type is:
184 * (empty): integer access
185 * f : float access
186 *
187 * sign is:
188 * (empty): for floats or 32 bit size
189 * u : unsigned
190 * s : signed
191 *
192 * size is:
193 * b: 8 bits
194 * w: 16 bits
195 * l: 32 bits
196 * q: 64 bits
197 *
198 * endian is:
199 * (empty): target cpu endianness or 8 bit access
200 * r : reversed target cpu endianness (not implemented yet)
201 * be : big endian (not implemented yet)
202 * le : little endian (not implemented yet)
203 *
204 * access_type is:
205 * raw : host memory access
206 * user : user mode access using soft MMU
207 * kernel : kernel mode access using soft MMU
208 */
209 static inline int ldub_p(void *ptr)
210 {
211 return *(uint8_t *)ptr;
212 }
213
214 static inline int ldsb_p(void *ptr)
215 {
216 return *(int8_t *)ptr;
217 }
218
219 static inline void stb_p(void *ptr, int v)
220 {
221 *(uint8_t *)ptr = v;
222 }
223
224 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
225 kernel handles unaligned load/stores may give better results, but
226 it is a system wide setting : bad */
227 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
228
229 /* conservative code for little endian unaligned accesses */
230 static inline int lduw_le_p(void *ptr)
231 {
232 #ifdef __powerpc__
233 int val;
234 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
235 return val;
236 #else
237 uint8_t *p = ptr;
238 return p[0] | (p[1] << 8);
239 #endif
240 }
241
242 static inline int ldsw_le_p(void *ptr)
243 {
244 #ifdef __powerpc__
245 int val;
246 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
247 return (int16_t)val;
248 #else
249 uint8_t *p = ptr;
250 return (int16_t)(p[0] | (p[1] << 8));
251 #endif
252 }
253
254 static inline int ldl_le_p(void *ptr)
255 {
256 #ifdef __powerpc__
257 int val;
258 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
259 return val;
260 #else
261 uint8_t *p = ptr;
262 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
263 #endif
264 }
265
266 static inline uint64_t ldq_le_p(void *ptr)
267 {
268 uint8_t *p = ptr;
269 uint32_t v1, v2;
270 v1 = ldl_le_p(p);
271 v2 = ldl_le_p(p + 4);
272 return v1 | ((uint64_t)v2 << 32);
273 }
274
275 static inline void stw_le_p(void *ptr, int v)
276 {
277 #ifdef __powerpc__
278 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
279 #else
280 uint8_t *p = ptr;
281 p[0] = v;
282 p[1] = v >> 8;
283 #endif
284 }
285
286 static inline void stl_le_p(void *ptr, int v)
287 {
288 #ifdef __powerpc__
289 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
290 #else
291 uint8_t *p = ptr;
292 p[0] = v;
293 p[1] = v >> 8;
294 p[2] = v >> 16;
295 p[3] = v >> 24;
296 #endif
297 }
298
299 static inline void stq_le_p(void *ptr, uint64_t v)
300 {
301 uint8_t *p = ptr;
302 stl_le_p(p, (uint32_t)v);
303 stl_le_p(p + 4, v >> 32);
304 }
305
306 /* float access */
307
308 static inline float32 ldfl_le_p(void *ptr)
309 {
310 union {
311 float32 f;
312 uint32_t i;
313 } u;
314 u.i = ldl_le_p(ptr);
315 return u.f;
316 }
317
318 static inline void stfl_le_p(void *ptr, float32 v)
319 {
320 union {
321 float32 f;
322 uint32_t i;
323 } u;
324 u.f = v;
325 stl_le_p(ptr, u.i);
