]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
fixed ldq() macros
[qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
23
24 //#define DEBUG_EXEC
25 //#define DEBUG_SIGNAL
26
27 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
28 /* XXX: unify with i386 target */
29 void cpu_loop_exit(void)
30 {
31 longjmp(env->jmp_env, 1);
32 }
33 #endif
34
35 /* main execution loop */
36
37 int cpu_exec(CPUState *env1)
38 {
39 int saved_T0, saved_T1, saved_T2;
40 CPUState *saved_env;
41 #ifdef reg_EAX
42 int saved_EAX;
43 #endif
44 #ifdef reg_ECX
45 int saved_ECX;
46 #endif
47 #ifdef reg_EDX
48 int saved_EDX;
49 #endif
50 #ifdef reg_EBX
51 int saved_EBX;
52 #endif
53 #ifdef reg_ESP
54 int saved_ESP;
55 #endif
56 #ifdef reg_EBP
57 int saved_EBP;
58 #endif
59 #ifdef reg_ESI
60 int saved_ESI;
61 #endif
62 #ifdef reg_EDI
63 int saved_EDI;
64 #endif
65 #ifdef __sparc__
66 int saved_i7, tmp_T0;
67 #endif
68 int code_gen_size, ret, interrupt_request;
69 void (*gen_func)(void);
70 TranslationBlock *tb, **ptb;
71 uint8_t *tc_ptr, *cs_base, *pc;
72 unsigned int flags;
73
74 /* first we save global registers */
75 saved_T0 = T0;
76 saved_T1 = T1;
77 saved_T2 = T2;
78 saved_env = env;
79 env = env1;
80 #ifdef __sparc__
81 /* we also save i7 because longjmp may not restore it */
82 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
83 #endif
84
85 #if defined(TARGET_I386)
86 #ifdef reg_EAX
87 saved_EAX = EAX;
88 EAX = env->regs[R_EAX];
89 #endif
90 #ifdef reg_ECX
91 saved_ECX = ECX;
92 ECX = env->regs[R_ECX];
93 #endif
94 #ifdef reg_EDX
95 saved_EDX = EDX;
96 EDX = env->regs[R_EDX];
97 #endif
98 #ifdef reg_EBX
99 saved_EBX = EBX;
100 EBX = env->regs[R_EBX];
101 #endif
102 #ifdef reg_ESP
103 saved_ESP = ESP;
104 ESP = env->regs[R_ESP];
105 #endif
106 #ifdef reg_EBP
107 saved_EBP = EBP;
108 EBP = env->regs[R_EBP];
109 #endif
110 #ifdef reg_ESI
111 saved_ESI = ESI;
112 ESI = env->regs[R_ESI];
113 #endif
114 #ifdef reg_EDI
115 saved_EDI = EDI;
116 EDI = env->regs[R_EDI];
117 #endif
118
119 /* put eflags in CPU temporary format */
120 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
121 DF = 1 - (2 * ((env->eflags >> 10) & 1));
122 CC_OP = CC_OP_EFLAGS;
123 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
124 #elif defined(TARGET_ARM)
125 {
126 unsigned int psr;
127 psr = env->cpsr;
128 env->CF = (psr >> 29) & 1;
129 env->NZF = (psr & 0xc0000000) ^ 0x40000000;
130 env->VF = (psr << 3) & 0x80000000;
131 env->cpsr = psr & ~0xf0000000;
132 }
133 #elif defined(TARGET_SPARC)
134 #else
135 #error unsupported target CPU
136 #endif
137 env->exception_index = -1;
138
139 /* prepare setjmp context for exception handling */
140 for(;;) {
141 if (setjmp(env->jmp_env) == 0) {
142 /* if an exception is pending, we execute it here */
143 if (env->exception_index >= 0) {
144 if (env->exception_index >= EXCP_INTERRUPT) {
145 /* exit request from the cpu execution loop */
146 ret = env->exception_index;
147 break;
148 } else if (env->user_mode_only) {
149 /* if user mode only, we simulate a fake exception
150 which will be hanlded outside the cpu execution
151 loop */
152 #if defined(TARGET_I386)
153 do_interrupt_user(env->exception_index,
154 env->exception_is_int,
155 env->error_code,
156 env->exception_next_eip);
157 #endif
158 ret = env->exception_index;
159 break;
160 } else {
161 #if defined(TARGET_I386)
162 /* simulate a real cpu exception. On i386, it can
163 trigger new exceptions, but we do not handle
164 double or triple faults yet. */
165 do_interrupt(env->exception_index,
166 env->exception_is_int,
167 env->error_code,
168 env->exception_next_eip, 0);
