]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
Watchpoint support (previous commit got eaten by Savannah server crash).
[qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
23
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
37
38 int tb_invalidated_flag;
39
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
42
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
46 {
47 longjmp(env->jmp_env, 1);
48 }
49 #endif
50 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
51 #define reg_T2
52 #endif
53
54 /* exit the current TB from a signal handler. The host registers are
55 restored in a state compatible with the CPU emulator
56 */
57 void cpu_resume_from_signal(CPUState *env1, void *puc)
58 {
59 #if !defined(CONFIG_SOFTMMU)
60 struct ucontext *uc = puc;
61 #endif
62
63 env = env1;
64
65 /* XXX: restore cpu registers saved in host registers */
66
67 #if !defined(CONFIG_SOFTMMU)
68 if (puc) {
69 /* XXX: use siglongjmp ? */
70 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71 }
72 #endif
73 longjmp(env->jmp_env, 1);
74 }
75
76
77 static TranslationBlock *tb_find_slow(target_ulong pc,
78 target_ulong cs_base,
79 unsigned int flags)
80 {
81 TranslationBlock *tb, **ptb1;
82 int code_gen_size;
83 unsigned int h;
84 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85 uint8_t *tc_ptr;
86
87 spin_lock(&tb_lock);
88
89 tb_invalidated_flag = 0;
90
91 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
93 /* find translated block using physical mappings */
94 phys_pc = get_phys_addr_code(env, pc);
95 phys_page1 = phys_pc & TARGET_PAGE_MASK;
96 phys_page2 = -1;
97 h = tb_phys_hash_func(phys_pc);
98 ptb1 = &tb_phys_hash[h];
99 for(;;) {
100 tb = *ptb1;
101 if (!tb)
102 goto not_found;
103 if (tb->pc == pc &&
104 tb->page_addr[0] == phys_page1 &&
105 tb->cs_base == cs_base &&
106 tb->flags == flags) {
107 /* check next page if needed */
108 if (tb->page_addr[1] != -1) {
109 virt_page2 = (pc & TARGET_PAGE_MASK) +
110 TARGET_PAGE_SIZE;
111 phys_page2 = get_phys_addr_code(env, virt_page2);
112 if (tb->page_addr[1] == phys_page2)
113 goto found;
114 } else {
115 goto found;
116 }
117 }
118 ptb1 = &tb->phys_hash_next;
119 }
120 not_found:
121 /* if no translated code available, then translate it now */
122 tb = tb_alloc(pc);
123 if (!tb) {
124 /* flush must be done */
125 tb_flush(env);
126 /* cannot fail at this point */
127 tb = tb_alloc(pc);
128 /* don't forget to invalidate previous TB info */
129 tb_invalidated_flag = 1;
130 }
131 tc_ptr = code_gen_ptr;
132 tb->tc_ptr = tc_ptr;
133 tb->cs_base = cs_base;
134 tb->flags = flags;
135 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
138 /* check next page if needed */
139 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140 phys_page2 = -1;
141 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142 phys_page2 = get_phys_addr_code(env, virt_page2);
143 }
144 tb_link_phys(tb, phys_pc, phys_page2);
145
146 found:
147 /* we add the TB in the virtual pc hash table */
148 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149 spin_unlock(&tb_lock);
150 return tb;
151 }
152
153 static inline TranslationBlock *tb_find_fast(void)
154 {
155 TranslationBlock *tb;
156 target_ulong cs_base, pc;
157 unsigned int flags;
158
159 /* we record a subset of the CPU state. It will
160 always be the same before a given translated block
161 is executed. */
162 #if defined(TARGET_I386)
163 flags = env->hflags;
164 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165 cs_base = env->segs[R_CS].base;
166 pc = cs_base + env->eip;
167 #elif defined(TARGET_ARM)
168 flags = env->thumb | (env->vfp.vec_len << 1)
169 | (env->vfp.vec_stride << 4);
170 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171 flags |= (1 << 6);
172 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173 flags |= (1 << 7);
174 cs_base = 0;
175 pc = env->regs[15];
176 #elif defined(TARGET_SPARC)
177 #ifdef TARGET_SPARC64
178 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
179 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
180 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
181 #else
182 // FPU enable . MMU enabled . MMU no-fault . Supervisor
183 flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
184 | env->psrs;
185 #endif
186 cs_base = env->npc;
187 pc = env->pc;
188 #elif defined(TARGET_PPC)
189 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
190 (msr_se << MSR_SE) | (msr_le << MSR_LE);
191 cs_base = 0;
192 pc = env->nip;
193 #elif defined(TARGET_MIPS)
194 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
195 cs_base = 0;
196 pc = env->PC;
197 #elif defined(TARGET_M68K)
198 flags = env->fpcr & M68K_FPCR_PREC;
199 cs_base = 0;
200 pc = env->pc;
201 #elif defined(TARGET_SH4)
202 flags = env->sr & (SR_MD | SR_RB);
203 cs_base = 0; /* XXXXX */
204 pc = env->pc;
205 #else
206 #error unsupported CPU
207 #endif
208 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
209 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
210 tb->flags != flags, 0)) {
211 tb = tb_find_slow(pc, cs_base, flags);
