]> git.proxmox.com Git - qemu.git/blob - cpu-all.h
x86: Introduce CPU_INTERRUPT_NMI
[qemu.git] / cpu-all.h
1 /*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
22
23 #if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
24 #define WORDS_ALIGNED
25 #endif
26
27 /* some important defines:
28 *
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
31 *
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
34 *
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36 *
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 */
39
40 #include "bswap.h"
41
42 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
43 #define BSWAP_NEEDED
44 #endif
45
46 #ifdef BSWAP_NEEDED
47
48 static inline uint16_t tswap16(uint16_t s)
49 {
50 return bswap16(s);
51 }
52
53 static inline uint32_t tswap32(uint32_t s)
54 {
55 return bswap32(s);
56 }
57
58 static inline uint64_t tswap64(uint64_t s)
59 {
60 return bswap64(s);
61 }
62
63 static inline void tswap16s(uint16_t *s)
64 {
65 *s = bswap16(*s);
66 }
67
68 static inline void tswap32s(uint32_t *s)
69 {
70 *s = bswap32(*s);
71 }
72
73 static inline void tswap64s(uint64_t *s)
74 {
75 *s = bswap64(*s);
76 }
77
78 #else
79
80 static inline uint16_t tswap16(uint16_t s)
81 {
82 return s;
83 }
84
85 static inline uint32_t tswap32(uint32_t s)
86 {
87 return s;
88 }
89
90 static inline uint64_t tswap64(uint64_t s)
91 {
92 return s;
93 }
94
95 static inline void tswap16s(uint16_t *s)
96 {
97 }
98
99 static inline void tswap32s(uint32_t *s)
100 {
101 }
102
103 static inline void tswap64s(uint64_t *s)
104 {
105 }
106
107 #endif
108
109 #if TARGET_LONG_SIZE == 4
110 #define tswapl(s) tswap32(s)
111 #define tswapls(s) tswap32s((uint32_t *)(s))
112 #define bswaptls(s) bswap32s(s)
113 #else
114 #define tswapl(s) tswap64(s)
115 #define tswapls(s) tswap64s((uint64_t *)(s))
116 #define bswaptls(s) bswap64s(s)
117 #endif
118
119 typedef union {
120 float32 f;
121 uint32_t l;
122 } CPU_FloatU;
123
124 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
125 endian ! */
126 typedef union {
127 float64 d;
128 #if defined(WORDS_BIGENDIAN) \
129 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
130 struct {
131 uint32_t upper;
132 uint32_t lower;
133 } l;
134 #else
135 struct {
136 uint32_t lower;
137 uint32_t upper;
138 } l;
139 #endif
140 uint64_t ll;
141 } CPU_DoubleU;
142
143 #ifdef TARGET_SPARC
144 typedef union {
145 float128 q;
146 #if defined(WORDS_BIGENDIAN) \
147 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
148 struct {
149 uint32_t upmost;
150 uint32_t upper;
151 uint32_t lower;
152 uint32_t lowest;
153 } l;
154 struct {
155 uint64_t upper;
156 uint64_t lower;
157 } ll;
158 #else
159 struct {
160 uint32_t lowest;
161 uint32_t lower;
162 uint32_t upper;
163 uint32_t upmost;
164 } l;
165 struct {
166 uint64_t lower;
167 uint64_t upper;
168 } ll;
169 #endif
170 } CPU_QuadU;
171 #endif
172
173 /* CPU memory access without any memory or io remapping */
174
175 /*
176 * the generic syntax for the memory accesses is:
177 *
178 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
179 *
180 * store: st{type}{size}{endian}_{access_type}(ptr, val)
