]> git.proxmox.com Git - qemu.git/blob - cpu-all.h
disabled signal hacks for softmmu version (qemu should be much more portable now...)
[qemu.git] / cpu-all.h
1 /*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
22
23 /* all CPU memory access use these macros */
24 static inline int ldub(void *ptr)
25 {
26 return *(uint8_t *)ptr;
27 }
28
29 static inline int ldsb(void *ptr)
30 {
31 return *(int8_t *)ptr;
32 }
33
34 static inline void stb(void *ptr, int v)
35 {
36 *(uint8_t *)ptr = v;
37 }
38
39 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
40 kernel handles unaligned load/stores may give better results, but
41 it is a system wide setting : bad */
42 #if defined(WORDS_BIGENDIAN) || defined(__arm__)
43
44 /* conservative code for little endian unaligned accesses */
45 static inline int lduw(void *ptr)
46 {
47 #ifdef __powerpc__
48 int val;
49 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
50 return val;
51 #else
52 uint8_t *p = ptr;
53 return p[0] | (p[1] << 8);
54 #endif
55 }
56
57 static inline int ldsw(void *ptr)
58 {
59 #ifdef __powerpc__
60 int val;
61 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
62 return (int16_t)val;
63 #else
64 uint8_t *p = ptr;
65 return (int16_t)(p[0] | (p[1] << 8));
66 #endif
67 }
68
69 static inline int ldl(void *ptr)
70 {
71 #ifdef __powerpc__
72 int val;
73 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
74 return val;
75 #else
76 uint8_t *p = ptr;
77 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
78 #endif
79 }
80
81 static inline uint64_t ldq(void *ptr)
82 {
83 uint8_t *p = ptr;
84 uint32_t v1, v2;
85 v1 = ldl(p);
86 v2 = ldl(p + 4);
87 return v1 | ((uint64_t)v2 << 32);
88 }
89
90 static inline void stw(void *ptr, int v)
91 {
92 #ifdef __powerpc__
93 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
94 #else
95 uint8_t *p = ptr;
96 p[0] = v;
97 p[1] = v >> 8;
98 #endif
99 }
100
101 static inline void stl(void *ptr, int v)
102 {
103 #ifdef __powerpc__
104 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
105 #else
106 uint8_t *p = ptr;
107 p[0] = v;
108 p[1] = v >> 8;
109 p[2] = v >> 16;
110 p[3] = v >> 24;
111 #endif
112 }
113
114 static inline void stq(void *ptr, uint64_t v)
115 {
116 uint8_t *p = ptr;
117 stl(p, (uint32_t)v);
118 stl(p + 4, v >> 32);
119 }
120
121 /* float access */
122
123 static inline float ldfl(void *ptr)
124 {
125 union {
126 float f;
127 uint32_t i;
128 } u;
129 u.i = ldl(ptr);
130 return u.f;
131 }
132
133 static inline void stfl(void *ptr, float v)
134 {
135 union {
136 float f;
137 uint32_t i;
138 } u;
139 u.f = v;
140 stl(ptr, u.i);
141 }
142
143
144 #if defined(__arm__) && !defined(WORDS_BIGENDIAN)
145
146 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
147 static inline double ldfq(void *ptr)
148 {
149 union {
150 double d;
151 uint32_t tab[2];
152 } u;
153 u.tab[1] = ldl(ptr);
154 u.tab[0] = ldl(ptr + 4);
155 return u.d;
156 }
157
158 static inline void stfq(void *ptr, double v)
159 {
160 union {
161 double d;
162 uint32_t tab[2];
163 } u;
164 u.d = v;
165 stl(ptr, u.tab[1]);
166 stl(ptr + 4, u.tab[0]);
167 }
168
169 #else
170 static inline double ldfq(void *ptr)
171 {
172 union {
173 double d;
174 uint64_t i;
175 } u;
176 u.i = ldq(ptr);
177 return u.d;
178 }
179
180 static inline void stfq(void *ptr, double v)
181 {
182 union {
183 double d;
184 uint64_t i;
185 } u;
186 u.d = v;
187 stq(ptr, u.i);
188 }
189 #endif
190
191 #elif defined(TARGET_WORDS_BIGENDIAN) && !defined(WORDS_BIGENDIAN)
192
193 static inline int lduw(void *ptr)
194 {
195 uint8_t *b = (uint8_t *) ptr;
196 return (b[0]<<8|b[1]);
197 }
198
199 static inline int ldsw(void *ptr)
200 {
201 int8_t *b = (int8_t *) ptr;
202 return (b[0]<<8|b[1]);
203 }
204
205 static inline int ldl(void *ptr)
206 {
207 uint8_t *b = (uint8_t *) ptr;
208 return (b[0]<<24|b[1]<<16|b[2]<<8|b[3]);
209 }
210
211 static inline uint64_t ldq(void *ptr)
212 {
213 uint32_t a,b;
214 a = ldl (ptr);
215 b = ldl (ptr+4);
216 return (((uint64_t)a<<32)|b);
217 }
218
219 static inline void stw(void *ptr, int v)
220 {
221 uint8_t *d = (uint8_t *) ptr;
222 d[0] = v >> 8;
223 d[1] = v;
224 }
225
226 static inline void stl(void *ptr, int v)
227 {
228 uint8_t *d = (uint8_t *) ptr;
229 d[0] = v >> 24;
230 d[1] = v >> 16;
231 d[2] = v >> 8;
232 d[3] = v;
233 }
234
235 static inline void stq(void *ptr, uint64_t v)