212 /* Note: we do it here to avoid a gcc bug on Mac OS X when
213 doing it in tb_find_slow */
214 if (tb_invalidated_flag) {
215 /* as some TB could have been invalidated because
216 of memory exceptions while generating the code, we
217 must recompute the hash index here */
218 T0 = 0;
219 }
220 }
221 return tb;
222 }
223
224
225 /* main execution loop */
226
227 int cpu_exec(CPUState *env1)
228 {
229 #define DECLARE_HOST_REGS 1
230 #include "hostregs_helper.h"
231 #if defined(TARGET_SPARC)
232 #if defined(reg_REGWPTR)
233 uint32_t *saved_regwptr;
234 #endif
235 #endif
236 #if defined(__sparc__) && !defined(HOST_SOLARIS)
237 int saved_i7;
238 target_ulong tmp_T0;
239 #endif
240 int ret, interrupt_request;
241 void (*gen_func)(void);
242 TranslationBlock *tb;
243 uint8_t *tc_ptr;
244
245 #if defined(TARGET_I386)
246 /* handle exit of HALTED state */
247 if (env1->hflags & HF_HALTED_MASK) {
248 /* disable halt condition */
249 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
250 (env1->eflags & IF_MASK)) {
251 env1->hflags &= ~HF_HALTED_MASK;
252 } else {
253 return EXCP_HALTED;
254 }
255 }
256 #elif defined(TARGET_PPC)
257 if (env1->halted) {
258 if (env1->msr[MSR_EE] &&
259 (env1->interrupt_request &
260 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
261 env1->halted = 0;
262 } else {
263 return EXCP_HALTED;
264 }
265 }
266 #elif defined(TARGET_SPARC)
267 if (env1->halted) {
268 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
269 (env1->psret != 0)) {
270 env1->halted = 0;
271 } else {
272 return EXCP_HALTED;
273 }
274 }
275 #elif defined(TARGET_ARM)
276 if (env1->halted) {
277 /* An interrupt wakes the CPU even if the I and F CPSR bits are
278 set. */
279 if (env1->interrupt_request
280 & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
281 env1->halted = 0;
282 } else {
283 return EXCP_HALTED;
284 }
285 }
286 #elif defined(TARGET_MIPS)
287 if (env1->halted) {
288 if (env1->interrupt_request &
289 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
290 env1->halted = 0;
291 } else {
292 return EXCP_HALTED;
293 }
294 }
295 #endif
296
297 cpu_single_env = env1;
298
299 /* first we save global registers */
300 #define SAVE_HOST_REGS 1
301 #include "hostregs_helper.h"
302 env = env1;
303 #if defined(__sparc__) && !defined(HOST_SOLARIS)
304 /* we also save i7 because longjmp may not restore it */
305 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
306 #endif
307
308 #if defined(TARGET_I386)
309 env_to_regs();
310 /* put eflags in CPU temporary format */
311 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
312 DF = 1 - (2 * ((env->eflags >> 10) & 1));
313 CC_OP = CC_OP_EFLAGS;
314 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
315 #elif defined(TARGET_ARM)
316 #elif defined(TARGET_SPARC)
317 #if defined(reg_REGWPTR)
318 saved_regwptr = REGWPTR;
319 #endif
320 #elif defined(TARGET_PPC)
321 #elif defined(TARGET_M68K)
322 env->cc_op = CC_OP_FLAGS;
323 env->cc_dest = env->sr & 0xf;
324 env->cc_x = (env->sr >> 4) & 1;
325 #elif defined(TARGET_MIPS)
326 #elif defined(TARGET_SH4)
327 /* XXXXX */
328 #else
329 #error unsupported target CPU
330 #endif
331 env->exception_index = -1;
332
333 /* prepare setjmp context for exception handling */
334 for(;;) {
335 if (setjmp(env->jmp_env) == 0) {
336 env->current_tb = NULL;
337 /* if an exception is pending, we execute it here */
338 if (env->exception_index >= 0) {
339 if (env->exception_index >= EXCP_INTERRUPT) {
340 /* exit request from the cpu execution loop */
341 ret = env->exception_index;
342 break;
343 } else if (env->user_mode_only) {
344 /* if user mode only, we simulate a fake exception
345 which will be handled outside the cpu execution
346 loop */
347 #if defined(TARGET_I386)
348 do_interrupt_user(env->exception_index,
349 env->exception_is_int,
350 env->error_code,
351 env->exception_next_eip);
352 #endif
353 ret = env->exception_index;
354 break;
355 } else {
356 #if defined(TARGET_I386)
357 /* simulate a real cpu exception. On i386, it can
358 trigger new exceptions, but we do not handle
359 double or triple faults yet. */
360 do_interrupt(env->exception_index,
361 env->exception_is_int,
362 env->error_code,
363 env->exception_next_eip, 0);
364 #elif defined(TARGET_PPC)
365 do_interrupt(env);
366 #elif defined(TARGET_MIPS)
367 do_interrupt(env);
368 #elif defined(TARGET_SPARC)
369 do_interrupt(env->exception_index);
370 #elif defined(TARGET_ARM)
371 do_interrupt(env);
372 #elif defined(TARGET_SH4)
373 do_interrupt(env);
374 #endif
375 }
376 env->exception_index = -1;
377 }
378 #ifdef USE_KQEMU
379 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
380 int ret;
381 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
382 ret = kqemu_cpu_exec(env);
383 /* put eflags in CPU temporary format */
384 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
385 DF = 1 - (2 * ((env->eflags >> 10) & 1));
386 CC_OP = CC_OP_EFLAGS;
387 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
388 if (ret == 1) {
389 /* exception */
390 longjmp(env->jmp_env, 1);
391 } else if (ret == 2) {
