]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
clean up env->current_tb
[qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
24
25 #if !defined(CONFIG_SOFTMMU)
26 #undef EAX
27 #undef ECX
28 #undef EDX
29 #undef EBX
30 #undef ESP
31 #undef EBP
32 #undef ESI
33 #undef EDI
34 #undef EIP
35 #include <signal.h>
36 #ifdef __linux__
37 #include <sys/ucontext.h>
38 #endif
39 #endif
40
41 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
42 // Work around ugly bugs in glibc that mangle global register contents
43 #undef env
44 #define env cpu_single_env
45 #endif
46
47 int tb_invalidated_flag;
48
49 //#define CONFIG_DEBUG_EXEC
50 //#define DEBUG_SIGNAL
51
52 int qemu_cpu_has_work(CPUState *env)
53 {
54 return cpu_has_work(env);
55 }
56
57 void cpu_loop_exit(void)
58 {
59 env->current_tb = NULL;
60 longjmp(env->jmp_env, 1);
61 }
62
63 /* exit the current TB from a signal handler. The host registers are
64 restored in a state compatible with the CPU emulator
65 */
66 void cpu_resume_from_signal(CPUState *env1, void *puc)
67 {
68 #if !defined(CONFIG_SOFTMMU)
69 #ifdef __linux__
70 struct ucontext *uc = puc;
71 #elif defined(__OpenBSD__)
72 struct sigcontext *uc = puc;
73 #endif
74 #endif
75
76 env = env1;
77
78 /* XXX: restore cpu registers saved in host registers */
79
80 #if !defined(CONFIG_SOFTMMU)
81 if (puc) {
82 /* XXX: use siglongjmp ? */
83 #ifdef __linux__
84 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
85 #elif defined(__OpenBSD__)
86 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
87 #endif
88 }
89 #endif
90 env->exception_index = -1;
91 longjmp(env->jmp_env, 1);
92 }
93
94 /* Execute the code without caching the generated code. An interpreter
95 could be used if available. */
96 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
97 {
98 unsigned long next_tb;
99 TranslationBlock *tb;
100
101 /* Should never happen.
102 We only end up here when an existing TB is too long. */
103 if (max_cycles > CF_COUNT_MASK)
104 max_cycles = CF_COUNT_MASK;
105
106 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
107 max_cycles);
108 env->current_tb = tb;
109 /* execute the generated code */
110 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
111 env->current_tb = NULL;
112
113 if ((next_tb & 3) == 2) {
114 /* Restore PC. This may happen if async event occurs before
115 the TB starts executing. */
116 cpu_pc_from_tb(env, tb);
117 }
118 tb_phys_invalidate(tb, -1);
119 tb_free(tb);
120 }
121
122 static TranslationBlock *tb_find_slow(target_ulong pc,
123 target_ulong cs_base,
124 uint64_t flags)
125 {
126 TranslationBlock *tb, **ptb1;
127 unsigned int h;
128 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
129
130 tb_invalidated_flag = 0;
131
132 /* find translated block using physical mappings */
133 phys_pc = get_phys_addr_code(env, pc);
134 phys_page1 = phys_pc & TARGET_PAGE_MASK;
135 phys_page2 = -1;
136 h = tb_phys_hash_func(phys_pc);
137 ptb1 = &tb_phys_hash[h];
138 for(;;) {
139 tb = *ptb1;
140 if (!tb)
141 goto not_found;
142 if (tb->pc == pc &&
143 tb->page_addr[0] == phys_page1 &&
144 tb->cs_base == cs_base &&
145 tb->flags == flags) {
146 /* check next page if needed */
147 if (tb->page_addr[1] != -1) {
148 virt_page2 = (pc & TARGET_PAGE_MASK) +
149 TARGET_PAGE_SIZE;
150 phys_page2 = get_phys_addr_code(env, virt_page2);
151 if (tb->page_addr[1] == phys_page2)
152 goto found;
153 } else {
154 goto found;
155 }
156 }
157 ptb1 = &tb->phys_hash_next;
158 }
159 not_found:
160 /* if no translated code available, then translate it now */
161 tb = tb_gen_code(env, pc, cs_base, flags, 0);
162
163 found:
164 /* we add the TB in the virtual pc hash table */
165 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
166 return tb;
167 }
168
169 static inline TranslationBlock *tb_find_fast(void)
170 {
171 TranslationBlock *tb;
172 target_ulong cs_base, pc;
173 int flags;
174
175 /* we record a subset of the CPU state. It will
176 always be the same before a given translated block
177 is executed. */
178 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
179 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
180 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
181 tb->flags != flags)) {
182 tb = tb_find_slow(pc, cs_base, flags);
183 }
184 return tb;
185 }
186
187 static CPUDebugExcpHandler *debug_excp_handler;
188
189 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
190 {