326 }
327
328 static inline float64 ldfq_le_p(void *ptr)
329 {
330 CPU_DoubleU u;
331 u.l.lower = ldl_le_p(ptr);
332 u.l.upper = ldl_le_p(ptr + 4);
333 return u.d;
334 }
335
336 static inline void stfq_le_p(void *ptr, float64 v)
337 {
338 CPU_DoubleU u;
339 u.d = v;
340 stl_le_p(ptr, u.l.lower);
341 stl_le_p(ptr + 4, u.l.upper);
342 }
343
344 #else
345
346 static inline int lduw_le_p(void *ptr)
347 {
348 return *(uint16_t *)ptr;
349 }
350
351 static inline int ldsw_le_p(void *ptr)
352 {
353 return *(int16_t *)ptr;
354 }
355
356 static inline int ldl_le_p(void *ptr)
357 {
358 return *(uint32_t *)ptr;
359 }
360
361 static inline uint64_t ldq_le_p(void *ptr)
362 {
363 return *(uint64_t *)ptr;
364 }
365
366 static inline void stw_le_p(void *ptr, int v)
367 {
368 *(uint16_t *)ptr = v;
369 }
370
371 static inline void stl_le_p(void *ptr, int v)
372 {
373 *(uint32_t *)ptr = v;
374 }
375
376 static inline void stq_le_p(void *ptr, uint64_t v)
377 {
378 *(uint64_t *)ptr = v;
379 }
380
381 /* float access */
382
383 static inline float32 ldfl_le_p(void *ptr)
384 {
385 return *(float32 *)ptr;
386 }
387
388 static inline float64 ldfq_le_p(void *ptr)
389 {
390 return *(float64 *)ptr;
391 }
392
393 static inline void stfl_le_p(void *ptr, float32 v)
394 {
395 *(float32 *)ptr = v;
396 }
397
398 static inline void stfq_le_p(void *ptr, float64 v)
399 {
400 *(float64 *)ptr = v;
401 }
402 #endif
403
404 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
405
406 static inline int lduw_be_p(void *ptr)
407 {
408 #if defined(__i386__)
409 int val;
410 asm volatile ("movzwl %1, %0\n"
411 "xchgb %b0, %h0\n"
412 : "=q" (val)
413 : "m" (*(uint16_t *)ptr));
414 return val;
415 #else
416 uint8_t *b = (uint8_t *) ptr;
417 return ((b[0] << 8) | b[1]);
418 #endif
419 }
420
421 static inline int ldsw_be_p(void *ptr)
422 {
423 #if defined(__i386__)
424 int val;
425 asm volatile ("movzwl %1, %0\n"
426 "xchgb %b0, %h0\n"
427 : "=q" (val)
428 : "m" (*(uint16_t *)ptr));
429 return (int16_t)val;
430 #else
431 uint8_t *b = (uint8_t *) ptr;
432 return (int16_t)((b[0] << 8) | b[1]);
433 #endif
434 }
435
436 static inline int ldl_be_p(void *ptr)
437 {
438 #if defined(__i386__) || defined(__x86_64__)
439 int val;
440 asm volatile ("movl %1, %0\n"
441 "bswap %0\n"
442 : "=r" (val)
443 : "m" (*(uint32_t *)ptr));
444 return val;
445 #else
446 uint8_t *b = (uint8_t *) ptr;
447 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
448 #endif
449 }
450
451 static inline uint64_t ldq_be_p(void *ptr)
452 {
453 uint32_t a,b;
454 a = ldl_be_p(ptr);
455 b = ldl_be_p((uint8_t *)ptr + 4);
456 return (((uint64_t)a<<32)|b);
457 }
458
459 static inline void stw_be_p(void *ptr, int v)
460 {
461 #if defined(__i386__)
462 asm volatile ("xchgb %b0, %h0\n"
463 "movw %w0, %1\n"
464 : "=q" (v)
465 : "m" (*(uint16_t *)ptr), "0" (v));
466 #else
467 uint8_t *d = (uint8_t *) ptr;
468 d[0] = v >> 8;
469 d[1] = v;
470 #endif
471 }
472
473 static inline void stl_be_p(void *ptr, int v)
474 {
475 #if defined(__i386__) || defined(__x86_64__)
476 asm volatile ("bswap %0\n"
477 "movl %0, %1\n"
478 : "=r" (v)
479 : "m" (*(uint32_t *)ptr), "0" (v));