392 /* softmmu execution needed */
393 } else {
394 if (env->interrupt_request != 0) {
395 /* hardware interrupt will be executed just after */
396 } else {
397 /* otherwise, we restart */
398 longjmp(env->jmp_env, 1);
399 }
400 }
401 }
402 #endif
403
404 T0 = 0; /* force lookup of first TB */
405 for(;;) {
406 #if defined(__sparc__) && !defined(HOST_SOLARIS)
407 /* g1 can be modified by some libc? functions */
408 tmp_T0 = T0;
409 #endif
410 interrupt_request = env->interrupt_request;
411 if (__builtin_expect(interrupt_request, 0)) {
412 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
413 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
414 env->exception_index = EXCP_DEBUG;
415 cpu_loop_exit();
416 }
417 #if defined(TARGET_I386)
418 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
419 !(env->hflags & HF_SMM_MASK)) {
420 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
421 do_smm_enter();
422 #if defined(__sparc__) && !defined(HOST_SOLARIS)
423 tmp_T0 = 0;
424 #else
425 T0 = 0;
426 #endif
427 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
428 (env->eflags & IF_MASK) &&
429 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
430 int intno;
431 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
432 intno = cpu_get_pic_interrupt(env);
433 if (loglevel & CPU_LOG_TB_IN_ASM) {
434 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
435 }
436 do_interrupt(intno, 0, 0, 0, 1);
437 /* ensure that no TB jump will be modified as
438 the program flow was changed */
439 #if defined(__sparc__) && !defined(HOST_SOLARIS)
440 tmp_T0 = 0;
441 #else
442 T0 = 0;
443 #endif
444 }
445 #elif defined(TARGET_PPC)
446 #if 0
447 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
448 cpu_ppc_reset(env);
449 }
450 #endif
451 if (msr_ee != 0) {
452 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
453 /* Raise it */
454 env->exception_index = EXCP_EXTERNAL;
455 env->error_code = 0;
456 do_interrupt(env);
457 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
458 #if defined(__sparc__) && !defined(HOST_SOLARIS)
459 tmp_T0 = 0;
460 #else
461 T0 = 0;
462 #endif
463 } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
464 /* Raise it */
465 env->exception_index = EXCP_DECR;
466 env->error_code = 0;
467 do_interrupt(env);
468 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
469 #if defined(__sparc__) && !defined(HOST_SOLARIS)
470 tmp_T0 = 0;
471 #else
472 T0 = 0;
473 #endif
474 }
475 }
476 #elif defined(TARGET_MIPS)
477 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
478 (env->CP0_Status & (1 << CP0St_IE)) &&
479 (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
480 !(env->hflags & MIPS_HFLAG_EXL) &&
481 !(env->hflags & MIPS_HFLAG_ERL) &&
482 !(env->hflags & MIPS_HFLAG_DM)) {
483 /* Raise it */
484 env->exception_index = EXCP_EXT_INTERRUPT;
485 env->error_code = 0;
486 do_interrupt(env);
487 #if defined(__sparc__) && !defined(HOST_SOLARIS)
488 tmp_T0 = 0;
489 #else
490 T0 = 0;
491 #endif
492 }
493 #elif defined(TARGET_SPARC)
494 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
495 (env->psret != 0)) {
496 int pil = env->interrupt_index & 15;
497 int type = env->interrupt_index & 0xf0;
498
499 if (((type == TT_EXTINT) &&
500 (pil == 15 || pil > env->psrpil)) ||
501 type != TT_EXTINT) {
502 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
503 do_interrupt(env->interrupt_index);
504 env->interrupt_index = 0;
505 #if defined(__sparc__) && !defined(HOST_SOLARIS)
506 tmp_T0 = 0;
507 #else
508 T0 = 0;
509 #endif
510 }
511 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
512 //do_interrupt(0, 0, 0, 0, 0);
513 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
514 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
515 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
516 env->halted = 1;
517 env->exception_index = EXCP_HLT;
518 cpu_loop_exit();
519 }
520 #elif defined(TARGET_ARM)
521 if (interrupt_request & CPU_INTERRUPT_FIQ
522 && !(env->uncached_cpsr & CPSR_F)) {
523 env->exception_index = EXCP_FIQ;
524 do_interrupt(env);
525 }
526 if (interrupt_request & CPU_INTERRUPT_HARD
527 && !(env->uncached_cpsr & CPSR_I)) {
528 env->exception_index = EXCP_IRQ;
529 do_interrupt(env);
530 }
531 #elif defined(TARGET_SH4)
532 /* XXXXX */
533 #endif
534 /* Don't use the cached interupt_request value,
535 do_interrupt may have updated the EXITTB flag. */
536 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
537 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
538 /* ensure that no TB jump will be modified as
539 the program flow was changed */
540 #if defined(__sparc__) && !defined(HOST_SOLARIS)
541 tmp_T0 = 0;
542 #else
543 T0 = 0;
544 #endif
545 }
546 if (interrupt_request & CPU_INTERRUPT_EXIT) {
547 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
548 env->exception_index = EXCP_INTERRUPT;
549 cpu_loop_exit();
550 }
551 }
552 #ifdef DEBUG_EXEC
553 if ((loglevel & CPU_LOG_TB_CPU)) {
554 #if defined(TARGET_I386)
555 /* restore flags in standard format */
556 #ifdef reg_EAX
557 env->regs[R_EAX] = EAX;