181 *
182 * type is:
183 * (empty): integer access
184 * f : float access
185 *
186 * sign is:
187 * (empty): for floats or 32 bit size
188 * u : unsigned
189 * s : signed
190 *
191 * size is:
192 * b: 8 bits
193 * w: 16 bits
194 * l: 32 bits
195 * q: 64 bits
196 *
197 * endian is:
198 * (empty): target cpu endianness or 8 bit access
199 * r : reversed target cpu endianness (not implemented yet)
200 * be : big endian (not implemented yet)
201 * le : little endian (not implemented yet)
202 *
203 * access_type is:
204 * raw : host memory access
205 * user : user mode access using soft MMU
206 * kernel : kernel mode access using soft MMU
207 */
208 static inline int ldub_p(void *ptr)
209 {
210 return *(uint8_t *)ptr;
211 }
212
213 static inline int ldsb_p(void *ptr)
214 {
215 return *(int8_t *)ptr;
216 }
217
218 static inline void stb_p(void *ptr, int v)
219 {
220 *(uint8_t *)ptr = v;
221 }
222
223 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
224 kernel handles unaligned load/stores may give better results, but
225 it is a system wide setting : bad */
226 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
227
228 /* conservative code for little endian unaligned accesses */
229 static inline int lduw_le_p(void *ptr)
230 {
231 #ifdef __powerpc__
232 int val;
233 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
234 return val;
235 #else
236 uint8_t *p = ptr;
237 return p[0] | (p[1] << 8);
238 #endif
239 }
240
241 static inline int ldsw_le_p(void *ptr)
242 {
243 #ifdef __powerpc__
244 int val;
245 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
246 return (int16_t)val;
247 #else
248 uint8_t *p = ptr;
249 return (int16_t)(p[0] | (p[1] << 8));
250 #endif
251 }
252
253 static inline int ldl_le_p(void *ptr)
254 {
255 #ifdef __powerpc__
256 int val;
257 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
258 return val;
259 #else
260 uint8_t *p = ptr;
261 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
262 #endif
263 }
264
265 static inline uint64_t ldq_le_p(void *ptr)
266 {
267 uint8_t *p = ptr;
268 uint32_t v1, v2;
269 v1 = ldl_le_p(p);
270 v2 = ldl_le_p(p + 4);
271 return v1 | ((uint64_t)v2 << 32);
272 }
273
274 static inline void stw_le_p(void *ptr, int v)
275 {
276 #ifdef __powerpc__
277 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
278 #else
279 uint8_t *p = ptr;
280 p[0] = v;
281 p[1] = v >> 8;
282 #endif
283 }
284
285 static inline void stl_le_p(void *ptr, int v)
286 {
287 #ifdef __powerpc__
288 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
289 #else
290 uint8_t *p = ptr;
291 p[0] = v;
292 p[1] = v >> 8;
293 p[2] = v >> 16;
294 p[3] = v >> 24;
295 #endif
296 }
297
298 static inline void stq_le_p(void *ptr, uint64_t v)
299 {
300 uint8_t *p = ptr;
301 stl_le_p(p, (uint32_t)v);
302 stl_le_p(p + 4, v >> 32);
303 }
304
305 /* float access */
306
307 static inline float32 ldfl_le_p(void *ptr)
308 {
309 union {
310 float32 f;
311 uint32_t i;
312 } u;
313 u.i = ldl_le_p(ptr);
314 return u.f;
315 }
316
317 static inline void stfl_le_p(void *ptr, float32 v)
318 {
319 union {
320 float32 f;
321 uint32_t i;
322 } u;