191 CPUDebugExcpHandler *old_handler = debug_excp_handler;
192
193 debug_excp_handler = handler;
194 return old_handler;
195 }
196
197 static void cpu_handle_debug_exception(CPUState *env)
198 {
199 CPUWatchpoint *wp;
200
201 if (!env->watchpoint_hit)
202 QTAILQ_FOREACH(wp, &env->watchpoints, entry)
203 wp->flags &= ~BP_WATCHPOINT_HIT;
204
205 if (debug_excp_handler)
206 debug_excp_handler(env);
207 }
208
209 /* main execution loop */
210
211 int cpu_exec(CPUState *env1)
212 {
213 #define DECLARE_HOST_REGS 1
214 #include "hostregs_helper.h"
215 int ret, interrupt_request;
216 TranslationBlock *tb;
217 uint8_t *tc_ptr;
218 unsigned long next_tb;
219
220 if (cpu_halted(env1) == EXCP_HALTED)
221 return EXCP_HALTED;
222
223 cpu_single_env = env1;
224
225 /* first we save global registers */
226 #define SAVE_HOST_REGS 1
227 #include "hostregs_helper.h"
228 env = env1;
229
230 #if defined(TARGET_I386)
231 /* put eflags in CPU temporary format */
232 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
233 DF = 1 - (2 * ((env->eflags >> 10) & 1));
234 CC_OP = CC_OP_EFLAGS;
235 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
236 #elif defined(TARGET_SPARC)
237 #elif defined(TARGET_M68K)
238 env->cc_op = CC_OP_FLAGS;
239 env->cc_dest = env->sr & 0xf;
240 env->cc_x = (env->sr >> 4) & 1;
241 #elif defined(TARGET_ALPHA)
242 #elif defined(TARGET_ARM)
243 #elif defined(TARGET_PPC)
244 #elif defined(TARGET_MICROBLAZE)
245 #elif defined(TARGET_MIPS)
246 #elif defined(TARGET_SH4)
247 #elif defined(TARGET_CRIS)
248 #elif defined(TARGET_S390X)
249 /* XXXXX */
250 #else
251 #error unsupported target CPU
252 #endif
253 env->exception_index = -1;
254
255 /* prepare setjmp context for exception handling */
256 for(;;) {
257 if (setjmp(env->jmp_env) == 0) {
258 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
259 #undef env
260 env = cpu_single_env;
261 #define env cpu_single_env
262 #endif
263 env->current_tb = NULL;
264 /* if an exception is pending, we execute it here */
265 if (env->exception_index >= 0) {
266 if (env->exception_index >= EXCP_INTERRUPT) {
267 /* exit request from the cpu execution loop */
268 ret = env->exception_index;
269 if (ret == EXCP_DEBUG)
270 cpu_handle_debug_exception(env);
271 break;
272 } else {
273 #if defined(CONFIG_USER_ONLY)
274 /* if user mode only, we simulate a fake exception
275 which will be handled outside the cpu execution
276 loop */
277 #if defined(TARGET_I386)
278 do_interrupt_user(env->exception_index,
279 env->exception_is_int,
280 env->error_code,
281 env->exception_next_eip);
282 /* successfully delivered */
283 env->old_exception = -1;
284 #endif
285 ret = env->exception_index;
286 break;
287 #else
288 #if defined(TARGET_I386)
289 /* simulate a real cpu exception. On i386, it can
290 trigger new exceptions, but we do not handle
291 double or triple faults yet. */
292 do_interrupt(env->exception_index,
293 env->exception_is_int,
294 env->error_code,
295 env->exception_next_eip, 0);
296 /* successfully delivered */
297 env->old_exception = -1;
298 #elif defined(TARGET_PPC)
299 do_interrupt(env);
300 #elif defined(TARGET_MICROBLAZE)
301 do_interrupt(env);
302 #elif defined(TARGET_MIPS)
303 do_interrupt(env);
304 #elif defined(TARGET_SPARC)
305 do_interrupt(env);
306 #elif defined(TARGET_ARM)
307 do_interrupt(env);
308 #elif defined(TARGET_SH4)
309 do_interrupt(env);
310 #elif defined(TARGET_ALPHA)
311 do_interrupt(env);
312 #elif defined(TARGET_CRIS)
313 do_interrupt(env);
314 #elif defined(TARGET_M68K)
315 do_interrupt(0);
316 #endif
317 #endif
318 }
319 env->exception_index = -1;
320 }
321
322 if (kvm_enabled()) {
323 kvm_cpu_exec(env);
324 longjmp(env->jmp_env, 1);
325 }
326
327 next_tb = 0; /* force lookup of first TB */
328 for(;;) {
329 interrupt_request = env->interrupt_request;
330 if (unlikely(interrupt_request)) {
331 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
332 /* Mask out external interrupts for this step. */
333 interrupt_request &= ~(CPU_INTERRUPT_HARD |
334 CPU_INTERRUPT_FIQ |
335 CPU_INTERRUPT_SMI |
336 CPU_INTERRUPT_NMI);
337 }
338 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
339 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
340 env->exception_index = EXCP_DEBUG;
341 cpu_loop_exit();
342 }
343 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
344 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
345 defined(TARGET_MICROBLAZE)