558 #endif
559 #ifdef reg_EBX
560 env->regs[R_EBX] = EBX;
561 #endif
562 #ifdef reg_ECX
563 env->regs[R_ECX] = ECX;
564 #endif
565 #ifdef reg_EDX
566 env->regs[R_EDX] = EDX;
567 #endif
568 #ifdef reg_ESI
569 env->regs[R_ESI] = ESI;
570 #endif
571 #ifdef reg_EDI
572 env->regs[R_EDI] = EDI;
573 #endif
574 #ifdef reg_EBP
575 env->regs[R_EBP] = EBP;
576 #endif
577 #ifdef reg_ESP
578 env->regs[R_ESP] = ESP;
579 #endif
580 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
581 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
582 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
583 #elif defined(TARGET_ARM)
584 cpu_dump_state(env, logfile, fprintf, 0);
585 #elif defined(TARGET_SPARC)
586 REGWPTR = env->regbase + (env->cwp * 16);
587 env->regwptr = REGWPTR;
588 cpu_dump_state(env, logfile, fprintf, 0);
589 #elif defined(TARGET_PPC)
590 cpu_dump_state(env, logfile, fprintf, 0);
591 #elif defined(TARGET_M68K)
592 cpu_m68k_flush_flags(env, env->cc_op);
593 env->cc_op = CC_OP_FLAGS;
594 env->sr = (env->sr & 0xffe0)
595 | env->cc_dest | (env->cc_x << 4);
596 cpu_dump_state(env, logfile, fprintf, 0);
597 #elif defined(TARGET_MIPS)
598 cpu_dump_state(env, logfile, fprintf, 0);
599 #elif defined(TARGET_SH4)
600 cpu_dump_state(env, logfile, fprintf, 0);
601 #else
602 #error unsupported target CPU
603 #endif
604 }
605 #endif
606 tb = tb_find_fast();
607 #ifdef DEBUG_EXEC
608 if ((loglevel & CPU_LOG_EXEC)) {
609 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
610 (long)tb->tc_ptr, tb->pc,
611 lookup_symbol(tb->pc));
612 }
613 #endif
614 #if defined(__sparc__) && !defined(HOST_SOLARIS)
615 T0 = tmp_T0;
616 #endif
617 /* see if we can patch the calling TB. When the TB
618 spans two pages, we cannot safely do a direct
619 jump. */
620 {
621 if (T0 != 0 &&
622 #if USE_KQEMU
623 (env->kqemu_enabled != 2) &&
624 #endif
625 tb->page_addr[1] == -1
626 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
627 && (tb->cflags & CF_CODE_COPY) ==
628 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
629 #endif
630 ) {
631 spin_lock(&tb_lock);
632 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
633 #if defined(USE_CODE_COPY)
634 /* propagates the FP use info */
635 ((TranslationBlock *)(T0 & ~3))->cflags |=
636 (tb->cflags & CF_FP_USED);
637 #endif
638 spin_unlock(&tb_lock);
639 }
640 }
641 tc_ptr = tb->tc_ptr;
642 env->current_tb = tb;
643 /* execute the generated code */
644 gen_func = (void *)tc_ptr;
645 #if defined(__sparc__)
646 __asm__ __volatile__("call %0\n\t"
647 "mov %%o7,%%i0"
648 : /* no outputs */
649 : "r" (gen_func)
650 : "i0", "i1", "i2", "i3", "i4", "i5",
651 "l0", "l1", "l2", "l3", "l4", "l5",
652 "l6", "l7");
653 #elif defined(__arm__)
654 asm volatile ("mov pc, %0\n\t"
655 ".global exec_loop\n\t"
656 "exec_loop:\n\t"
657 : /* no outputs */
658 : "r" (gen_func)
659 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
660 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
661 {
662 if (!(tb->cflags & CF_CODE_COPY)) {
663 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
664 save_native_fp_state(env);
665 }
666 gen_func();
667 } else {
668 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
669 restore_native_fp_state(env);
670 }
671 /* we work with native eflags */
672 CC_SRC = cc_table[CC_OP].compute_all();
673 CC_OP = CC_OP_EFLAGS;
674 asm(".globl exec_loop\n"
675 "\n"
676 "debug1:\n"
677 " pushl %%ebp\n"
678 " fs movl %10, %9\n"
679 " fs movl %11, %%eax\n"
680 " andl $0x400, %%eax\n"
681 " fs orl %8, %%eax\n"
682 " pushl %%eax\n"
683 " popf\n"
684 " fs movl %%esp, %12\n"
685 " fs movl %0, %%eax\n"
686 " fs movl %1, %%ecx\n"
687 " fs movl %2, %%edx\n"
688 " fs movl %3, %%ebx\n"
689 " fs movl %4, %%esp\n"
690 " fs movl %5, %%ebp\n"
691 " fs movl %6, %%esi\n"
692 " fs movl %7, %%edi\n"
693 " fs jmp *%9\n"
694 "exec_loop:\n"
695 " fs movl %%esp, %4\n"
696 " fs movl %12, %%esp\n"
697 " fs movl %%eax, %0\n"
698 " fs movl %%ecx, %1\n"
699 " fs movl %%edx, %2\n"
700 " fs movl %%ebx, %3\n"
701 " fs movl %%ebp, %5\n"
702 " fs movl %%esi, %6\n"
703 " fs movl %%edi, %7\n"
704 " pushf\n"
705 " popl %%eax\n"
706 " movl %%eax, %%ecx\n"
707 " andl $0x400, %%ecx\n"
708 " shrl $9, %%ecx\n"
709 " andl $0x8d5, %%eax\n"
710 " fs movl %%eax, %8\n"
711 " movl $1, %%eax\n"
712 " subl %%ecx, %%eax\n"
713 " fs movl %%eax, %11\n"
714 " fs movl %9, %%ebx\n" /* get T0 value */
715 " popl %%ebp\n"
716 :
717 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
718 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
719 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
720 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
721 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
722 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
723 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
724 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
725 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
726 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
727 "a" (gen_func),
728 "m" (*(uint8_t *)offsetof(CPUState, df)),