323 u.f = v;
324 stl_le_p(ptr, u.i);
325 }
326
327 static inline float64 ldfq_le_p(void *ptr)
328 {
329 CPU_DoubleU u;
330 u.l.lower = ldl_le_p(ptr);
331 u.l.upper = ldl_le_p(ptr + 4);
332 return u.d;
333 }
334
335 static inline void stfq_le_p(void *ptr, float64 v)
336 {
337 CPU_DoubleU u;
338 u.d = v;
339 stl_le_p(ptr, u.l.lower);
340 stl_le_p(ptr + 4, u.l.upper);
341 }
342
343 #else
344
345 static inline int lduw_le_p(void *ptr)
346 {
347 return *(uint16_t *)ptr;
348 }
349
350 static inline int ldsw_le_p(void *ptr)
351 {
352 return *(int16_t *)ptr;
353 }
354
355 static inline int ldl_le_p(void *ptr)
356 {
357 return *(uint32_t *)ptr;
358 }
359
360 static inline uint64_t ldq_le_p(void *ptr)
361 {
362 return *(uint64_t *)ptr;
363 }
364
365 static inline void stw_le_p(void *ptr, int v)
366 {
367 *(uint16_t *)ptr = v;
368 }
369
370 static inline void stl_le_p(void *ptr, int v)
371 {
372 *(uint32_t *)ptr = v;
373 }
374
375 static inline void stq_le_p(void *ptr, uint64_t v)
376 {
377 *(uint64_t *)ptr = v;
378 }
379
380 /* float access */
381
382 static inline float32 ldfl_le_p(void *ptr)
383 {
384 return *(float32 *)ptr;
385 }
386
387 static inline float64 ldfq_le_p(void *ptr)
388 {
389 return *(float64 *)ptr;
390 }
391
392 static inline void stfl_le_p(void *ptr, float32 v)
393 {
394 *(float32 *)ptr = v;
395 }
396
397 static inline void stfq_le_p(void *ptr, float64 v)
398 {
399 *(float64 *)ptr = v;
400 }
401 #endif
402
403 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
404
405 static inline int lduw_be_p(void *ptr)
406 {
407 #if defined(__i386__)
408 int val;
409 asm volatile ("movzwl %1, %0\n"
410 "xchgb %b0, %h0\n"
411 : "=q" (val)
412 : "m" (*(uint16_t *)ptr));
413 return val;
414 #else
415 uint8_t *b = (uint8_t *) ptr;
416 return ((b[0] << 8) | b[1]);
417 #endif
418 }
419
420 static inline int ldsw_be_p(void *ptr)
421 {
422 #if defined(__i386__)
423 int val;
424 asm volatile ("movzwl %1, %0\n"
425 "xchgb %b0, %h0\n"
426 : "=q" (val)
427 : "m" (*(uint16_t *)ptr));
428 return (int16_t)val;
429 #else
430 uint8_t *b = (uint8_t *) ptr;
431 return (int16_t)((b[0] << 8) | b[1]);
432 #endif
433 }
434
435 static inline int ldl_be_p(void *ptr)
436 {
437 #if defined(__i386__) || defined(__x86_64__)
438 int val;
439 asm volatile ("movl %1, %0\n"
440 "bswap %0\n"
441 : "=r" (val)
442 : "m" (*(uint32_t *)ptr));
443 return val;
444 #else
445 uint8_t *b = (uint8_t *) ptr;
446 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
447 #endif
448 }
449
450 static inline uint64_t ldq_be_p(void *ptr)
451 {
452 uint32_t a,b;
453 a = ldl_be_p(ptr);
454 b = ldl_be_p(ptr+4);
455 return (((uint64_t)a<<32)|b);
456 }
457
458 static inline void stw_be_p(void *ptr, int v)
459 {
460 #if defined(__i386__)
461 asm volatile ("xchgb %b0, %h0\n"
462 "movw %w0, %1\n"
463 : "=q" (v)
464 : "m" (*(uint16_t *)ptr), "0" (v));
465 #else
466 uint8_t *d = (uint8_t *) ptr;
467 d[0] = v >> 8;
468 d[1] = v;
469 #endif
470 }
471
472 static inline void stl_be_p(void *ptr, int v)
473 {
474 #if defined(__i386__) || defined(__x86_64__)
475 asm volatile ("bswap %0\n"
476 "movl %0, %1\n"
477 : "=r" (v)