346 if (interrupt_request & CPU_INTERRUPT_HALT) {
347 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
348 env->halted = 1;
349 env->exception_index = EXCP_HLT;
350 cpu_loop_exit();
351 }
352 #endif
353 #if defined(TARGET_I386)
354 if (interrupt_request & CPU_INTERRUPT_INIT) {
355 svm_check_intercept(SVM_EXIT_INIT);
356 do_cpu_init(env);
357 env->exception_index = EXCP_HALTED;
358 cpu_loop_exit();
359 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
360 do_cpu_sipi(env);
361 } else if (env->hflags2 & HF2_GIF_MASK) {
362 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
363 !(env->hflags & HF_SMM_MASK)) {
364 svm_check_intercept(SVM_EXIT_SMI);
365 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
366 do_smm_enter();
367 next_tb = 0;
368 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
369 !(env->hflags2 & HF2_NMI_MASK)) {
370 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
371 env->hflags2 |= HF2_NMI_MASK;
372 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
373 next_tb = 0;
374 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
375 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
376 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
377 next_tb = 0;
378 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
379 (((env->hflags2 & HF2_VINTR_MASK) &&
380 (env->hflags2 & HF2_HIF_MASK)) ||
381 (!(env->hflags2 & HF2_VINTR_MASK) &&
382 (env->eflags & IF_MASK &&
383 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
384 int intno;
385 svm_check_intercept(SVM_EXIT_INTR);
386 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
387 intno = cpu_get_pic_interrupt(env);
388 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
389 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
390 #undef env
391 env = cpu_single_env;
392 #define env cpu_single_env
393 #endif
394 do_interrupt(intno, 0, 0, 0, 1);
395 /* ensure that no TB jump will be modified as
396 the program flow was changed */
397 next_tb = 0;
398 #if !defined(CONFIG_USER_ONLY)
399 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
400 (env->eflags & IF_MASK) &&
401 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
402 int intno;
403 /* FIXME: this should respect TPR */
404 svm_check_intercept(SVM_EXIT_VINTR);
405 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
406 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
407 do_interrupt(intno, 0, 0, 0, 1);
408 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
409 next_tb = 0;
410 #endif
411 }
412 }
413 #elif defined(TARGET_PPC)
414 #if 0
415 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
416 cpu_reset(env);
417 }
418 #endif
419 if (interrupt_request & CPU_INTERRUPT_HARD) {
420 ppc_hw_interrupt(env);
421 if (env->pending_interrupts == 0)
422 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
423 next_tb = 0;
424 }
425 #elif defined(TARGET_MICROBLAZE)
426 if ((interrupt_request & CPU_INTERRUPT_HARD)
427 && (env->sregs[SR_MSR] & MSR_IE)
428 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
429 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
430 env->exception_index = EXCP_IRQ;
431 do_interrupt(env);
432 next_tb = 0;
433 }
434 #elif defined(TARGET_MIPS)
435 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
436 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
437 (env->CP0_Status & (1 << CP0St_IE)) &&
438 !(env->CP0_Status & (1 << CP0St_EXL)) &&
439 !(env->CP0_Status & (1 << CP0St_ERL)) &&
440 !(env->hflags & MIPS_HFLAG_DM)) {
441 /* Raise it */
442 env->exception_index = EXCP_EXT_INTERRUPT;
443 env->error_code = 0;
444 do_interrupt(env);
445 next_tb = 0;
446 }
447 #elif defined(TARGET_SPARC)
448 if (interrupt_request & CPU_INTERRUPT_HARD) {
449 if (cpu_interrupts_enabled(env) &&
450 env->interrupt_index > 0) {
451 int pil = env->interrupt_index & 0xf;
452 int type = env->interrupt_index & 0xf0;
453
454 if (((type == TT_EXTINT) &&
455 cpu_pil_allowed(env, pil)) ||
456 type != TT_EXTINT) {
457 env->exception_index = env->interrupt_index;
458 do_interrupt(env);
459 next_tb = 0;
460 }
461 }
462 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
463 //do_interrupt(0, 0, 0, 0, 0);
464 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
465 }
466 #elif defined(TARGET_ARM)
467 if (interrupt_request & CPU_INTERRUPT_FIQ
468 && !(env->uncached_cpsr & CPSR_F)) {
469 env->exception_index = EXCP_FIQ;
470 do_interrupt(env);
471 next_tb = 0;
