]> git.proxmox.com Git - qemu.git/blob - cpu-all.h
Mark host pages as reserved (Magnus Damm).
[qemu.git] / cpu-all.h
1 /*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
22
23 #if defined(__arm__) || defined(__sparc__) || defined(__mips__)
24 #define WORDS_ALIGNED
25 #endif
26
27 /* some important defines:
28 *
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
31 *
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
34 *
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36 *
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 */
39
40 #include "bswap.h"
41
42 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
43 #define BSWAP_NEEDED
44 #endif
45
46 #ifdef BSWAP_NEEDED
47
48 static inline uint16_t tswap16(uint16_t s)
49 {
50 return bswap16(s);
51 }
52
53 static inline uint32_t tswap32(uint32_t s)
54 {
55 return bswap32(s);
56 }
57
58 static inline uint64_t tswap64(uint64_t s)
59 {
60 return bswap64(s);
61 }
62
63 static inline void tswap16s(uint16_t *s)
64 {
65 *s = bswap16(*s);
66 }
67
68 static inline void tswap32s(uint32_t *s)
69 {
70 *s = bswap32(*s);
71 }
72
73 static inline void tswap64s(uint64_t *s)
74 {
75 *s = bswap64(*s);
76 }
77
78 #else
79
80 static inline uint16_t tswap16(uint16_t s)
81 {
82 return s;
83 }
84
85 static inline uint32_t tswap32(uint32_t s)
86 {
87 return s;
88 }
89
90 static inline uint64_t tswap64(uint64_t s)
91 {
92 return s;
93 }
94
95 static inline void tswap16s(uint16_t *s)
96 {
97 }
98
99 static inline void tswap32s(uint32_t *s)
100 {
101 }
102
103 static inline void tswap64s(uint64_t *s)
104 {
105 }
106
107 #endif
108
109 #if TARGET_LONG_SIZE == 4
110 #define tswapl(s) tswap32(s)
111 #define tswapls(s) tswap32s((uint32_t *)(s))
112 #define bswaptls(s) bswap32s(s)
113 #else
114 #define tswapl(s) tswap64(s)
115 #define tswapls(s) tswap64s((uint64_t *)(s))
116 #define bswaptls(s) bswap64s(s)
117 #endif
118
119 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
120 endian ! */
121 typedef union {
122 float64 d;
123 #if defined(WORDS_BIGENDIAN) \
124 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
125 struct {
126 uint32_t upper;
127 uint32_t lower;
128 } l;
129 #else
130 struct {
131 uint32_t lower;
132 uint32_t upper;
133 } l;
134 #endif
135 uint64_t ll;
136 } CPU_DoubleU;
137
138 #ifdef TARGET_SPARC
139 typedef union {
140 float128 q;
141 #if defined(WORDS_BIGENDIAN) \
142 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
143 struct {
144 uint32_t upmost;
145 uint32_t upper;
146 uint32_t lower;
147 uint32_t lowest;
148 } l;
149 struct {
150 uint64_t upper;
151 uint64_t lower;
152 } ll;
153 #else
154 struct {
155 uint32_t lowest;
156 uint32_t lower;
157 uint32_t upper;
158 uint32_t upmost;
159 } l;
160 struct {
161 uint64_t lower;
162 uint64_t upper;
163 } ll;
164 #endif
165 } CPU_QuadU;
166 #endif
167
168 /* CPU memory access without any memory or io remapping */
169
170 /*
171 * the generic syntax for the memory accesses is:
172 *
173 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
174 *
175 * store: st{type}{size}{endian}_{access_type}(ptr, val)
176 *
177 * type is:
178 * (empty): integer access