480 #else
481 uint8_t *d = (uint8_t *) ptr;
482 d[0] = v >> 24;
483 d[1] = v >> 16;
484 d[2] = v >> 8;
485 d[3] = v;
486 #endif
487 }
488
489 static inline void stq_be_p(void *ptr, uint64_t v)
490 {
491 stl_be_p(ptr, v >> 32);
492 stl_be_p((uint8_t *)ptr + 4, v);
493 }
494
495 /* float access */
496
497 static inline float32 ldfl_be_p(void *ptr)
498 {
499 union {
500 float32 f;
501 uint32_t i;
502 } u;
503 u.i = ldl_be_p(ptr);
504 return u.f;
505 }
506
507 static inline void stfl_be_p(void *ptr, float32 v)
508 {
509 union {
510 float32 f;
511 uint32_t i;
512 } u;
513 u.f = v;
514 stl_be_p(ptr, u.i);
515 }
516
517 static inline float64 ldfq_be_p(void *ptr)
518 {
519 CPU_DoubleU u;
520 u.l.upper = ldl_be_p(ptr);
521 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
522 return u.d;
523 }
524
525 static inline void stfq_be_p(void *ptr, float64 v)
526 {
527 CPU_DoubleU u;
528 u.d = v;
529 stl_be_p(ptr, u.l.upper);
530 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
531 }
532
533 #else
534
535 static inline int lduw_be_p(void *ptr)
536 {
537 return *(uint16_t *)ptr;
538 }
539
540 static inline int ldsw_be_p(void *ptr)
541 {
542 return *(int16_t *)ptr;
543 }
544
545 static inline int ldl_be_p(void *ptr)
546 {
547 return *(uint32_t *)ptr;
548 }
549
550 static inline uint64_t ldq_be_p(void *ptr)
551 {
552 return *(uint64_t *)ptr;
553 }
554
555 static inline void stw_be_p(void *ptr, int v)
556 {
557 *(uint16_t *)ptr = v;
558 }
559
560 static inline void stl_be_p(void *ptr, int v)
561 {
562 *(uint32_t *)ptr = v;
563 }
564
565 static inline void stq_be_p(void *ptr, uint64_t v)
566 {
567 *(uint64_t *)ptr = v;
568 }
569
570 /* float access */
571
572 static inline float32 ldfl_be_p(void *ptr)
573 {
574 return *(float32 *)ptr;
575 }
576
577 static inline float64 ldfq_be_p(void *ptr)
578 {
579 return *(float64 *)ptr;
580 }
581
582 static inline void stfl_be_p(void *ptr, float32 v)
583 {
584 *(float32 *)ptr = v;
585 }
586
587 static inline void stfq_be_p(void *ptr, float64 v)
588 {
589 *(float64 *)ptr = v;
590 }
591
592 #endif
593
594 /* target CPU memory access functions */
595 #if defined(TARGET_WORDS_BIGENDIAN)
596 #define lduw_p(p) lduw_be_p(p)
597 #define ldsw_p(p) ldsw_be_p(p)
598 #define ldl_p(p) ldl_be_p(p)
599 #define ldq_p(p) ldq_be_p(p)
600 #define ldfl_p(p) ldfl_be_p(p)
601 #define ldfq_p(p) ldfq_be_p(p)
602 #define stw_p(p, v) stw_be_p(p, v)
603 #define stl_p(p, v) stl_be_p(p, v)
604 #define stq_p(p, v) stq_be_p(p, v)
605 #define stfl_p(p, v) stfl_be_p(p, v)
606 #define stfq_p(p, v) stfq_be_p(p, v)
607 #else
608 #define lduw_p(p) lduw_le_p(p)
609 #define ldsw_p(p) ldsw_le_p(p)
610 #define ldl_p(p) ldl_le_p(p)
611 #define ldq_p(p) ldq_le_p(p)
612 #define ldfl_p(p) ldfl_le_p(p)
613 #define ldfq_p(p) ldfq_le_p(p)
614 #define stw_p(p, v) stw_le_p(p, v)
615 #define stl_p(p, v) stl_le_p(p, v)
616 #define stq_p(p, v) stq_le_p(p, v)
617 #define stfl_p(p, v) stfl_le_p(p, v)
618 #define stfq_p(p, v) stfq_le_p(p, v)
619 #endif
620
621 /* MMU memory access macros */
622
623 #if defined(CONFIG_USER_ONLY)
624 /* On some host systems the guest address space is reserved on the host.