478 : "m" (*(uint32_t *)ptr), "0" (v));
479 #else
480 uint8_t *d = (uint8_t *) ptr;
481 d[0] = v >> 24;
482 d[1] = v >> 16;
483 d[2] = v >> 8;
484 d[3] = v;
485 #endif
486 }
487
488 static inline void stq_be_p(void *ptr, uint64_t v)
489 {
490 stl_be_p(ptr, v >> 32);
491 stl_be_p(ptr + 4, v);
492 }
493
494 /* float access */
495
496 static inline float32 ldfl_be_p(void *ptr)
497 {
498 union {
499 float32 f;
500 uint32_t i;
501 } u;
502 u.i = ldl_be_p(ptr);
503 return u.f;
504 }
505
506 static inline void stfl_be_p(void *ptr, float32 v)
507 {
508 union {
509 float32 f;
510 uint32_t i;
511 } u;
512 u.f = v;
513 stl_be_p(ptr, u.i);
514 }
515
516 static inline float64 ldfq_be_p(void *ptr)
517 {
518 CPU_DoubleU u;
519 u.l.upper = ldl_be_p(ptr);
520 u.l.lower = ldl_be_p(ptr + 4);
521 return u.d;
522 }
523
524 static inline void stfq_be_p(void *ptr, float64 v)
525 {
526 CPU_DoubleU u;
527 u.d = v;
528 stl_be_p(ptr, u.l.upper);
529 stl_be_p(ptr + 4, u.l.lower);
530 }
531
532 #else
533
534 static inline int lduw_be_p(void *ptr)
535 {
536 return *(uint16_t *)ptr;
537 }
538
539 static inline int ldsw_be_p(void *ptr)
540 {
541 return *(int16_t *)ptr;
542 }
543
544 static inline int ldl_be_p(void *ptr)
545 {
546 return *(uint32_t *)ptr;
547 }
548
549 static inline uint64_t ldq_be_p(void *ptr)
550 {
551 return *(uint64_t *)ptr;
552 }
553
554 static inline void stw_be_p(void *ptr, int v)
555 {
556 *(uint16_t *)ptr = v;
557 }
558
559 static inline void stl_be_p(void *ptr, int v)
560 {
561 *(uint32_t *)ptr = v;
562 }
563
564 static inline void stq_be_p(void *ptr, uint64_t v)
565 {
566 *(uint64_t *)ptr = v;
567 }
568
569 /* float access */
570
571 static inline float32 ldfl_be_p(void *ptr)
572 {
573 return *(float32 *)ptr;
574 }
575
576 static inline float64 ldfq_be_p(void *ptr)
577 {
578 return *(float64 *)ptr;
579 }
580
581 static inline void stfl_be_p(void *ptr, float32 v)
582 {
583 *(float32 *)ptr = v;
584 }
585
586 static inline void stfq_be_p(void *ptr, float64 v)
587 {
588 *(float64 *)ptr = v;
589 }
590
591 #endif
592
593 /* target CPU memory access functions */
594 #if defined(TARGET_WORDS_BIGENDIAN)
595 #define lduw_p(p) lduw_be_p(p)
596 #define ldsw_p(p) ldsw_be_p(p)
597 #define ldl_p(p) ldl_be_p(p)
598 #define ldq_p(p) ldq_be_p(p)
599 #define ldfl_p(p) ldfl_be_p(p)
600 #define ldfq_p(p) ldfq_be_p(p)
601 #define stw_p(p, v) stw_be_p(p, v)
602 #define stl_p(p, v) stl_be_p(p, v)
603 #define stq_p(p, v) stq_be_p(p, v)
604 #define stfl_p(p, v) stfl_be_p(p, v)
605 #define stfq_p(p, v) stfq_be_p(p, v)
606 #else
607 #define lduw_p(p) lduw_le_p(p)
608 #define ldsw_p(p) ldsw_le_p(p)
609 #define ldl_p(p) ldl_le_p(p)
610 #define ldq_p(p) ldq_le_p(p)
611 #define ldfl_p(p) ldfl_le_p(p)
612 #define ldfq_p(p) ldfq_le_p(p)
613 #define stw_p(p, v) stw_le_p(p, v)
614 #define stl_p(p, v) stl_le_p(p, v)
615 #define stq_p(p, v) stq_le_p(p, v)
616 #define stfl_p(p, v) stfl_le_p(p, v)
617 #define stfq_p(p, v) stfq_le_p(p, v)
618 #endif
619
620 /* MMU memory access macros */
621
622 #if defined(CONFIG_USER_ONLY)
623 /* On some host systems the guest address space is reserved on the host.