179 * f : float access
180 *
181 * sign is:
182 * (empty): for floats or 32 bit size
183 * u : unsigned
184 * s : signed
185 *
186 * size is:
187 * b: 8 bits
188 * w: 16 bits
189 * l: 32 bits
190 * q: 64 bits
191 *
192 * endian is:
193 * (empty): target cpu endianness or 8 bit access
194 * r : reversed target cpu endianness (not implemented yet)
195 * be : big endian (not implemented yet)
196 * le : little endian (not implemented yet)
197 *
198 * access_type is:
199 * raw : host memory access
200 * user : user mode access using soft MMU
201 * kernel : kernel mode access using soft MMU
202 */
203 static inline int ldub_p(void *ptr)
204 {
205 return *(uint8_t *)ptr;
206 }
207
208 static inline int ldsb_p(void *ptr)
209 {
210 return *(int8_t *)ptr;
211 }
212
213 static inline void stb_p(void *ptr, int v)
214 {
215 *(uint8_t *)ptr = v;
216 }
217
218 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
219 kernel handles unaligned load/stores may give better results, but
220 it is a system wide setting : bad */
221 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
222
223 /* conservative code for little endian unaligned accesses */
224 static inline int lduw_le_p(void *ptr)
225 {
226 #ifdef __powerpc__
227 int val;
228 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
229 return val;
230 #else
231 uint8_t *p = ptr;
232 return p[0] | (p[1] << 8);
233 #endif
234 }
235
236 static inline int ldsw_le_p(void *ptr)
237 {
238 #ifdef __powerpc__
239 int val;
240 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
241 return (int16_t)val;
242 #else
243 uint8_t *p = ptr;
244 return (int16_t)(p[0] | (p[1] << 8));
245 #endif
246 }
247
248 static inline int ldl_le_p(void *ptr)
249 {
250 #ifdef __powerpc__
251 int val;
252 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
253 return val;
254 #else
255 uint8_t *p = ptr;
256 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
257 #endif
258 }
259
260 static inline uint64_t ldq_le_p(void *ptr)
261 {
262 uint8_t *p = ptr;
263 uint32_t v1, v2;
264 v1 = ldl_le_p(p);
265 v2 = ldl_le_p(p + 4);
266 return v1 | ((uint64_t)v2 << 32);
267 }
268
269 static inline void stw_le_p(void *ptr, int v)
270 {
271 #ifdef __powerpc__
272 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
273 #else
274 uint8_t *p = ptr;
275 p[0] = v;
276 p[1] = v >> 8;
277 #endif
278 }
279
280 static inline void stl_le_p(void *ptr, int v)
281 {
282 #ifdef __powerpc__
283 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
284 #else
285 uint8_t *p = ptr;
286 p[0] = v;
287 p[1] = v >> 8;
288 p[2] = v >> 16;
289 p[3] = v >> 24;
290 #endif
291 }
292
293 static inline void stq_le_p(void *ptr, uint64_t v)
294 {
295 uint8_t *p = ptr;
296 stl_le_p(p, (uint32_t)v);
297 stl_le_p(p + 4, v >> 32);
298 }
299
300 /* float access */
301
302 static inline float32 ldfl_le_p(void *ptr)
303 {
304 union {
305 float32 f;
306 uint32_t i;
307 } u;
308 u.i = ldl_le_p(ptr);
309 return u.f;
310 }
311
312 static inline void stfl_le_p(void *ptr, float32 v)
313 {
314 union {
315 float32 f;
316 uint32_t i;
317 } u;
318 u.f = v;
319 stl_le_p(ptr, u.i);
320 }
321