472 }
473 /* ARMv7-M interrupt return works by loading a magic value
474 into the PC. On real hardware the load causes the
475 return to occur. The qemu implementation performs the
476 jump normally, then does the exception return when the
477 CPU tries to execute code at the magic address.
478 This will cause the magic PC value to be pushed to
479 the stack if an interrupt occured at the wrong time.
480 We avoid this by disabling interrupts when
481 pc contains a magic address. */
482 if (interrupt_request & CPU_INTERRUPT_HARD
483 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
484 || !(env->uncached_cpsr & CPSR_I))) {
485 env->exception_index = EXCP_IRQ;
486 do_interrupt(env);
487 next_tb = 0;
488 }
489 #elif defined(TARGET_SH4)
490 if (interrupt_request & CPU_INTERRUPT_HARD) {
491 do_interrupt(env);
492 next_tb = 0;
493 }
494 #elif defined(TARGET_ALPHA)
495 if (interrupt_request & CPU_INTERRUPT_HARD) {
496 do_interrupt(env);
497 next_tb = 0;
498 }
499 #elif defined(TARGET_CRIS)
500 if (interrupt_request & CPU_INTERRUPT_HARD
501 && (env->pregs[PR_CCS] & I_FLAG)) {
502 env->exception_index = EXCP_IRQ;
503 do_interrupt(env);
504 next_tb = 0;
505 }
506 if (interrupt_request & CPU_INTERRUPT_NMI
507 && (env->pregs[PR_CCS] & M_FLAG)) {
508 env->exception_index = EXCP_NMI;
509 do_interrupt(env);
510 next_tb = 0;
511 }
512 #elif defined(TARGET_M68K)
513 if (interrupt_request & CPU_INTERRUPT_HARD
514 && ((env->sr & SR_I) >> SR_I_SHIFT)
515 < env->pending_level) {
516 /* Real hardware gets the interrupt vector via an
517 IACK cycle at this point. Current emulated
518 hardware doesn't rely on this, so we
519 provide/save the vector when the interrupt is
520 first signalled. */
521 env->exception_index = env->pending_vector;
522 do_interrupt(1);
523 next_tb = 0;
524 }
525 #endif
526 /* Don't use the cached interupt_request value,
527 do_interrupt may have updated the EXITTB flag. */
528 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
529 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
530 /* ensure that no TB jump will be modified as
531 the program flow was changed */
532 next_tb = 0;
533 }
534 }
535 if (unlikely(env->exit_request)) {
536 env->exit_request = 0;
537 env->exception_index = EXCP_INTERRUPT;
538 cpu_loop_exit();
539 }
540 #ifdef CONFIG_DEBUG_EXEC
541 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
542 /* restore flags in standard format */
543 #if defined(TARGET_I386)
544 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
545 log_cpu_state(env, X86_DUMP_CCOP);
546 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
547 #elif defined(TARGET_ARM)
548 log_cpu_state(env, 0);
549 #elif defined(TARGET_SPARC)
550 log_cpu_state(env, 0);
551 #elif defined(TARGET_PPC)
552 log_cpu_state(env, 0);
553 #elif defined(TARGET_M68K)
554 cpu_m68k_flush_flags(env, env->cc_op);
555 env->cc_op = CC_OP_FLAGS;
556 env->sr = (env->sr & 0xffe0)
557 | env->cc_dest | (env->cc_x << 4);
558 log_cpu_state(env, 0);
559 #elif defined(TARGET_MICROBLAZE)
560 log_cpu_state(env, 0);
561 #elif defined(TARGET_MIPS)
562 log_cpu_state(env, 0);
563 #elif defined(TARGET_SH4)
564 log_cpu_state(env, 0);
565 #elif defined(TARGET_ALPHA)
566 log_cpu_state(env, 0);
567 #elif defined(TARGET_CRIS)
568 log_cpu_state(env, 0);
569 #else
570 #error unsupported target CPU
571 #endif
572 }
573 #endif
574 spin_lock(&tb_lock);
575 tb = tb_find_fast();
576 /* Note: we do it here to avoid a gcc bug on Mac OS X when
577 doing it in tb_find_slow */
578 if (tb_invalidated_flag) {
579 /* as some TB could have been invalidated because
580 of memory exceptions while generating the code, we
581 must recompute the hash index here */
582 next_tb = 0;
583 tb_invalidated_flag = 0;
584 }
585 #ifdef CONFIG_DEBUG_EXEC
586 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
587 (long)tb->tc_ptr, tb->pc,
588 lookup_symbol(tb->pc));
589 #endif
590 /* see if we can patch the calling TB. When the TB
591 spans two pages, we cannot safely do a direct
592 jump. */
593 if (next_tb != 0 && tb->page_addr[1] == -1) {
594 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
595 }
596 spin_unlock(&tb_lock);
597 env->current_tb = tb;
598
599 /* cpu_interrupt might be called while translating the
600 TB, but before it is linked into a potentially
601 infinite loop and becomes env->current_tb. Avoid
602 starting execution if there is a pending interrupt. */