625 * This allows the guest address space to be offset to a convenient location.
626 */
627 //#define GUEST_BASE 0x20000000
628 #define GUEST_BASE 0
629
630 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
631 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
632 #define h2g(x) ((target_ulong)((unsigned long)(x) - GUEST_BASE))
633
634 #define saddr(x) g2h(x)
635 #define laddr(x) g2h(x)
636
637 #else /* !CONFIG_USER_ONLY */
638 /* NOTE: we use double casts if pointers and target_ulong have
639 different sizes */
640 #define saddr(x) (uint8_t *)(long)(x)
641 #define laddr(x) (uint8_t *)(long)(x)
642 #endif
643
644 #define ldub_raw(p) ldub_p(laddr((p)))
645 #define ldsb_raw(p) ldsb_p(laddr((p)))
646 #define lduw_raw(p) lduw_p(laddr((p)))
647 #define ldsw_raw(p) ldsw_p(laddr((p)))
648 #define ldl_raw(p) ldl_p(laddr((p)))
649 #define ldq_raw(p) ldq_p(laddr((p)))
650 #define ldfl_raw(p) ldfl_p(laddr((p)))
651 #define ldfq_raw(p) ldfq_p(laddr((p)))
652 #define stb_raw(p, v) stb_p(saddr((p)), v)
653 #define stw_raw(p, v) stw_p(saddr((p)), v)
654 #define stl_raw(p, v) stl_p(saddr((p)), v)
655 #define stq_raw(p, v) stq_p(saddr((p)), v)
656 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
657 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
658
659
660 #if defined(CONFIG_USER_ONLY)
661
662 /* if user mode, no other memory access functions */
663 #define ldub(p) ldub_raw(p)
664 #define ldsb(p) ldsb_raw(p)
665 #define lduw(p) lduw_raw(p)
666 #define ldsw(p) ldsw_raw(p)
667 #define ldl(p) ldl_raw(p)
668 #define ldq(p) ldq_raw(p)
669 #define ldfl(p) ldfl_raw(p)
670 #define ldfq(p) ldfq_raw(p)
671 #define stb(p, v) stb_raw(p, v)
672 #define stw(p, v) stw_raw(p, v)
673 #define stl(p, v) stl_raw(p, v)
674 #define stq(p, v) stq_raw(p, v)
675 #define stfl(p, v) stfl_raw(p, v)
676 #define stfq(p, v) stfq_raw(p, v)
677
678 #define ldub_code(p) ldub_raw(p)
679 #define ldsb_code(p) ldsb_raw(p)
680 #define lduw_code(p) lduw_raw(p)
681 #define ldsw_code(p) ldsw_raw(p)
682 #define ldl_code(p) ldl_raw(p)
683 #define ldq_code(p) ldq_raw(p)
684
685 #define ldub_kernel(p) ldub_raw(p)
686 #define ldsb_kernel(p) ldsb_raw(p)
687 #define lduw_kernel(p) lduw_raw(p)
688 #define ldsw_kernel(p) ldsw_raw(p)
689 #define ldl_kernel(p) ldl_raw(p)
690 #define ldq_kernel(p) ldq_raw(p)
691 #define ldfl_kernel(p) ldfl_raw(p)
692 #define ldfq_kernel(p) ldfq_raw(p)
693 #define stb_kernel(p, v) stb_raw(p, v)
694 #define stw_kernel(p, v) stw_raw(p, v)
695 #define stl_kernel(p, v) stl_raw(p, v)
696 #define stq_kernel(p, v) stq_raw(p, v)
697 #define stfl_kernel(p, v) stfl_raw(p, v)
698 #define stfq_kernel(p, vt) stfq_raw(p, v)
699
700 #endif /* defined(CONFIG_USER_ONLY) */
701
702 /* page related stuff */
703
704 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
705 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
706 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
707
708 /* ??? These should be the larger of unsigned long and target_ulong. */
709 extern unsigned long qemu_real_host_page_size;
710 extern unsigned long qemu_host_page_bits;
711 extern unsigned long qemu_host_page_size;
712 extern unsigned long qemu_host_page_mask;
713
714 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
715
716 /* same as PROT_xxx */
717 #define PAGE_READ 0x0001
718 #define PAGE_WRITE 0x0002
719 #define PAGE_EXEC 0x0004
720 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
721 #define PAGE_VALID 0x0008
722 /* original state of the write flag (used when tracking self-modifying
723 code */
724 #define PAGE_WRITE_ORG 0x0010
725 #define PAGE_RESERVED 0x0020
726
727 void page_dump(FILE *f);
728 int page_get_flags(target_ulong address);
729 void page_set_flags(target_ulong start, target_ulong end, int flags);
730 int page_check_range(target_ulong start, target_ulong len, int flags);
731
732 void cpu_exec_init_all(unsigned long tb_size);
733 CPUState *cpu_copy(CPUState *env);
734
735 void cpu_dump_state(CPUState *env, FILE *f,
736 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
737 int flags);
738 void cpu_dump_statistics (CPUState *env, FILE *f,
739 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
740 int flags);
741
742 void cpu_abort(CPUState *env, const char *fmt, ...)