322 static inline float64 ldfq_le_p(void *ptr)
323 {
324 CPU_DoubleU u;
325 u.l.lower = ldl_le_p(ptr);
326 u.l.upper = ldl_le_p(ptr + 4);
327 return u.d;
328 }
329
330 static inline void stfq_le_p(void *ptr, float64 v)
331 {
332 CPU_DoubleU u;
333 u.d = v;
334 stl_le_p(ptr, u.l.lower);
335 stl_le_p(ptr + 4, u.l.upper);
336 }
337
338 #else
339
340 static inline int lduw_le_p(void *ptr)
341 {
342 return *(uint16_t *)ptr;
343 }
344
345 static inline int ldsw_le_p(void *ptr)
346 {
347 return *(int16_t *)ptr;
348 }
349
350 static inline int ldl_le_p(void *ptr)
351 {
352 return *(uint32_t *)ptr;
353 }
354
355 static inline uint64_t ldq_le_p(void *ptr)
356 {
357 return *(uint64_t *)ptr;
358 }
359
360 static inline void stw_le_p(void *ptr, int v)
361 {
362 *(uint16_t *)ptr = v;
363 }
364
365 static inline void stl_le_p(void *ptr, int v)
366 {
367 *(uint32_t *)ptr = v;
368 }
369
370 static inline void stq_le_p(void *ptr, uint64_t v)
371 {
372 *(uint64_t *)ptr = v;
373 }
374
375 /* float access */
376
377 static inline float32 ldfl_le_p(void *ptr)
378 {
379 return *(float32 *)ptr;
380 }
381
382 static inline float64 ldfq_le_p(void *ptr)
383 {
384 return *(float64 *)ptr;
385 }
386
387 static inline void stfl_le_p(void *ptr, float32 v)
388 {
389 *(float32 *)ptr = v;
390 }
391
392 static inline void stfq_le_p(void *ptr, float64 v)
393 {
394 *(float64 *)ptr = v;
395 }
396 #endif
397
398 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
399
400 static inline int lduw_be_p(void *ptr)
401 {
402 #if defined(__i386__)
403 int val;
404 asm volatile ("movzwl %1, %0\n"
405 "xchgb %b0, %h0\n"
406 : "=q" (val)
407 : "m" (*(uint16_t *)ptr));
408 return val;
409 #else
410 uint8_t *b = (uint8_t *) ptr;
411 return ((b[0] << 8) | b[1]);
412 #endif
413 }
414
415 static inline int ldsw_be_p(void *ptr)
416 {
417 #if defined(__i386__)
418 int val;
419 asm volatile ("movzwl %1, %0\n"
420 "xchgb %b0, %h0\n"
421 : "=q" (val)
422 : "m" (*(uint16_t *)ptr));
423 return (int16_t)val;
424 #else
425 uint8_t *b = (uint8_t *) ptr;
426 return (int16_t)((b[0] << 8) | b[1]);
427 #endif
428 }
429
430 static inline int ldl_be_p(void *ptr)
431 {
432 #if defined(__i386__) || defined(__x86_64__)
433 int val;
434 asm volatile ("movl %1, %0\n"
435 "bswap %0\n"
436 : "=r" (val)
437 : "m" (*(uint32_t *)ptr));
438 return val;
439 #else
440 uint8_t *b = (uint8_t *) ptr;
441 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
442 #endif
443 }
444
445 static inline uint64_t ldq_be_p(void *ptr)
446 {
447 uint32_t a,b;
448 a = ldl_be_p(ptr);
449 b = ldl_be_p(ptr+4);
450 return (((uint64_t)a<<32)|b);
451 }
452
453 static inline void stw_be_p(void *ptr, int v)
454 {
455 #if defined(__i386__)
456 asm volatile ("xchgb %b0, %h0\n"
457 "movw %w0, %1\n"
458 : "=q" (v)
459 : "m" (*(uint16_t *)ptr), "0" (v));
460 #else
461 uint8_t *d = (uint8_t *) ptr;
462 d[0] = v >> 8;
463 d[1] = v;
464 #endif
465 }
466
467 static inline void stl_be_p(void *ptr, int v)
468 {
469 #if defined(__i386__) || defined(__x86_64__)
470 asm volatile ("bswap %0\n"
471 "movl %0, %1\n"
472 : "=r" (v)
473 : "m" (*(uint32_t *)ptr), "0" (v));
474 #else
475 uint8_t *d = (uint8_t *) ptr;