603 if (unlikely (env->exit_request))
604 env->current_tb = NULL;
605
606 while (env->current_tb) {
607 tc_ptr = tb->tc_ptr;
608 /* execute the generated code */
609 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
610 #undef env
611 env = cpu_single_env;
612 #define env cpu_single_env
613 #endif
614 next_tb = tcg_qemu_tb_exec(tc_ptr);
615 env->current_tb = NULL;
616 if ((next_tb & 3) == 2) {
617 /* Instruction counter expired. */
618 int insns_left;
619 tb = (TranslationBlock *)(long)(next_tb & ~3);
620 /* Restore PC. */
621 cpu_pc_from_tb(env, tb);
622 insns_left = env->icount_decr.u32;
623 if (env->icount_extra && insns_left >= 0) {
624 /* Refill decrementer and continue execution. */
625 env->icount_extra += insns_left;
626 if (env->icount_extra > 0xffff) {
627 insns_left = 0xffff;
628 } else {
629 insns_left = env->icount_extra;
630 }
631 env->icount_extra -= insns_left;
632 env->icount_decr.u16.low = insns_left;
633 } else {
634 if (insns_left > 0) {
635 /* Execute remaining instructions. */
636 cpu_exec_nocache(insns_left, tb);
637 }
638 env->exception_index = EXCP_INTERRUPT;
639 next_tb = 0;
640 cpu_loop_exit();
641 }
642 }
643 }
644 /* reset soft MMU for next block (it can currently
645 only be set by a memory fault) */
646 } /* for(;;) */
647 }
648 } /* for(;;) */
649
650
651 #if defined(TARGET_I386)
652 /* restore flags in standard format */
653 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
654 #elif defined(TARGET_ARM)
655 /* XXX: Save/restore host fpu exception state?. */
656 #elif defined(TARGET_SPARC)
657 #elif defined(TARGET_PPC)
658 #elif defined(TARGET_M68K)
659 cpu_m68k_flush_flags(env, env->cc_op);
660 env->cc_op = CC_OP_FLAGS;
661 env->sr = (env->sr & 0xffe0)
662 | env->cc_dest | (env->cc_x << 4);
663 #elif defined(TARGET_MICROBLAZE)
664 #elif defined(TARGET_MIPS)
665 #elif defined(TARGET_SH4)
666 #elif defined(TARGET_ALPHA)
667 #elif defined(TARGET_CRIS)
668 #elif defined(TARGET_S390X)
669 /* XXXXX */
670 #else
671 #error unsupported target CPU
672 #endif
673
674 /* restore global registers */
675 #include "hostregs_helper.h"
676
677 /* fail safe : never use cpu_single_env outside cpu_exec() */
678 cpu_single_env = NULL;
679 return ret;
680 }
681
682 /* must only be called from the generated code as an exception can be
683 generated */
684 void tb_invalidate_page_range(target_ulong start, target_ulong end)
685 {
686 /* XXX: cannot enable it yet because it yields to MMU exception
687 where NIP != read address on PowerPC */
688 #if 0
689 target_ulong phys_addr;
690 phys_addr = get_phys_addr_code(env, start);
691 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
692 #endif
693 }
694
695 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
696
697 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
698 {
699 CPUX86State *saved_env;
700
701 saved_env = env;
702 env = s;
703 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
704 selector &= 0xffff;
705 cpu_x86_load_seg_cache(env, seg_reg, selector,
706 (selector << 4), 0xffff, 0);
707 } else {
708 helper_load_seg(seg_reg, selector);
709 }
710 env = saved_env;
711 }
712
713 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
714 {
715 CPUX86State *saved_env;
716
717 saved_env = env;
718 env = s;
719
720 helper_fsave(ptr, data32);
721
722 env = saved_env;
723 }
724
725 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
726 {
727 CPUX86State *saved_env;
728
729 saved_env = env;
730 env = s;
731
732 helper_frstor(ptr, data32);
733
734 env = saved_env;
735 }
736
737 #endif /* TARGET_I386 */
738
739 #if !defined(CONFIG_SOFTMMU)
740
741 #if defined(TARGET_I386)
742 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
743 #else
744 #define EXCEPTION_ACTION cpu_loop_exit()
745 #endif
746
747 /* 'pc' is the host PC at which the exception was raised. 'address' is
748 the effective address of the memory exception. 'is_write' is 1 if a
749 write caused the exception and otherwise 0'. 'old_set' is the
750 signal set which should be restored */
751 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
752 int is_write, sigset_t *old_set,
753 void *puc)
754 {
755 TranslationBlock *tb;
756 int ret;
757
758 if (cpu_single_env)
759 env = cpu_single_env; /* XXX: find a correct solution for multithread */
760 #if defined(DEBUG_SIGNAL)
761 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