743 __attribute__ ((__format__ (__printf__, 2, 3)))
744 __attribute__ ((__noreturn__));
745 extern CPUState *first_cpu;
746 extern CPUState *cpu_single_env;
747 extern int64_t qemu_icount;
748 extern int use_icount;
749
750 #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
751 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
752 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
753 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
754 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
755 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
756 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
757 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
758 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
759 #define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
760
761 void cpu_interrupt(CPUState *s, int mask);
762 void cpu_reset_interrupt(CPUState *env, int mask);
763
764 /* Breakpoint/watchpoint flags */
765 #define BP_MEM_READ 0x01
766 #define BP_MEM_WRITE 0x02
767 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
768 #define BP_STOP_BEFORE_ACCESS 0x04
769 #define BP_WATCHPOINT_HIT 0x08
770 #define BP_GDB 0x10
771 #define BP_CPU 0x20
772
773 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
774 CPUBreakpoint **breakpoint);
775 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
776 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
777 void cpu_breakpoint_remove_all(CPUState *env, int mask);
778 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
779 int flags, CPUWatchpoint **watchpoint);
780 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
781 target_ulong len, int flags);
782 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
783 void cpu_watchpoint_remove_all(CPUState *env, int mask);
784
785 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
786 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
787 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
788
789 void cpu_single_step(CPUState *env, int enabled);
790 void cpu_reset(CPUState *s);
791
792 /* Return the physical page corresponding to a virtual one. Use it
793 only for debugging because no protection checks are done. Return -1
794 if no page found. */
795 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
796
797 #define CPU_LOG_TB_OUT_ASM (1 << 0)
798 #define CPU_LOG_TB_IN_ASM (1 << 1)
799 #define CPU_LOG_TB_OP (1 << 2)
800 #define CPU_LOG_TB_OP_OPT (1 << 3)
801 #define CPU_LOG_INT (1 << 4)
802 #define CPU_LOG_EXEC (1 << 5)
803 #define CPU_LOG_PCALL (1 << 6)
804 #define CPU_LOG_IOPORT (1 << 7)
805 #define CPU_LOG_TB_CPU (1 << 8)
806
807 /* define log items */
808 typedef struct CPULogItem {
809 int mask;
810 const char *name;
811 const char *help;
812 } CPULogItem;
813
814 extern const CPULogItem cpu_log_items[];
815
816 void cpu_set_log(int log_flags);
817 void cpu_set_log_filename(const char *filename);
818 int cpu_str_to_log_mask(const char *str);
819
820 /* IO ports API */
821
822 /* NOTE: as these functions may be even used when there is an isa
823 brige on non x86 targets, we always defined them */
824 #ifndef NO_CPU_IO_DEFS
825 void cpu_outb(CPUState *env, int addr, int val);
826 void cpu_outw(CPUState *env, int addr, int val);
827 void cpu_outl(CPUState *env, int addr, int val);
828 int cpu_inb(CPUState *env, int addr);
829 int cpu_inw(CPUState *env, int addr);
830 int cpu_inl(CPUState *env, int addr);
831 #endif
832
833 /* address in the RAM (different from a physical address) */
834 #ifdef USE_KQEMU
835 typedef uint32_t ram_addr_t;
836 #else
837 typedef unsigned long ram_addr_t;
838 #endif
839
840 /* memory API */
841
842 extern ram_addr_t phys_ram_size;
843 extern int phys_ram_fd;
844 extern uint8_t *phys_ram_base;
845 extern uint8_t *phys_ram_dirty;