476 d[0] = v >> 24;
477 d[1] = v >> 16;
478 d[2] = v >> 8;
479 d[3] = v;
480 #endif
481 }
482
483 static inline void stq_be_p(void *ptr, uint64_t v)
484 {
485 stl_be_p(ptr, v >> 32);
486 stl_be_p(ptr + 4, v);
487 }
488
489 /* float access */
490
491 static inline float32 ldfl_be_p(void *ptr)
492 {
493 union {
494 float32 f;
495 uint32_t i;
496 } u;
497 u.i = ldl_be_p(ptr);
498 return u.f;
499 }
500
501 static inline void stfl_be_p(void *ptr, float32 v)
502 {
503 union {
504 float32 f;
505 uint32_t i;
506 } u;
507 u.f = v;
508 stl_be_p(ptr, u.i);
509 }
510
511 static inline float64 ldfq_be_p(void *ptr)
512 {
513 CPU_DoubleU u;
514 u.l.upper = ldl_be_p(ptr);
515 u.l.lower = ldl_be_p(ptr + 4);
516 return u.d;
517 }
518
519 static inline void stfq_be_p(void *ptr, float64 v)
520 {
521 CPU_DoubleU u;
522 u.d = v;
523 stl_be_p(ptr, u.l.upper);
524 stl_be_p(ptr + 4, u.l.lower);
525 }
526
527 #else
528
529 static inline int lduw_be_p(void *ptr)
530 {
531 return *(uint16_t *)ptr;
532 }
533
534 static inline int ldsw_be_p(void *ptr)
535 {
536 return *(int16_t *)ptr;
537 }
538
539 static inline int ldl_be_p(void *ptr)
540 {
541 return *(uint32_t *)ptr;
542 }
543
544 static inline uint64_t ldq_be_p(void *ptr)
545 {
546 return *(uint64_t *)ptr;
547 }
548
549 static inline void stw_be_p(void *ptr, int v)
550 {
551 *(uint16_t *)ptr = v;
552 }
553
554 static inline void stl_be_p(void *ptr, int v)
555 {
556 *(uint32_t *)ptr = v;
557 }
558
559 static inline void stq_be_p(void *ptr, uint64_t v)
560 {
561 *(uint64_t *)ptr = v;
562 }
563
564 /* float access */
565
566 static inline float32 ldfl_be_p(void *ptr)
567 {
568 return *(float32 *)ptr;
569 }
570
571 static inline float64 ldfq_be_p(void *ptr)
572 {
573 return *(float64 *)ptr;
574 }
575
576 static inline void stfl_be_p(void *ptr, float32 v)
577 {
578 *(float32 *)ptr = v;
579 }
580
581 static inline void stfq_be_p(void *ptr, float64 v)
582 {
583 *(float64 *)ptr = v;
584 }
585
586 #endif
587
588 /* target CPU memory access functions */
589 #if defined(TARGET_WORDS_BIGENDIAN)
590 #define lduw_p(p) lduw_be_p(p)
591 #define ldsw_p(p) ldsw_be_p(p)
592 #define ldl_p(p) ldl_be_p(p)
593 #define ldq_p(p) ldq_be_p(p)
594 #define ldfl_p(p) ldfl_be_p(p)
595 #define ldfq_p(p) ldfq_be_p(p)
596 #define stw_p(p, v) stw_be_p(p, v)
597 #define stl_p(p, v) stl_be_p(p, v)
598 #define stq_p(p, v) stq_be_p(p, v)
599 #define stfl_p(p, v) stfl_be_p(p, v)
600 #define stfq_p(p, v) stfq_be_p(p, v)
601 #else
602 #define lduw_p(p) lduw_le_p(p)
603 #define ldsw_p(p) ldsw_le_p(p)
604 #define ldl_p(p) ldl_le_p(p)
605 #define ldq_p(p) ldq_le_p(p)
606 #define ldfl_p(p) ldfl_le_p(p)
607 #define ldfq_p(p) ldfq_le_p(p)
608 #define stw_p(p, v) stw_le_p(p, v)
609 #define stl_p(p, v) stl_le_p(p, v)
610 #define stq_p(p, v) stq_le_p(p, v)
611 #define stfl_p(p, v) stfl_le_p(p, v)
612 #define stfq_p(p, v) stfq_le_p(p, v)
613 #endif
614
615 /* MMU memory access macros */
616
617 #if defined(CONFIG_USER_ONLY)
618 /* On some host systems the guest address space is reserved on the host.
619 * This allows the guest address space to be offset to a convenient location.