762 pc, address, is_write, *(unsigned long *)old_set);
763 #endif
764 /* XXX: locking issue */
765 if (is_write && page_unprotect(h2g(address), pc, puc)) {
766 return 1;
767 }
768
769 /* see if it is an MMU fault */
770 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
771 if (ret < 0)
772 return 0; /* not an MMU fault */
773 if (ret == 0)
774 return 1; /* the MMU fault was handled without causing real CPU fault */
775 /* now we have a real cpu fault */
776 tb = tb_find_pc(pc);
777 if (tb) {
778 /* the PC is inside the translated code. It means that we have
779 a virtual CPU fault */
780 cpu_restore_state(tb, env, pc, puc);
781 }
782
783 /* we restore the process signal mask as the sigreturn should
784 do it (XXX: use sigsetjmp) */
785 sigprocmask(SIG_SETMASK, old_set, NULL);
786 EXCEPTION_ACTION;
787
788 /* never comes here */
789 return 1;
790 }
791
792 #if defined(__i386__)
793
794 #if defined(__APPLE__)
795 # include <sys/ucontext.h>
796
797 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
798 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
799 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
800 # define MASK_sig(context) ((context)->uc_sigmask)
801 #elif defined (__NetBSD__)
802 # include <ucontext.h>
803
804 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
805 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
806 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
807 # define MASK_sig(context) ((context)->uc_sigmask)
808 #elif defined (__FreeBSD__) || defined(__DragonFly__)
809 # include <ucontext.h>
810
811 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
812 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
813 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
814 # define MASK_sig(context) ((context)->uc_sigmask)
815 #elif defined(__OpenBSD__)
816 # define EIP_sig(context) ((context)->sc_eip)
817 # define TRAP_sig(context) ((context)->sc_trapno)
818 # define ERROR_sig(context) ((context)->sc_err)
819 # define MASK_sig(context) ((context)->sc_mask)
820 #else
821 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
822 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
823 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
824 # define MASK_sig(context) ((context)->uc_sigmask)
825 #endif
826
827 int cpu_signal_handler(int host_signum, void *pinfo,
828 void *puc)
829 {
830 siginfo_t *info = pinfo;
831 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
832 ucontext_t *uc = puc;
833 #elif defined(__OpenBSD__)
834 struct sigcontext *uc = puc;
835 #else
836 struct ucontext *uc = puc;
837 #endif
838 unsigned long pc;
839 int trapno;
840
841 #ifndef REG_EIP
842 /* for glibc 2.1 */
843 #define REG_EIP EIP
844 #define REG_ERR ERR
845 #define REG_TRAPNO TRAPNO
846 #endif
847 pc = EIP_sig(uc);
848 trapno = TRAP_sig(uc);
849 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
850 trapno == 0xe ?
851 (ERROR_sig(uc) >> 1) & 1 : 0,
852 &MASK_sig(uc), puc);
853 }
854
855 #elif defined(__x86_64__)
856
857 #ifdef __NetBSD__
858 #define PC_sig(context) _UC_MACHINE_PC(context)
859 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
860 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
861 #define MASK_sig(context) ((context)->uc_sigmask)
862 #elif defined(__OpenBSD__)
863 #define PC_sig(context) ((context)->sc_rip)
864 #define TRAP_sig(context) ((context)->sc_trapno)
865 #define ERROR_sig(context) ((context)->sc_err)
866 #define MASK_sig(context) ((context)->sc_mask)
867 #elif defined (__FreeBSD__) || defined(__DragonFly__)
868 #include <ucontext.h>
869
870 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
871 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
872 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
873 #define MASK_sig(context) ((context)->uc_sigmask)
874 #else
875 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
876 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
877 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
878 #define MASK_sig(context) ((context)->uc_sigmask)
879 #endif
880
881 int cpu_signal_handler(int host_signum, void *pinfo,
882 void *puc)
883 {
884 siginfo_t *info = pinfo;
885 unsigned long pc;
886 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
887 ucontext_t *uc = puc;
888 #elif defined(__OpenBSD__)
889 struct sigcontext *uc = puc;
890 #else
891 struct ucontext *uc = puc;
892 #endif
893
894 pc = PC_sig(uc);