846 extern ram_addr_t ram_size;
847
848 /* physical memory access */
849
850 /* MMIO pages are identified by a combination of an IO device index and
851 3 flags. The ROMD code stores the page ram offset in iotlb entry,
852 so only a limited number of ids are avaiable. */
853
854 #define IO_MEM_SHIFT 3
855 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
856
857 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
858 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
859 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
860 #define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT)
861
862 /* Acts like a ROM when read and like a device when written. */
863 #define IO_MEM_ROMD (1)
864 #define IO_MEM_SUBPAGE (2)
865 #define IO_MEM_SUBWIDTH (4)
866
867 /* Flags stored in the low bits of the TLB virtual address. These are
868 defined so that fast path ram access is all zeros. */
869 /* Zero if TLB entry is valid. */
870 #define TLB_INVALID_MASK (1 << 3)
871 /* Set if TLB entry references a clean RAM page. The iotlb entry will
872 contain the page physical address. */
873 #define TLB_NOTDIRTY (1 << 4)
874 /* Set if TLB entry is an IO callback. */
875 #define TLB_MMIO (1 << 5)
876
877 typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
878 typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
879
880 void cpu_register_physical_memory(target_phys_addr_t start_addr,
881 ram_addr_t size,
882 ram_addr_t phys_offset);
883 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
884 ram_addr_t qemu_ram_alloc(ram_addr_t);
885 void qemu_ram_free(ram_addr_t addr);
886 int cpu_register_io_memory(int io_index,
887 CPUReadMemoryFunc **mem_read,
888 CPUWriteMemoryFunc **mem_write,
889 void *opaque);
890 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
891 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
892
893 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
894 int len, int is_write);
895 static inline void cpu_physical_memory_read(target_phys_addr_t addr,
896 uint8_t *buf, int len)
897 {
898 cpu_physical_memory_rw(addr, buf, len, 0);
899 }
900 static inline void cpu_physical_memory_write(target_phys_addr_t addr,
901 const uint8_t *buf, int len)
902 {
903 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
904 }
905 uint32_t ldub_phys(target_phys_addr_t addr);
906 uint32_t lduw_phys(target_phys_addr_t addr);
907 uint32_t ldl_phys(target_phys_addr_t addr);
908 uint64_t ldq_phys(target_phys_addr_t addr);
909 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
910 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
911 void stb_phys(target_phys_addr_t addr, uint32_t val);
912 void stw_phys(target_phys_addr_t addr, uint32_t val);
913 void stl_phys(target_phys_addr_t addr, uint32_t val);
914 void stq_phys(target_phys_addr_t addr, uint64_t val);
915
916 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
917 const uint8_t *buf, int len);
918 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
919 uint8_t *buf, int len, int is_write);
920
921 #define VGA_DIRTY_FLAG 0x01
922 #define CODE_DIRTY_FLAG 0x02
923 #define KQEMU_DIRTY_FLAG 0x04
924 #define MIGRATION_DIRTY_FLAG 0x08
925
926 /* read dirty bit (return 0 or 1) */
927 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
928 {
929 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
930 }
931
932 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
933 int dirty_flags)
934 {
935 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
936 }
937
938 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
939 {
940 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
941 }
942
943 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
944 int dirty_flags);
945 void cpu_tlb_update_dirty(CPUState *env);
946
947 int cpu_physical_memory_set_dirty_tracking(int enable);