729 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
730 : "%ecx", "%edx"
731 );
732 }
733 }
734 #elif defined(__ia64)
735 struct fptr {
736 void *ip;
737 void *gp;
738 } fp;
739
740 fp.ip = tc_ptr;
741 fp.gp = code_gen_buffer + 2 * (1 << 20);
742 (*(void (*)(void)) &fp)();
743 #else
744 gen_func();
745 #endif
746 env->current_tb = NULL;
747 /* reset soft MMU for next block (it can currently
748 only be set by a memory fault) */
749 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
750 if (env->hflags & HF_SOFTMMU_MASK) {
751 env->hflags &= ~HF_SOFTMMU_MASK;
752 /* do not allow linking to another block */
753 T0 = 0;
754 }
755 #endif
756 #if defined(USE_KQEMU)
757 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
758 if (kqemu_is_ok(env) &&
759 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
760 cpu_loop_exit();
761 }
762 #endif
763 }
764 } else {
765 env_to_regs();
766 }
767 } /* for(;;) */
768
769
770 #if defined(TARGET_I386)
771 #if defined(USE_CODE_COPY)
772 if (env->native_fp_regs) {
773 save_native_fp_state(env);
774 }
775 #endif
776 /* restore flags in standard format */
777 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
778 #elif defined(TARGET_ARM)
779 /* XXX: Save/restore host fpu exception state?. */
780 #elif defined(TARGET_SPARC)
781 #if defined(reg_REGWPTR)
782 REGWPTR = saved_regwptr;
783 #endif
784 #elif defined(TARGET_PPC)
785 #elif defined(TARGET_M68K)
786 cpu_m68k_flush_flags(env, env->cc_op);
787 env->cc_op = CC_OP_FLAGS;
788 env->sr = (env->sr & 0xffe0)
789 | env->cc_dest | (env->cc_x << 4);
790 #elif defined(TARGET_MIPS)
791 #elif defined(TARGET_SH4)
792 /* XXXXX */
793 #else
794 #error unsupported target CPU
795 #endif
796
797 /* restore global registers */
798 #if defined(__sparc__) && !defined(HOST_SOLARIS)
799 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
800 #endif
801 #include "hostregs_helper.h"
802
803 /* fail safe : never use cpu_single_env outside cpu_exec() */
804 cpu_single_env = NULL;
805 return ret;
806 }
807
808 /* must only be called from the generated code as an exception can be
809 generated */
810 void tb_invalidate_page_range(target_ulong start, target_ulong end)
811 {
812 /* XXX: cannot enable it yet because it yields to MMU exception
813 where NIP != read address on PowerPC */
814 #if 0
815 target_ulong phys_addr;
816 phys_addr = get_phys_addr_code(env, start);
817 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
818 #endif
819 }
820
821 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
822
823 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
824 {
825 CPUX86State *saved_env;
826
827 saved_env = env;
828 env = s;
829 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
830 selector &= 0xffff;
831 cpu_x86_load_seg_cache(env, seg_reg, selector,
832 (selector << 4), 0xffff, 0);
833 } else {
834 load_seg(seg_reg, selector);
835 }
836 env = saved_env;
837 }
838
839 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
840 {
841 CPUX86State *saved_env;
842
843 saved_env = env;
844 env = s;
845
846 helper_fsave((target_ulong)ptr, data32);
847
848 env = saved_env;
849 }
850
851 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
852 {
853 CPUX86State *saved_env;
854
855 saved_env = env;
856 env = s;
857
858 helper_frstor((target_ulong)ptr, data32);
859
860 env = saved_env;
861 }
862
863 #endif /* TARGET_I386 */
864
865 #if !defined(CONFIG_SOFTMMU)
866
867 #if defined(TARGET_I386)
868
869 /* 'pc' is the host PC at which the exception was raised. 'address' is
870 the effective address of the memory exception. 'is_write' is 1 if a
871 write caused the exception and otherwise 0'. 'old_set' is the
872 signal set which should be restored */
873 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
874 int is_write, sigset_t *old_set,
875 void *puc)
876 {
877 TranslationBlock *tb;
878 int ret;
879
880 if (cpu_single_env)
881 env = cpu_single_env; /* XXX: find a correct solution for multithread */
882 #if defined(DEBUG_SIGNAL)
883 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
884 pc, address, is_write, *(unsigned long *)old_set);
885 #endif
886 /* XXX: locking issue */
887 if (is_write && page_unprotect(h2g(address), pc, puc)) {
888 return 1;
889 }
890
891 /* see if it is an MMU fault */
892 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
893 ((env->hflags & HF_CPL_MASK) == 3), 0);
894 if (ret < 0)
895 return 0; /* not an MMU fault */
896 if (ret == 0)
897 return 1; /* the MMU fault was handled without causing real CPU fault */
898 /* now we have a real cpu fault */
899 tb = tb_find_pc(pc);
900 if (tb) {
901 /* the PC is inside the translated code. It means that we have
902 a virtual CPU fault */
903 cpu_restore_state(tb, env, pc, puc);
904 }
905 if (ret == 1) {
906 #if 0
907 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
908 env->eip, env->cr[2], env->error_code);
909 #endif
910 /* we restore the process signal mask as the sigreturn should
911 do it (XXX: use sigsetjmp) */
912 sigprocmask(SIG_SETMASK, old_set, NULL);
913 raise_exception_err(env->exception_index, env->error_code);