895 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
896 TRAP_sig(uc) == 0xe ?
897 (ERROR_sig(uc) >> 1) & 1 : 0,
898 &MASK_sig(uc), puc);
899 }
900
901 #elif defined(_ARCH_PPC)
902
903 /***********************************************************************
904 * signal context platform-specific definitions
905 * From Wine
906 */
907 #ifdef linux
908 /* All Registers access - only for local access */
909 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
910 /* Gpr Registers access */
911 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
912 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
913 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
914 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
915 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
916 # define LR_sig(context) REG_sig(link, context) /* Link register */
917 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
918 /* Float Registers access */
919 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
920 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
921 /* Exception Registers access */
922 # define DAR_sig(context) REG_sig(dar, context)
923 # define DSISR_sig(context) REG_sig(dsisr, context)
924 # define TRAP_sig(context) REG_sig(trap, context)
925 #endif /* linux */
926
927 #ifdef __APPLE__
928 # include <sys/ucontext.h>
929 typedef struct ucontext SIGCONTEXT;
930 /* All Registers access - only for local access */
931 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
932 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
933 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
934 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
935 /* Gpr Registers access */
936 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
937 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
938 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
939 # define CTR_sig(context) REG_sig(ctr, context)
940 # define XER_sig(context) REG_sig(xer, context) /* Link register */
941 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
942 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
943 /* Float Registers access */
944 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
945 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
946 /* Exception Registers access */
947 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
948 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
949 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
950 #endif /* __APPLE__ */
951
952 int cpu_signal_handler(int host_signum, void *pinfo,
953 void *puc)
954 {
955 siginfo_t *info = pinfo;
956 struct ucontext *uc = puc;
957 unsigned long pc;
958 int is_write;
959
960 pc = IAR_sig(uc);
961 is_write = 0;
962 #if 0
963 /* ppc 4xx case */
964 if (DSISR_sig(uc) & 0x00800000)
965 is_write = 1;
966 #else
967 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
968 is_write = 1;
969 #endif
970 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
971 is_write, &uc->uc_sigmask, puc);
972 }
973
974 #elif defined(__alpha__)
975
976 int cpu_signal_handler(int host_signum, void *pinfo,
977 void *puc)
978 {
979 siginfo_t *info = pinfo;
980 struct ucontext *uc = puc;
981 uint32_t *pc = uc->uc_mcontext.sc_pc;
982 uint32_t insn = *pc;
983 int is_write = 0;
984
985 /* XXX: need kernel patch to get write flag faster */
986 switch (insn >> 26) {
987 case 0x0d: // stw
988 case 0x0e: // stb
989 case 0x0f: // stq_u
990 case 0x24: // stf
991 case 0x25: // stg
992 case 0x26: // sts
993 case 0x27: // stt
994 case 0x2c: // stl
995 case 0x2d: // stq
996 case 0x2e: // stl_c
997 case 0x2f: // stq_c
998 is_write = 1;
999 }
1000
1001 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1002 is_write, &uc->uc_sigmask, puc);
1003 }
1004 #elif defined(__sparc__)
1005
1006 int cpu_signal_handler(int host_signum, void *pinfo,
1007 void *puc)
1008 {
1009 siginfo_t *info = pinfo;
1010 int is_write;
1011 uint32_t insn;
1012 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1013 uint32_t *regs = (uint32_t *)(info + 1);
1014 void *sigmask = (regs + 20);
1015 /* XXX: is there a standard glibc define ? */
1016 unsigned long pc = regs[1];
1017 #else
1018 #ifdef __linux__