620 */
621 //#define GUEST_BASE 0x20000000
622 #define GUEST_BASE 0
623
624 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
625 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
626 #define h2g(x) ((target_ulong)(x - GUEST_BASE))
627
628 #define saddr(x) g2h(x)
629 #define laddr(x) g2h(x)
630
631 #else /* !CONFIG_USER_ONLY */
632 /* NOTE: we use double casts if pointers and target_ulong have
633 different sizes */
634 #define saddr(x) (uint8_t *)(long)(x)
635 #define laddr(x) (uint8_t *)(long)(x)
636 #endif
637
638 #define ldub_raw(p) ldub_p(laddr((p)))
639 #define ldsb_raw(p) ldsb_p(laddr((p)))
640 #define lduw_raw(p) lduw_p(laddr((p)))
641 #define ldsw_raw(p) ldsw_p(laddr((p)))
642 #define ldl_raw(p) ldl_p(laddr((p)))
643 #define ldq_raw(p) ldq_p(laddr((p)))
644 #define ldfl_raw(p) ldfl_p(laddr((p)))
645 #define ldfq_raw(p) ldfq_p(laddr((p)))
646 #define stb_raw(p, v) stb_p(saddr((p)), v)
647 #define stw_raw(p, v) stw_p(saddr((p)), v)
648 #define stl_raw(p, v) stl_p(saddr((p)), v)
649 #define stq_raw(p, v) stq_p(saddr((p)), v)
650 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
651 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
652
653
654 #if defined(CONFIG_USER_ONLY)
655
656 /* if user mode, no other memory access functions */
657 #define ldub(p) ldub_raw(p)
658 #define ldsb(p) ldsb_raw(p)
659 #define lduw(p) lduw_raw(p)
660 #define ldsw(p) ldsw_raw(p)
661 #define ldl(p) ldl_raw(p)
662 #define ldq(p) ldq_raw(p)
663 #define ldfl(p) ldfl_raw(p)
664 #define ldfq(p) ldfq_raw(p)
665 #define stb(p, v) stb_raw(p, v)
666 #define stw(p, v) stw_raw(p, v)
667 #define stl(p, v) stl_raw(p, v)
668 #define stq(p, v) stq_raw(p, v)
669 #define stfl(p, v) stfl_raw(p, v)
670 #define stfq(p, v) stfq_raw(p, v)
671
672 #define ldub_code(p) ldub_raw(p)
673 #define ldsb_code(p) ldsb_raw(p)
674 #define lduw_code(p) lduw_raw(p)
675 #define ldsw_code(p) ldsw_raw(p)
676 #define ldl_code(p) ldl_raw(p)
677 #define ldq_code(p) ldq_raw(p)
678
679 #define ldub_kernel(p) ldub_raw(p)
680 #define ldsb_kernel(p) ldsb_raw(p)
681 #define lduw_kernel(p) lduw_raw(p)
682 #define ldsw_kernel(p) ldsw_raw(p)
683 #define ldl_kernel(p) ldl_raw(p)
684 #define ldq_kernel(p) ldq_raw(p)
685 #define ldfl_kernel(p) ldfl_raw(p)
686 #define ldfq_kernel(p) ldfq_raw(p)
687 #define stb_kernel(p, v) stb_raw(p, v)
688 #define stw_kernel(p, v) stw_raw(p, v)
689 #define stl_kernel(p, v) stl_raw(p, v)
690 #define stq_kernel(p, v) stq_raw(p, v)
691 #define stfl_kernel(p, v) stfl_raw(p, v)
692 #define stfq_kernel(p, vt) stfq_raw(p, v)
693
694 #endif /* defined(CONFIG_USER_ONLY) */
695
696 /* page related stuff */
697
698 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
699 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
700 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
701
702 /* ??? These should be the larger of unsigned long and target_ulong. */
703 extern unsigned long qemu_real_host_page_size;
704 extern unsigned long qemu_host_page_bits;
705 extern unsigned long qemu_host_page_size;
706 extern unsigned long qemu_host_page_mask;
707
708 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
709
710 /* same as PROT_xxx */
711 #define PAGE_READ 0x0001
712 #define PAGE_WRITE 0x0002
713 #define PAGE_EXEC 0x0004
714 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
715 #define PAGE_VALID 0x0008
716 /* original state of the write flag (used when tracking self-modifying
717 code */
718 #define PAGE_WRITE_ORG 0x0010
719 #define PAGE_RESERVED 0x0020
720
721 void page_dump(FILE *f);
722 int page_get_flags(target_ulong address);
723 void page_set_flags(target_ulong start, target_ulong end, int flags);
724 int page_check_range(target_ulong start, target_ulong len, int flags);
725
726 CPUState *cpu_copy(CPUState *env);
727
728 void cpu_dump_state(CPUState *env, FILE *f,
729 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
730 int flags);
731 void cpu_dump_statistics (CPUState *env, FILE *f,
732 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
733 int flags);
734
735 void cpu_abort(CPUState *env, const char *fmt, ...)