914 } else {
915 /* activate soft MMU for this block */
916 env->hflags |= HF_SOFTMMU_MASK;
917 cpu_resume_from_signal(env, puc);
918 }
919 /* never comes here */
920 return 1;
921 }
922
923 #elif defined(TARGET_ARM)
924 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
925 int is_write, sigset_t *old_set,
926 void *puc)
927 {
928 TranslationBlock *tb;
929 int ret;
930
931 if (cpu_single_env)
932 env = cpu_single_env; /* XXX: find a correct solution for multithread */
933 #if defined(DEBUG_SIGNAL)
934 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
935 pc, address, is_write, *(unsigned long *)old_set);
936 #endif
937 /* XXX: locking issue */
938 if (is_write && page_unprotect(h2g(address), pc, puc)) {
939 return 1;
940 }
941 /* see if it is an MMU fault */
942 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
943 if (ret < 0)
944 return 0; /* not an MMU fault */
945 if (ret == 0)
946 return 1; /* the MMU fault was handled without causing real CPU fault */
947 /* now we have a real cpu fault */
948 tb = tb_find_pc(pc);
949 if (tb) {
950 /* the PC is inside the translated code. It means that we have
951 a virtual CPU fault */
952 cpu_restore_state(tb, env, pc, puc);
953 }
954 /* we restore the process signal mask as the sigreturn should
955 do it (XXX: use sigsetjmp) */
956 sigprocmask(SIG_SETMASK, old_set, NULL);
957 cpu_loop_exit();
958 }
959 #elif defined(TARGET_SPARC)
960 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
961 int is_write, sigset_t *old_set,
962 void *puc)
963 {
964 TranslationBlock *tb;
965 int ret;
966
967 if (cpu_single_env)
968 env = cpu_single_env; /* XXX: find a correct solution for multithread */
969 #if defined(DEBUG_SIGNAL)
970 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
971 pc, address, is_write, *(unsigned long *)old_set);
972 #endif
973 /* XXX: locking issue */
974 if (is_write && page_unprotect(h2g(address), pc, puc)) {
975 return 1;
976 }
977 /* see if it is an MMU fault */
978 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
979 if (ret < 0)
980 return 0; /* not an MMU fault */
981 if (ret == 0)
982 return 1; /* the MMU fault was handled without causing real CPU fault */
983 /* now we have a real cpu fault */
984 tb = tb_find_pc(pc);
985 if (tb) {
986 /* the PC is inside the translated code. It means that we have
987 a virtual CPU fault */
988 cpu_restore_state(tb, env, pc, puc);
989 }
990 /* we restore the process signal mask as the sigreturn should
991 do it (XXX: use sigsetjmp) */
992 sigprocmask(SIG_SETMASK, old_set, NULL);
993 cpu_loop_exit();
994 }
995 #elif defined (TARGET_PPC)
996 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
997 int is_write, sigset_t *old_set,
998 void *puc)
999 {
1000 TranslationBlock *tb;
1001 int ret;
1002
1003 if (cpu_single_env)
1004 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1005 #if defined(DEBUG_SIGNAL)
1006 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1007 pc, address, is_write, *(unsigned long *)old_set);
1008 #endif
1009 /* XXX: locking issue */
1010 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1011 return 1;
1012 }
1013
1014 /* see if it is an MMU fault */
1015 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1016 if (ret < 0)
1017 return 0; /* not an MMU fault */
1018 if (ret == 0)
1019 return 1; /* the MMU fault was handled without causing real CPU fault */
1020
1021 /* now we have a real cpu fault */
1022 tb = tb_find_pc(pc);
1023 if (tb) {
1024 /* the PC is inside the translated code. It means that we have
1025 a virtual CPU fault */
1026 cpu_restore_state(tb, env, pc, puc);
1027 }
1028 if (ret == 1) {
1029 #if 0
1030 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1031 env->nip, env->error_code, tb);
1032 #endif
1033 /* we restore the process signal mask as the sigreturn should
1034 do it (XXX: use sigsetjmp) */
1035 sigprocmask(SIG_SETMASK, old_set, NULL);
1036 do_raise_exception_err(env->exception_index, env->error_code);
1037 } else {
1038 /* activate soft MMU for this block */
1039 cpu_resume_from_signal(env, puc);
1040 }
1041 /* never comes here */
1042 return 1;
1043 }
1044
1045 #elif defined(TARGET_M68K)
1046 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1047 int is_write, sigset_t *old_set,
1048 void *puc)
1049 {
1050 TranslationBlock *tb;
1051 int ret;
1052
1053 if (cpu_single_env)
1054 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1055 #if defined(DEBUG_SIGNAL)
1056 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1057 pc, address, is_write, *(unsigned long *)old_set);
1058 #endif
1059 /* XXX: locking issue */
1060 if (is_write && page_unprotect(address, pc, puc)) {
1061 return 1;
1062 }
1063 /* see if it is an MMU fault */
1064 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1065 if (ret < 0)
1066 return 0; /* not an MMU fault */
1067 if (ret == 0)
1068 return 1; /* the MMU fault was handled without causing real CPU fault */
1069 /* now we have a real cpu fault */
1070 tb = tb_find_pc(pc);
1071 if (tb) {
1072 /* the PC is inside the translated code. It means that we have