1019 struct sigcontext *sc = puc;
1020 unsigned long pc = sc->sigc_regs.tpc;
1021 void *sigmask = (void *)sc->sigc_mask;
1022 #elif defined(__OpenBSD__)
1023 struct sigcontext *uc = puc;
1024 unsigned long pc = uc->sc_pc;
1025 void *sigmask = (void *)(long)uc->sc_mask;
1026 #endif
1027 #endif
1028
1029 /* XXX: need kernel patch to get write flag faster */
1030 is_write = 0;
1031 insn = *(uint32_t *)pc;
1032 if ((insn >> 30) == 3) {
1033 switch((insn >> 19) & 0x3f) {
1034 case 0x05: // stb
1035 case 0x15: // stba
1036 case 0x06: // sth
1037 case 0x16: // stha
1038 case 0x04: // st
1039 case 0x14: // sta
1040 case 0x07: // std
1041 case 0x17: // stda
1042 case 0x0e: // stx
1043 case 0x1e: // stxa
1044 case 0x24: // stf
1045 case 0x34: // stfa
1046 case 0x27: // stdf
1047 case 0x37: // stdfa
1048 case 0x26: // stqf
1049 case 0x36: // stqfa
1050 case 0x25: // stfsr
1051 case 0x3c: // casa
1052 case 0x3e: // casxa
1053 is_write = 1;
1054 break;
1055 }
1056 }
1057 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1058 is_write, sigmask, NULL);
1059 }
1060
1061 #elif defined(__arm__)
1062
1063 int cpu_signal_handler(int host_signum, void *pinfo,
1064 void *puc)
1065 {
1066 siginfo_t *info = pinfo;
1067 struct ucontext *uc = puc;
1068 unsigned long pc;
1069 int is_write;
1070
1071 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1072 pc = uc->uc_mcontext.gregs[R15];
1073 #else
1074 pc = uc->uc_mcontext.arm_pc;
1075 #endif
1076 /* XXX: compute is_write */
1077 is_write = 0;
1078 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1079 is_write,
1080 &uc->uc_sigmask, puc);
1081 }
1082
1083 #elif defined(__mc68000)
1084
1085 int cpu_signal_handler(int host_signum, void *pinfo,
1086 void *puc)
1087 {
1088 siginfo_t *info = pinfo;
1089 struct ucontext *uc = puc;
1090 unsigned long pc;
1091 int is_write;
1092
1093 pc = uc->uc_mcontext.gregs[16];
1094 /* XXX: compute is_write */
1095 is_write = 0;
1096 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1097 is_write,
1098 &uc->uc_sigmask, puc);
1099 }
1100
1101 #elif defined(__ia64)
1102
1103 #ifndef __ISR_VALID
1104 /* This ought to be in <bits/siginfo.h>... */
1105 # define __ISR_VALID 1
1106 #endif
1107
1108 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1109 {
1110 siginfo_t *info = pinfo;
1111 struct ucontext *uc = puc;
1112 unsigned long ip;
1113 int is_write = 0;
1114
1115 ip = uc->uc_mcontext.sc_ip;
1116 switch (host_signum) {
1117 case SIGILL:
1118 case SIGFPE:
1119 case SIGSEGV:
1120 case SIGBUS:
1121 case SIGTRAP:
1122 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1123 /* ISR.W (write-access) is bit 33: */
1124 is_write = (info->si_isr >> 33) & 1;
1125 break;
1126
1127 default:
1128 break;
1129 }
1130 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1131 is_write,
1132 &uc->uc_sigmask, puc);
1133 }
1134
1135 #elif defined(__s390__)
1136
1137 int cpu_signal_handler(int host_signum, void *pinfo,
1138 void *puc)
1139 {
1140 siginfo_t *info = pinfo;
1141 struct ucontext *uc = puc;
1142 unsigned long pc;
1143 int is_write;
1144
1145 pc = uc->uc_mcontext.psw.addr;
1146 /* XXX: compute is_write */
1147 is_write = 0;
1148 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1149 is_write, &uc->uc_sigmask, puc);
1150 }
1151
1152 #elif defined(__mips__)
1153
1154 int cpu_signal_handler(int host_signum, void *pinfo,
1155 void *puc)
1156 {
1157 siginfo_t *info = pinfo;
1158 struct ucontext *uc = puc;
1159 greg_t pc = uc->uc_mcontext.pc;
1160 int is_write;
1161
1162 /* XXX: compute is_write */
1163 is_write = 0;
1164 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1165 is_write, &uc->uc_sigmask, puc);
1166 }
1167
1168 #elif defined(__hppa__)
1169
1170 int cpu_signal_handler(int host_signum, void *pinfo,
1171 void *puc)
1172 {
1173 struct siginfo *info = pinfo;
1174 struct ucontext *uc = puc;
1175 unsigned long pc;
1176 int is_write;
1177
1178 pc = uc->uc_mcontext.sc_iaoq[0];
1179 /* FIXME: compute is_write */
1180 is_write = 0;
1181 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1182 is_write,
1183 &uc->uc_sigmask, puc);
1184 }
1185
1186 #else
1187
1188 #error host CPU specific signal handler needed
1189
1190 #endif
1191
1192 #endif /* !defined(CONFIG_SOFTMMU) */