624 * This allows the guest address space to be offset to a convenient location.
625 */
626 //#define GUEST_BASE 0x20000000
627 #define GUEST_BASE 0
628
629 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
630 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
631 #define h2g(x) ((target_ulong)(x - GUEST_BASE))
632
633 #define saddr(x) g2h(x)
634 #define laddr(x) g2h(x)
635
636 #else /* !CONFIG_USER_ONLY */
637 /* NOTE: we use double casts if pointers and target_ulong have
638 different sizes */
639 #define saddr(x) (uint8_t *)(long)(x)
640 #define laddr(x) (uint8_t *)(long)(x)
641 #endif
642
643 #define ldub_raw(p) ldub_p(laddr((p)))
644 #define ldsb_raw(p) ldsb_p(laddr((p)))
645 #define lduw_raw(p) lduw_p(laddr((p)))
646 #define ldsw_raw(p) ldsw_p(laddr((p)))
647 #define ldl_raw(p) ldl_p(laddr((p)))
648 #define ldq_raw(p) ldq_p(laddr((p)))
649 #define ldfl_raw(p) ldfl_p(laddr((p)))
650 #define ldfq_raw(p) ldfq_p(laddr((p)))
651 #define stb_raw(p, v) stb_p(saddr((p)), v)
652 #define stw_raw(p, v) stw_p(saddr((p)), v)
653 #define stl_raw(p, v) stl_p(saddr((p)), v)
654 #define stq_raw(p, v) stq_p(saddr((p)), v)
655 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
656 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
657
658
659 #if defined(CONFIG_USER_ONLY)
660
661 /* if user mode, no other memory access functions */
662 #define ldub(p) ldub_raw(p)
663 #define ldsb(p) ldsb_raw(p)
664 #define lduw(p) lduw_raw(p)
665 #define ldsw(p) ldsw_raw(p)
666 #define ldl(p) ldl_raw(p)
667 #define ldq(p) ldq_raw(p)
668 #define ldfl(p) ldfl_raw(p)
669 #define ldfq(p) ldfq_raw(p)
670 #define stb(p, v) stb_raw(p, v)
671 #define stw(p, v) stw_raw(p, v)
672 #define stl(p, v) stl_raw(p, v)
673 #define stq(p, v) stq_raw(p, v)
674 #define stfl(p, v) stfl_raw(p, v)
675 #define stfq(p, v) stfq_raw(p, v)
676
677 #define ldub_code(p) ldub_raw(p)
678 #define ldsb_code(p) ldsb_raw(p)
679 #define lduw_code(p) lduw_raw(p)
680 #define ldsw_code(p) ldsw_raw(p)
681 #define ldl_code(p) ldl_raw(p)
682 #define ldq_code(p) ldq_raw(p)
683
684 #define ldub_kernel(p) ldub_raw(p)
685 #define ldsb_kernel(p) ldsb_raw(p)
686 #define lduw_kernel(p) lduw_raw(p)
687 #define ldsw_kernel(p) ldsw_raw(p)
688 #define ldl_kernel(p) ldl_raw(p)
689 #define ldq_kernel(p) ldq_raw(p)
690 #define ldfl_kernel(p) ldfl_raw(p)
691 #define ldfq_kernel(p) ldfq_raw(p)
692 #define stb_kernel(p, v) stb_raw(p, v)
693 #define stw_kernel(p, v) stw_raw(p, v)
694 #define stl_kernel(p, v) stl_raw(p, v)
695 #define stq_kernel(p, v) stq_raw(p, v)
696 #define stfl_kernel(p, v) stfl_raw(p, v)
697 #define stfq_kernel(p, vt) stfq_raw(p, v)
698
699 #endif /* defined(CONFIG_USER_ONLY) */
700
701 /* page related stuff */
702
703 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
704 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
705 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
706
707 /* ??? These should be the larger of unsigned long and target_ulong. */
708 extern unsigned long qemu_real_host_page_size;
709 extern unsigned long qemu_host_page_bits;
710 extern unsigned long qemu_host_page_size;
711 extern unsigned long qemu_host_page_mask;
712
713 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
714
715 /* same as PROT_xxx */
716 #define PAGE_READ 0x0001
717 #define PAGE_WRITE 0x0002
718 #define PAGE_EXEC 0x0004
719 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
720 #define PAGE_VALID 0x0008
721 /* original state of the write flag (used when tracking self-modifying
722 code */
723 #define PAGE_WRITE_ORG 0x0010