236 {
237 stl (ptr, v);
238 stl (ptr+4, v >> 32);
239 }
240
241 #else
242
243 static inline int lduw(void *ptr)
244 {
245 return *(uint16_t *)ptr;
246 }
247
248 static inline int ldsw(void *ptr)
249 {
250 return *(int16_t *)ptr;
251 }
252
253 static inline int ldl(void *ptr)
254 {
255 return *(uint32_t *)ptr;
256 }
257
258 static inline uint64_t ldq(void *ptr)
259 {
260 return *(uint64_t *)ptr;
261 }
262
263 static inline void stw(void *ptr, int v)
264 {
265 *(uint16_t *)ptr = v;
266 }
267
268 static inline void stl(void *ptr, int v)
269 {
270 *(uint32_t *)ptr = v;
271 }
272
273 static inline void stq(void *ptr, uint64_t v)
274 {
275 *(uint64_t *)ptr = v;
276 }
277
278 /* float access */
279
280 static inline float ldfl(void *ptr)
281 {
282 return *(float *)ptr;
283 }
284
285 static inline double ldfq(void *ptr)
286 {
287 return *(double *)ptr;
288 }
289
290 static inline void stfl(void *ptr, float v)
291 {
292 *(float *)ptr = v;
293 }
294
295 static inline void stfq(void *ptr, double v)
296 {
297 *(double *)ptr = v;
298 }
299 #endif
300
301 /* page related stuff */
302
303 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
304 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
305 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
306
307 extern unsigned long real_host_page_size;
308 extern unsigned long host_page_bits;
309 extern unsigned long host_page_size;
310 extern unsigned long host_page_mask;
311
312 #define HOST_PAGE_ALIGN(addr) (((addr) + host_page_size - 1) & host_page_mask)
313
314 /* same as PROT_xxx */
315 #define PAGE_READ 0x0001
316 #define PAGE_WRITE 0x0002
317 #define PAGE_EXEC 0x0004
318 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
319 #define PAGE_VALID 0x0008
320 /* original state of the write flag (used when tracking self-modifying
321 code */
322 #define PAGE_WRITE_ORG 0x0010
323
324 void page_dump(FILE *f);
325 int page_get_flags(unsigned long address);
326 void page_set_flags(unsigned long start, unsigned long end, int flags);
327 void page_unprotect_range(uint8_t *data, unsigned long data_size);
328
329 #define SINGLE_CPU_DEFINES
330 #ifdef SINGLE_CPU_DEFINES
331
332 #if defined(TARGET_I386)
333
334 #define CPUState CPUX86State
335 #define cpu_init cpu_x86_init
336 #define cpu_exec cpu_x86_exec
337 #define cpu_gen_code cpu_x86_gen_code
338 #define cpu_interrupt cpu_x86_interrupt
339 #define cpu_signal_handler cpu_x86_signal_handler
340
341 #elif defined(TARGET_ARM)
342
343 #define CPUState CPUARMState
344 #define cpu_init cpu_arm_init
345 #define cpu_exec cpu_arm_exec
346 #define cpu_gen_code cpu_arm_gen_code
347 #define cpu_interrupt cpu_arm_interrupt
348 #define cpu_signal_handler cpu_arm_signal_handler
349
350 #elif defined(TARGET_SPARC)
351
352 #define CPUState CPUSPARCState
353 #define cpu_init cpu_sparc_init
354 #define cpu_exec cpu_sparc_exec
355 #define cpu_gen_code cpu_sparc_gen_code
356 #define cpu_interrupt cpu_sparc_interrupt
357 #define cpu_signal_handler cpu_sparc_signal_handler
358
359 #else
360
361 #error unsupported target CPU
362
363 #endif
364
365 #endif /* SINGLE_CPU_DEFINES */
366
367 #define DEFAULT_GDBSTUB_PORT 1234
368
369 void cpu_abort(CPUState *env, const char *fmt, ...);
370 extern CPUState *cpu_single_env;
371
372 #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
373 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
374 void cpu_interrupt(CPUState *s, int mask);
375
376 int cpu_breakpoint_insert(CPUState *env, uint32_t pc);
377 int cpu_breakpoint_remove(CPUState *env, uint32_t pc);
378 void cpu_single_step(CPUState *env, int enabled);
379
380 #define CPU_LOG_ALL 1
381 void cpu_set_log(int log_flags);
382 void cpu_set_log_filename(const char *filename);
383
384 /* memory API */
385
386 typedef void CPUWriteMemoryFunc(uint32_t addr, uint32_t value);
387 typedef uint32_t CPUReadMemoryFunc(uint32_t addr);
388
389 void cpu_register_physical_memory(unsigned long start_addr, unsigned long size,
390 long phys_offset);
391 int cpu_register_io_memory(int io_index,
392 CPUReadMemoryFunc **mem_read,
393 CPUWriteMemoryFunc **mem_write);
394
395 /* gdb stub API */
396 extern int gdbstub_fd;
397 CPUState *cpu_gdbstub_get_env(void *opaque);
398 int cpu_gdbstub(void *opaque, int (*main_loop)(void *opaque), int port);
399
400 #endif /* CPU_ALL_H */