1073 a virtual CPU fault */
1074 cpu_restore_state(tb, env, pc, puc);
1075 }
1076 /* we restore the process signal mask as the sigreturn should
1077 do it (XXX: use sigsetjmp) */
1078 sigprocmask(SIG_SETMASK, old_set, NULL);
1079 cpu_loop_exit();
1080 /* never comes here */
1081 return 1;
1082 }
1083
1084 #elif defined (TARGET_MIPS)
1085 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1086 int is_write, sigset_t *old_set,
1087 void *puc)
1088 {
1089 TranslationBlock *tb;
1090 int ret;
1091
1092 if (cpu_single_env)
1093 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1094 #if defined(DEBUG_SIGNAL)
1095 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1096 pc, address, is_write, *(unsigned long *)old_set);
1097 #endif
1098 /* XXX: locking issue */
1099 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1100 return 1;
1101 }
1102
1103 /* see if it is an MMU fault */
1104 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1105 if (ret < 0)
1106 return 0; /* not an MMU fault */
1107 if (ret == 0)
1108 return 1; /* the MMU fault was handled without causing real CPU fault */
1109
1110 /* now we have a real cpu fault */
1111 tb = tb_find_pc(pc);
1112 if (tb) {
1113 /* the PC is inside the translated code. It means that we have
1114 a virtual CPU fault */
1115 cpu_restore_state(tb, env, pc, puc);
1116 }
1117 if (ret == 1) {
1118 #if 0
1119 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1120 env->nip, env->error_code, tb);
1121 #endif
1122 /* we restore the process signal mask as the sigreturn should
1123 do it (XXX: use sigsetjmp) */
1124 sigprocmask(SIG_SETMASK, old_set, NULL);
1125 do_raise_exception_err(env->exception_index, env->error_code);
1126 } else {
1127 /* activate soft MMU for this block */
1128 cpu_resume_from_signal(env, puc);
1129 }
1130 /* never comes here */
1131 return 1;
1132 }
1133
1134 #elif defined (TARGET_SH4)
1135 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1136 int is_write, sigset_t *old_set,
1137 void *puc)
1138 {
1139 TranslationBlock *tb;
1140 int ret;
1141
1142 if (cpu_single_env)
1143 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1144 #if defined(DEBUG_SIGNAL)
1145 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1146 pc, address, is_write, *(unsigned long *)old_set);
1147 #endif
1148 /* XXX: locking issue */
1149 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1150 return 1;
1151 }
1152
1153 /* see if it is an MMU fault */
1154 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1155 if (ret < 0)
1156 return 0; /* not an MMU fault */
1157 if (ret == 0)
1158 return 1; /* the MMU fault was handled without causing real CPU fault */
1159
1160 /* now we have a real cpu fault */
1161 tb = tb_find_pc(pc);
1162 if (tb) {
1163 /* the PC is inside the translated code. It means that we have
1164 a virtual CPU fault */
1165 cpu_restore_state(tb, env, pc, puc);
1166 }
1167 #if 0
1168 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1169 env->nip, env->error_code, tb);
1170 #endif
1171 /* we restore the process signal mask as the sigreturn should
1172 do it (XXX: use sigsetjmp) */
1173 sigprocmask(SIG_SETMASK, old_set, NULL);
1174 cpu_loop_exit();
1175 /* never comes here */
1176 return 1;
1177 }
1178 #else
1179 #error unsupported target CPU
1180 #endif
1181
1182 #if defined(__i386__)
1183
1184 #if defined(__APPLE__)
1185 # include <sys/ucontext.h>
1186
1187 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1188 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1189 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1190 #else
1191 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1192 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1193 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1194 #endif
1195
1196 #if defined(USE_CODE_COPY)
1197 static void cpu_send_trap(unsigned long pc, int trap,
1198 struct ucontext *uc)
1199 {
1200 TranslationBlock *tb;
1201
1202 if (cpu_single_env)
1203 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1204 /* now we have a real cpu fault */
1205 tb = tb_find_pc(pc);
1206 if (tb) {
1207 /* the PC is inside the translated code. It means that we have
1208 a virtual CPU fault */
1209 cpu_restore_state(tb, env, pc, uc);
1210 }
1211 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1212 raise_exception_err(trap, env->error_code);
1213 }
1214 #endif
1215
1216 int cpu_signal_handler(int host_signum, void *pinfo,
1217 void *puc)
1218 {
1219 siginfo_t *info = pinfo;
1220 struct ucontext *uc = puc;
1221 unsigned long pc;
1222 int trapno;
1223
1224 #ifndef REG_EIP
1225 /* for glibc 2.1 */
1226 #define REG_EIP EIP
1227 #define REG_ERR ERR
1228 #define REG_TRAPNO TRAPNO
1229 #endif
1230 pc = EIP_sig(uc);
1231 trapno = TRAP_sig(uc);
1232 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1233 if (trapno == 0x00 || trapno == 0x05) {
1234 /* send division by zero or bound exception */
1235 cpu_send_trap(pc, trapno, uc);
1236 return 1;
1237 } else
1238 #endif
1239 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1240 trapno == 0xe ?