724 #define PAGE_RESERVED 0x0020
725
726 void page_dump(FILE *f);
727 int page_get_flags(target_ulong address);
728 void page_set_flags(target_ulong start, target_ulong end, int flags);
729 int page_check_range(target_ulong start, target_ulong len, int flags);
730
731 CPUState *cpu_copy(CPUState *env);
732
733 void cpu_dump_state(CPUState *env, FILE *f,
734 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
735 int flags);
736 void cpu_dump_statistics (CPUState *env, FILE *f,
737 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
738 int flags);
739
740 void cpu_abort(CPUState *env, const char *fmt, ...)
741 __attribute__ ((__format__ (__printf__, 2, 3)))
742 __attribute__ ((__noreturn__));
743 extern CPUState *first_cpu;
744 extern CPUState *cpu_single_env;
745 extern int code_copy_enabled;
746
747 #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
748 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
749 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
750 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
751 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
752 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
753 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
754 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
755 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
756 #define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
757
758 void cpu_interrupt(CPUState *s, int mask);
759 void cpu_reset_interrupt(CPUState *env, int mask);
760
761 int cpu_watchpoint_insert(CPUState *env, target_ulong addr);
762 int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
763 int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
764 int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
765 void cpu_single_step(CPUState *env, int enabled);
766 void cpu_reset(CPUState *s);
767
768 /* Return the physical page corresponding to a virtual one. Use it
769 only for debugging because no protection checks are done. Return -1
770 if no page found. */
771 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
772
773 #define CPU_LOG_TB_OUT_ASM (1 << 0)
774 #define CPU_LOG_TB_IN_ASM (1 << 1)
775 #define CPU_LOG_TB_OP (1 << 2)
776 #define CPU_LOG_TB_OP_OPT (1 << 3)
777 #define CPU_LOG_INT (1 << 4)
778 #define CPU_LOG_EXEC (1 << 5)
779 #define CPU_LOG_PCALL (1 << 6)
780 #define CPU_LOG_IOPORT (1 << 7)
781 #define CPU_LOG_TB_CPU (1 << 8)
782
783 /* define log items */
784 typedef struct CPULogItem {
785 int mask;
786 const char *name;
787 const char *help;
788 } CPULogItem;
789
790 extern CPULogItem cpu_log_items[];
791
792 void cpu_set_log(int log_flags);
793 void cpu_set_log_filename(const char *filename);
794 int cpu_str_to_log_mask(const char *str);
795
796 /* IO ports API */
797
798 /* NOTE: as these functions may be even used when there is an isa
799 brige on non x86 targets, we always defined them */
800 #ifndef NO_CPU_IO_DEFS
801 void cpu_outb(CPUState *env, int addr, int val);
802 void cpu_outw(CPUState *env, int addr, int val);
803 void cpu_outl(CPUState *env, int addr, int val);
804 int cpu_inb(CPUState *env, int addr);
805 int cpu_inw(CPUState *env, int addr);
806 int cpu_inl(CPUState *env, int addr);
807 #endif
808
809 /* memory API */
810
811 extern int phys_ram_size;
812 extern int phys_ram_fd;
813 extern uint8_t *phys_ram_base;
814 extern uint8_t *phys_ram_dirty;
815
816 /* physical memory access */
817 #define TLB_INVALID_MASK (1 << 3)
818 #define IO_MEM_SHIFT 4
819 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