736 __attribute__ ((__format__ (__printf__, 2, 3)))
737 __attribute__ ((__noreturn__));
738 extern CPUState *first_cpu;
739 extern CPUState *cpu_single_env;
740 extern int code_copy_enabled;
741
742 #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
743 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
744 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
745 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
746 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
747 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
748 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
749 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
750 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
751
752 void cpu_interrupt(CPUState *s, int mask);
753 void cpu_reset_interrupt(CPUState *env, int mask);
754
755 int cpu_watchpoint_insert(CPUState *env, target_ulong addr);
756 int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
757 int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
758 int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
759 void cpu_single_step(CPUState *env, int enabled);
760 void cpu_reset(CPUState *s);
761
762 /* Return the physical page corresponding to a virtual one. Use it
763 only for debugging because no protection checks are done. Return -1
764 if no page found. */
765 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
766
767 #define CPU_LOG_TB_OUT_ASM (1 << 0)
768 #define CPU_LOG_TB_IN_ASM (1 << 1)
769 #define CPU_LOG_TB_OP (1 << 2)
770 #define CPU_LOG_TB_OP_OPT (1 << 3)
771 #define CPU_LOG_INT (1 << 4)
772 #define CPU_LOG_EXEC (1 << 5)
773 #define CPU_LOG_PCALL (1 << 6)
774 #define CPU_LOG_IOPORT (1 << 7)
775 #define CPU_LOG_TB_CPU (1 << 8)
776
777 /* define log items */
778 typedef struct CPULogItem {
779 int mask;
780 const char *name;
781 const char *help;
782 } CPULogItem;
783
784 extern CPULogItem cpu_log_items[];
785
786 void cpu_set_log(int log_flags);
787 void cpu_set_log_filename(const char *filename);
788 int cpu_str_to_log_mask(const char *str);
789
790 /* IO ports API */
791
792 /* NOTE: as these functions may be even used when there is an isa
793 brige on non x86 targets, we always defined them */
794 #ifndef NO_CPU_IO_DEFS
795 void cpu_outb(CPUState *env, int addr, int val);
796 void cpu_outw(CPUState *env, int addr, int val);
797 void cpu_outl(CPUState *env, int addr, int val);
798 int cpu_inb(CPUState *env, int addr);
799 int cpu_inw(CPUState *env, int addr);
800 int cpu_inl(CPUState *env, int addr);
801 #endif
802
803 /* memory API */
804
805 extern int phys_ram_size;
806 extern int phys_ram_fd;
807 extern uint8_t *phys_ram_base;
808 extern uint8_t *phys_ram_dirty;
809
810 /* physical memory access */
811 #define TLB_INVALID_MASK (1 << 3)
812 #define IO_MEM_SHIFT 4
813 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
814
815 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
816 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
817 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
818 #define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
819 /* acts like a ROM when read and like a device when written. As an
820 exception, the write memory callback gets the ram offset instead of
821 the physical address */
822 #define IO_MEM_ROMD (1)
823 #define IO_MEM_SUBPAGE (2)
824
825 typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
826 typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
827
828 void cpu_register_physical_memory(target_phys_addr_t start_addr,
829 unsigned long size,
830 unsigned long phys_offset);
831 uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr);
832 ram_addr_t qemu_ram_alloc(unsigned int size);
833 void qemu_ram_free(ram_addr_t addr);
834 int cpu_register_io_memory(int io_index,
835 CPUReadMemoryFunc **mem_read,
836 CPUWriteMemoryFunc **mem_write,
837 void *opaque);
838 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
839 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
840
841 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
842 int len, int is_write);
843 static inline void cpu_physical_memory_read(target_phys_addr_t addr,
844 uint8_t *buf, int len)
845 {
846 cpu_physical_memory_rw(addr, buf, len, 0);
847 }
848 static inline void cpu_physical_memory_write(target_phys_addr_t addr,
849 const uint8_t *buf, int len)
850 {
851 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
852 }
853 uint32_t ldub_phys(target_phys_addr_t addr);
854 uint32_t lduw_phys(target_phys_addr_t addr);
855 uint32_t ldl_phys(target_phys_addr_t addr);
856 uint64_t ldq_phys(target_phys_addr_t addr);