1241 (ERROR_sig(uc) >> 1) & 1 : 0,
1242 &uc->uc_sigmask, puc);
1243 }
1244
1245 #elif defined(__x86_64__)
1246
1247 int cpu_signal_handler(int host_signum, void *pinfo,
1248 void *puc)
1249 {
1250 siginfo_t *info = pinfo;
1251 struct ucontext *uc = puc;
1252 unsigned long pc;
1253
1254 pc = uc->uc_mcontext.gregs[REG_RIP];
1255 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1256 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1257 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1258 &uc->uc_sigmask, puc);
1259 }
1260
1261 #elif defined(__powerpc__)
1262
1263 /***********************************************************************
1264 * signal context platform-specific definitions
1265 * From Wine
1266 */
1267 #ifdef linux
1268 /* All Registers access - only for local access */
1269 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1270 /* Gpr Registers access */
1271 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1272 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1273 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1274 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1275 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1276 # define LR_sig(context) REG_sig(link, context) /* Link register */
1277 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1278 /* Float Registers access */
1279 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1280 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1281 /* Exception Registers access */
1282 # define DAR_sig(context) REG_sig(dar, context)
1283 # define DSISR_sig(context) REG_sig(dsisr, context)
1284 # define TRAP_sig(context) REG_sig(trap, context)
1285 #endif /* linux */
1286
1287 #ifdef __APPLE__
1288 # include <sys/ucontext.h>
1289 typedef struct ucontext SIGCONTEXT;
1290 /* All Registers access - only for local access */
1291 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1292 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1293 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1294 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1295 /* Gpr Registers access */
1296 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1297 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1298 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1299 # define CTR_sig(context) REG_sig(ctr, context)
1300 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1301 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1302 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1303 /* Float Registers access */
1304 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1305 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1306 /* Exception Registers access */
1307 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1308 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1309 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1310 #endif /* __APPLE__ */
1311
1312 int cpu_signal_handler(int host_signum, void *pinfo,
1313 void *puc)
1314 {
1315 siginfo_t *info = pinfo;
1316 struct ucontext *uc = puc;
1317 unsigned long pc;
1318 int is_write;
1319
1320 pc = IAR_sig(uc);
1321 is_write = 0;
1322 #if 0
1323 /* ppc 4xx case */
1324 if (DSISR_sig(uc) & 0x00800000)
1325 is_write = 1;
1326 #else
1327 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1328 is_write = 1;
1329 #endif
1330 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1331 is_write, &uc->uc_sigmask, puc);
1332 }
1333
1334 #elif defined(__alpha__)
1335
1336 int cpu_signal_handler(int host_signum, void *pinfo,
1337 void *puc)
1338 {
1339 siginfo_t *info = pinfo;
1340 struct ucontext *uc = puc;
1341 uint32_t *pc = uc->uc_mcontext.sc_pc;
1342 uint32_t insn = *pc;
1343 int is_write = 0;
1344
1345 /* XXX: need kernel patch to get write flag faster */
1346 switch (insn >> 26) {
1347 case 0x0d: // stw
1348 case 0x0e: // stb
1349 case 0x0f: // stq_u
1350 case 0x24: // stf
1351 case 0x25: // stg
1352 case 0x26: // sts
1353 case 0x27: // stt
1354 case 0x2c: // stl
1355 case 0x2d: // stq
1356 case 0x2e: // stl_c
1357 case 0x2f: // stq_c
1358 is_write = 1;
1359 }
1360
1361 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1362 is_write, &uc->uc_sigmask, puc);
1363 }
1364 #elif defined(__sparc__)
1365
1366 int cpu_signal_handler(int host_signum, void *pinfo,
1367 void *puc)
1368 {
1369 siginfo_t *info = pinfo;
1370 uint32_t *regs = (uint32_t *)(info + 1);
1371 void *sigmask = (regs + 20);
1372 unsigned long pc;
1373 int is_write;
1374 uint32_t insn;
1375
1376 /* XXX: is there a standard glibc define ? */
1377 pc = regs[1];
1378 /* XXX: need kernel patch to get write flag faster */
1379 is_write = 0;
1380 insn = *(uint32_t *)pc;
1381 if ((insn >> 30) == 3) {
1382 switch((insn >> 19) & 0x3f) {
1383 case 0x05: // stb
1384 case 0x06: // sth
1385 case 0x04: // st
1386 case 0x07: // std
1387 case 0x24: // stf
1388 case 0x27: // stdf
1389 case 0x25: // stfsr
1390 is_write = 1;
1391 break;
1392 }
1393 }
1394 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1395 is_write, sigmask, NULL);
1396 }
1397
1398 #elif defined(__arm__)
1399
1400 int cpu_signal_handler(int host_signum, void *pinfo,
1401 void *puc)
1402 {
1403 siginfo_t *info = pinfo;
1404 struct ucontext *uc = puc;
1405 unsigned long pc;
1406 int is_write;
1407
1408 pc = uc->uc_mcontext.gregs[R15];
1409 /* XXX: compute is_write */
1410 is_write = 0;
1411 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1412 is_write,
1413 &uc->uc_sigmask, puc);
1414 }
1415
1416 #elif defined(__mc68000)
1417
1418 int cpu_signal_handler(int host_signum, void *pinfo,
1419 void *puc)
1420 {
1421 siginfo_t *info = pinfo;
1422 struct ucontext *uc = puc;
1423 unsigned long pc;
1424 int is_write;
1425
1426 pc = uc->uc_mcontext.gregs[16];
1427 /* XXX: compute is_write */
1428 is_write = 0;
1429 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1430 is_write,
1431 &uc->uc_sigmask, puc);
1432 }
1433
1434 #elif defined(__ia64)
1435
1436 #ifndef __ISR_VALID
1437 /* This ought to be in <bits/siginfo.h>... */
1438 # define __ISR_VALID 1
1439 #endif
1440
1441 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1442 {
1443 siginfo_t *info = pinfo;
1444 struct ucontext *uc = puc;
1445 unsigned long ip;
1446 int is_write = 0;
1447
1448 ip = uc->uc_mcontext.sc_ip;
1449 switch (host_signum) {
1450 case SIGILL:
1451 case SIGFPE:
1452 case SIGSEGV:
1453 case SIGBUS:
1454 case SIGTRAP:
1455 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1456 /* ISR.W (write-access) is bit 33: */
1457 is_write = (info->si_isr >> 33) & 1;
1458 break;
1459
1460 default:
1461 break;
1462 }
1463 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1464 is_write,
1465 &uc->uc_sigmask, puc);
1466 }
1467
1468 #elif defined(__s390__)
1469
1470 int cpu_signal_handler(int host_signum, void *pinfo,
1471 void *puc)
1472 {
1473 siginfo_t *info = pinfo;
1474 struct ucontext *uc = puc;
1475 unsigned long pc;
1476 int is_write;
1477
1478 pc = uc->uc_mcontext.psw.addr;
1479 /* XXX: compute is_write */
1480 is_write = 0;
1481 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1482 is_write,
1483 &uc->uc_sigmask, puc);
1484 }
1485
1486 #else
1487
1488 #error host CPU specific signal handler needed
1489
1490 #endif
1491
1492 #endif /* !defined(CONFIG_SOFTMMU) */