820
821 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
822 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
823 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
824 #define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
825 /* acts like a ROM when read and like a device when written. As an
826 exception, the write memory callback gets the ram offset instead of
827 the physical address */
828 #define IO_MEM_ROMD (1)
829 #define IO_MEM_SUBPAGE (2)
830 #define IO_MEM_SUBWIDTH (4)
831
832 typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
833 typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
834
835 void cpu_register_physical_memory(target_phys_addr_t start_addr,
836 unsigned long size,
837 unsigned long phys_offset);
838 uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr);
839 ram_addr_t qemu_ram_alloc(unsigned int size);
840 void qemu_ram_free(ram_addr_t addr);
841 int cpu_register_io_memory(int io_index,
842 CPUReadMemoryFunc **mem_read,
843 CPUWriteMemoryFunc **mem_write,
844 void *opaque);
845 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
846 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
847
848 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
849 int len, int is_write);
850 static inline void cpu_physical_memory_read(target_phys_addr_t addr,
851 uint8_t *buf, int len)
852 {
853 cpu_physical_memory_rw(addr, buf, len, 0);
854 }
855 static inline void cpu_physical_memory_write(target_phys_addr_t addr,
856 const uint8_t *buf, int len)
857 {
858 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
859 }
860 uint32_t ldub_phys(target_phys_addr_t addr);
861 uint32_t lduw_phys(target_phys_addr_t addr);
862 uint32_t ldl_phys(target_phys_addr_t addr);
863 uint64_t ldq_phys(target_phys_addr_t addr);
864 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
865 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
866 void stb_phys(target_phys_addr_t addr, uint32_t val);
867 void stw_phys(target_phys_addr_t addr, uint32_t val);
868 void stl_phys(target_phys_addr_t addr, uint32_t val);
869 void stq_phys(target_phys_addr_t addr, uint64_t val);
870
871 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
872 const uint8_t *buf, int len);
873 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
874 uint8_t *buf, int len, int is_write);
875
876 #define VGA_DIRTY_FLAG 0x01
877 #define CODE_DIRTY_FLAG 0x02
878
879 /* read dirty bit (return 0 or 1) */
880 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
881 {
882 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
883 }
884
885 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
886 int dirty_flags)
887 {
888 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
889 }
890
891 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
892 {
893 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
894 }
895
896 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
897 int dirty_flags);
898 void cpu_tlb_update_dirty(CPUState *env);
899
900 void dump_exec_info(FILE *f,
901 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
902
903 /*******************************************/
904 /* host CPU ticks (if available) */
905
906 #if defined(__powerpc__)
907
908 static inline uint32_t get_tbl(void)
909 {
910 uint32_t tbl;
911 asm volatile("mftb %0" : "=r" (tbl));
912 return tbl;
913 }
914
915 static inline uint32_t get_tbu(void)
916 {
917 uint32_t tbl;
918 asm volatile("mftbu %0" : "=r" (tbl));
919 return tbl;
920 }
921
922 static inline int64_t cpu_get_real_ticks(void)