857 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
858 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
859 void stb_phys(target_phys_addr_t addr, uint32_t val);
860 void stw_phys(target_phys_addr_t addr, uint32_t val);
861 void stl_phys(target_phys_addr_t addr, uint32_t val);
862 void stq_phys(target_phys_addr_t addr, uint64_t val);
863
864 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
865 const uint8_t *buf, int len);
866 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
867 uint8_t *buf, int len, int is_write);
868
869 #define VGA_DIRTY_FLAG 0x01
870 #define CODE_DIRTY_FLAG 0x02
871
872 /* read dirty bit (return 0 or 1) */
873 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
874 {
875 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
876 }
877
878 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
879 int dirty_flags)
880 {
881 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
882 }
883
884 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
885 {
886 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
887 }
888
889 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
890 int dirty_flags);
891 void cpu_tlb_update_dirty(CPUState *env);
892
893 void dump_exec_info(FILE *f,
894 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
895
896 /*******************************************/
897 /* host CPU ticks (if available) */
898
899 #if defined(__powerpc__)
900
901 static inline uint32_t get_tbl(void)
902 {
903 uint32_t tbl;
904 asm volatile("mftb %0" : "=r" (tbl));
905 return tbl;
906 }
907
908 static inline uint32_t get_tbu(void)
909 {
910 uint32_t tbl;
911 asm volatile("mftbu %0" : "=r" (tbl));
912 return tbl;
913 }
914
915 static inline int64_t cpu_get_real_ticks(void)
916 {
917 uint32_t l, h, h1;
918 /* NOTE: we test if wrapping has occurred */
919 do {
920 h = get_tbu();
921 l = get_tbl();
922 h1 = get_tbu();
923 } while (h != h1);
924 return ((int64_t)h << 32) | l;
925 }
926
927 #elif defined(__i386__)
928
929 static inline int64_t cpu_get_real_ticks(void)
930 {
931 int64_t val;
932 asm volatile ("rdtsc" : "=A" (val));
933 return val;
934 }
935
936 #elif defined(__x86_64__)
937
938 static inline int64_t cpu_get_real_ticks(void)
939 {
940 uint32_t low,high;
941 int64_t val;
942 asm volatile("rdtsc" : "=a" (low), "=d" (high));
943 val = high;
944 val <<= 32;
945 val |= low;
946 return val;
947 }
948
949 #elif defined(__ia64)
950
951 static inline int64_t cpu_get_real_ticks(void)
952 {
953 int64_t val;
954 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
955 return val;
956 }
957
958 #elif defined(__s390__)
959
960 static inline int64_t cpu_get_real_ticks(void)
961 {
962 int64_t val;
963 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
964 return val;
965 }
966
967 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
968
969 static inline int64_t cpu_get_real_ticks (void)
970 {
971 #if defined(_LP64)
972 uint64_t rval;
973 asm volatile("rd %%tick,%0" : "=r"(rval));
974 return rval;
975 #else
976 union {
977 uint64_t i64;
978 struct {
979 uint32_t high;
980 uint32_t low;
981 } i32;
982 } rval;
983 asm volatile("rd %%tick,%1; srlx %1,32,%0"
984 : "=r"(rval.i32.high), "=r"(rval.i32.low));
985 return rval.i64;
986 #endif
987 }
988
989 #elif defined(__mips__)
990
991 static inline int64_t cpu_get_real_ticks(void)
992 {
993 #if __mips_isa_rev >= 2
994 uint32_t count;
995 static uint32_t cyc_per_count = 0;
996
997 if (!cyc_per_count)
998 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
999
1000 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1001 return (int64_t)(count * cyc_per_count);
1002 #else
1003 /* FIXME */
1004 static int64_t ticks = 0;
1005 return ticks++;
1006 #endif
1007 }
1008
1009 #else
1010 /* The host CPU doesn't have an easily accessible cycle counter.
1011 Just return a monotonically increasing value. This will be
1012 totally wrong, but hopefully better than nothing. */
1013 static inline int64_t cpu_get_real_ticks (void)
1014 {
1015 static int64_t ticks = 0;
1016 return ticks++;
1017 }
1018 #endif
1019
1020 /* profiling */
1021 #ifdef CONFIG_PROFILER
1022 static inline int64_t profile_getclock(void)
1023 {
1024 return cpu_get_real_ticks();
1025 }
1026
1027 extern int64_t kqemu_time, kqemu_time_start;
1028 extern int64_t qemu_time, qemu_time_start;
1029 extern int64_t tlb_flush_time;
1030 extern int64_t kqemu_exec_count;
1031 extern int64_t dev_time;
1032 extern int64_t kqemu_ret_int_count;
1033 extern int64_t kqemu_ret_excp_count;
1034 extern int64_t kqemu_ret_intr_count;
1035
1036 #endif
1037
1038 #endif /* CPU_ALL_H */