948
949 int cpu_physical_memory_get_dirty_tracking(void);
950
951 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
952
953 void dump_exec_info(FILE *f,
954 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
955
956 /*******************************************/
957 /* host CPU ticks (if available) */
958
959 #if defined(__powerpc__)
960
961 static inline uint32_t get_tbl(void)
962 {
963 uint32_t tbl;
964 asm volatile("mftb %0" : "=r" (tbl));
965 return tbl;
966 }
967
968 static inline uint32_t get_tbu(void)
969 {
970 uint32_t tbl;
971 asm volatile("mftbu %0" : "=r" (tbl));
972 return tbl;
973 }
974
975 static inline int64_t cpu_get_real_ticks(void)
976 {
977 uint32_t l, h, h1;
978 /* NOTE: we test if wrapping has occurred */
979 do {
980 h = get_tbu();
981 l = get_tbl();
982 h1 = get_tbu();
983 } while (h != h1);
984 return ((int64_t)h << 32) | l;
985 }
986
987 #elif defined(__i386__)
988
989 static inline int64_t cpu_get_real_ticks(void)
990 {
991 int64_t val;
992 asm volatile ("rdtsc" : "=A" (val));
993 return val;
994 }
995
996 #elif defined(__x86_64__)
997
998 static inline int64_t cpu_get_real_ticks(void)
999 {
1000 uint32_t low,high;
1001 int64_t val;
1002 asm volatile("rdtsc" : "=a" (low), "=d" (high));
1003 val = high;
1004 val <<= 32;
1005 val |= low;
1006 return val;
1007 }
1008
1009 #elif defined(__hppa__)
1010
1011 static inline int64_t cpu_get_real_ticks(void)
1012 {
1013 int val;
1014 asm volatile ("mfctl %%cr16, %0" : "=r"(val));
1015 return val;
1016 }
1017
1018 #elif defined(__ia64)
1019
1020 static inline int64_t cpu_get_real_ticks(void)
1021 {
1022 int64_t val;
1023 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1024 return val;
1025 }
1026
1027 #elif defined(__s390__)
1028
1029 static inline int64_t cpu_get_real_ticks(void)
1030 {
1031 int64_t val;
1032 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1033 return val;
1034 }
1035
1036 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
1037
1038 static inline int64_t cpu_get_real_ticks (void)
1039 {
1040 #if defined(_LP64)
1041 uint64_t rval;
1042 asm volatile("rd %%tick,%0" : "=r"(rval));
1043 return rval;
1044 #else
1045 union {
1046 uint64_t i64;
1047 struct {
1048 uint32_t high;
1049 uint32_t low;
1050 } i32;
1051 } rval;
1052 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1053 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1054 return rval.i64;
1055 #endif
1056 }
1057
1058 #elif defined(__mips__)
1059
1060 static inline int64_t cpu_get_real_ticks(void)
1061 {
1062 #if __mips_isa_rev >= 2
1063 uint32_t count;
1064 static uint32_t cyc_per_count = 0;
1065
1066 if (!cyc_per_count)
1067 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1068
1069 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1070 return (int64_t)(count * cyc_per_count);
1071 #else
1072 /* FIXME */
1073 static int64_t ticks = 0;
1074 return ticks++;
1075 #endif
1076 }
1077
1078 #else
1079 /* The host CPU doesn't have an easily accessible cycle counter.
1080 Just return a monotonically increasing value. This will be
1081 totally wrong, but hopefully better than nothing. */
1082 static inline int64_t cpu_get_real_ticks (void)
1083 {
1084 static int64_t ticks = 0;
1085 return ticks++;
1086 }
1087 #endif
1088
1089 /* profiling */
1090 #ifdef CONFIG_PROFILER
1091 static inline int64_t profile_getclock(void)
1092 {
1093 return cpu_get_real_ticks();
1094 }
1095
1096 extern int64_t kqemu_time, kqemu_time_start;
1097 extern int64_t qemu_time, qemu_time_start;
1098 extern int64_t tlb_flush_time;
1099 extern int64_t kqemu_exec_count;
1100 extern int64_t dev_time;
1101 extern int64_t kqemu_ret_int_count;
1102 extern int64_t kqemu_ret_excp_count;
1103 extern int64_t kqemu_ret_intr_count;
1104 #endif
1105
1106 #endif /* CPU_ALL_H */