923 {
924 uint32_t l, h, h1;
925 /* NOTE: we test if wrapping has occurred */
926 do {
927 h = get_tbu();
928 l = get_tbl();
929 h1 = get_tbu();
930 } while (h != h1);
931 return ((int64_t)h << 32) | l;
932 }
933
934 #elif defined(__i386__)
935
936 static inline int64_t cpu_get_real_ticks(void)
937 {
938 int64_t val;
939 asm volatile ("rdtsc" : "=A" (val));
940 return val;
941 }
942
943 #elif defined(__x86_64__)
944
945 static inline int64_t cpu_get_real_ticks(void)
946 {
947 uint32_t low,high;
948 int64_t val;
949 asm volatile("rdtsc" : "=a" (low), "=d" (high));
950 val = high;
951 val <<= 32;
952 val |= low;
953 return val;
954 }
955
956 #elif defined(__hppa__)
957
958 static inline int64_t cpu_get_real_ticks(void)
959 {
960 int val;
961 asm volatile ("mfctl %%cr16, %0" : "=r"(val));
962 return val;
963 }
964
965 #elif defined(__ia64)
966
967 static inline int64_t cpu_get_real_ticks(void)
968 {
969 int64_t val;
970 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
971 return val;
972 }
973
974 #elif defined(__s390__)
975
976 static inline int64_t cpu_get_real_ticks(void)
977 {
978 int64_t val;
979 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
980 return val;
981 }
982
983 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
984
985 static inline int64_t cpu_get_real_ticks (void)
986 {
987 #if defined(_LP64)
988 uint64_t rval;
989 asm volatile("rd %%tick,%0" : "=r"(rval));
990 return rval;
991 #else
992 union {
993 uint64_t i64;
994 struct {
995 uint32_t high;
996 uint32_t low;
997 } i32;
998 } rval;
999 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1000 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1001 return rval.i64;
1002 #endif
1003 }
1004
1005 #elif defined(__mips__)
1006
1007 static inline int64_t cpu_get_real_ticks(void)
1008 {
1009 #if __mips_isa_rev >= 2
1010 uint32_t count;
1011 static uint32_t cyc_per_count = 0;
1012
1013 if (!cyc_per_count)
1014 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1015
1016 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1017 return (int64_t)(count * cyc_per_count);
1018 #else
1019 /* FIXME */
1020 static int64_t ticks = 0;
1021 return ticks++;
1022 #endif
1023 }
1024
1025 #else
1026 /* The host CPU doesn't have an easily accessible cycle counter.
1027 Just return a monotonically increasing value. This will be
1028 totally wrong, but hopefully better than nothing. */
1029 static inline int64_t cpu_get_real_ticks (void)
1030 {
1031 static int64_t ticks = 0;
1032 return ticks++;
1033 }
1034 #endif
1035
1036 /* profiling */
1037 #ifdef CONFIG_PROFILER
1038 static inline int64_t profile_getclock(void)
1039 {
1040 return cpu_get_real_ticks();
1041 }
1042
1043 extern int64_t kqemu_time, kqemu_time_start;
1044 extern int64_t qemu_time, qemu_time_start;
1045 extern int64_t tlb_flush_time;
1046 extern int64_t kqemu_exec_count;
1047 extern int64_t dev_time;
1048 extern int64_t kqemu_ret_int_count;
1049 extern int64_t kqemu_ret_excp_count;
1050 extern int64_t kqemu_ret_intr_count;
1051
1052 extern int64_t dyngen_tb_count1;
1053 extern int64_t dyngen_tb_count;
1054 extern int64_t dyngen_op_count;
1055 extern int64_t dyngen_old_op_count;
1056 extern int64_t dyngen_tcg_del_op_count;
1057 extern int dyngen_op_count_max;
1058 extern int64_t dyngen_code_in_len;
1059 extern int64_t dyngen_code_out_len;
1060 extern int64_t dyngen_interm_time;
1061 extern int64_t dyngen_code_time;
1062 extern int64_t dyngen_restore_count;
1063 extern int64_t dyngen_restore_time;
1064 #endif
1065
1066 #endif /* CPU_ALL_H */