169 #endif
170 }
171 env->exception_index = -1;
172 }
173 T0 = 0; /* force lookup of first TB */
174 for(;;) {
175 #ifdef __sparc__
176 /* g1 can be modified by some libc? functions */
177 tmp_T0 = T0;
178 #endif
179 interrupt_request = env->interrupt_request;
180 if (__builtin_expect(interrupt_request, 0)) {
181 #if defined(TARGET_I386)
182 /* if hardware interrupt pending, we execute it */
183 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
184 (env->eflags & IF_MASK) &&
185 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
186 int intno;
187 intno = cpu_x86_get_pic_interrupt(env);
188 if (loglevel) {
189 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
190 }
191 do_interrupt(intno, 0, 0, 0, 1);
192 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
193 /* ensure that no TB jump will be modified as
194 the program flow was changed */
195 #ifdef __sparc__
196 tmp_T0 = 0;
197 #else
198 T0 = 0;
199 #endif
200 }
201 #endif
202 if (interrupt_request & CPU_INTERRUPT_EXIT) {
203 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
204 env->exception_index = EXCP_INTERRUPT;
205 cpu_loop_exit();
206 }
207 }
208 #ifdef DEBUG_EXEC
209 if (loglevel) {
210 #if defined(TARGET_I386)
211 /* restore flags in standard format */
212 env->regs[R_EAX] = EAX;
213 env->regs[R_EBX] = EBX;
214 env->regs[R_ECX] = ECX;
215 env->regs[R_EDX] = EDX;
216 env->regs[R_ESI] = ESI;
217 env->regs[R_EDI] = EDI;
218 env->regs[R_EBP] = EBP;
219 env->regs[R_ESP] = ESP;
220 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
221 cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
222 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
223 #elif defined(TARGET_ARM)
224 env->cpsr = compute_cpsr();
225 cpu_arm_dump_state(env, logfile, 0);
226 env->cpsr &= ~0xf0000000;
227 #elif defined(TARGET_SPARC)
228 cpu_sparc_dump_state (env, logfile, 0);
229 #else
230 #error unsupported target CPU
231 #endif
232 }
233 #endif
234 /* we record a subset of the CPU state. It will
235 always be the same before a given translated block
236 is executed. */
237 #if defined(TARGET_I386)
238 flags = env->hflags;
239 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
240 cs_base = env->segs[R_CS].base;
241 pc = cs_base + env->eip;
242 #elif defined(TARGET_ARM)
243 flags = 0;
244 cs_base = 0;
245 pc = (uint8_t *)env->regs[15];
246 #elif defined(TARGET_SPARC)
247 flags = 0;
248 cs_base = 0;
249 if (env->npc) {
250 env->pc = env->npc;
251 env->npc = 0;
252 }
253 pc = (uint8_t *) env->pc;
254 #else
255 #error unsupported CPU
256 #endif
257 tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
258 flags);
259 if (!tb) {
260 spin_lock(&tb_lock);
261 /* if no translated code available, then translate it now */
262 tb = tb_alloc((unsigned long)pc);
263 if (!tb) {
264 /* flush must be done */
265 tb_flush();
266 /* cannot fail at this point */
267 tb = tb_alloc((unsigned long)pc);
268 /* don't forget to invalidate previous TB info */
269 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
270 T0 = 0;
271 }
272 tc_ptr = code_gen_ptr;
273 tb->tc_ptr = tc_ptr;
274 tb->cs_base = (unsigned long)cs_base;
275 tb->flags = flags;
276 /* XXX: an MMU exception can occur here */
277 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
278 *ptb = tb;
279 tb->hash_next = NULL;
280 tb_link(tb);
281 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
282 spin_unlock(&tb_lock);
283 }
284 #ifdef DEBUG_EXEC
285 if (loglevel) {
286 fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
287 (long)tb->tc_ptr, (long)tb->pc,
288 lookup_symbol((void *)tb->pc));
289 }
290 #endif
291 #ifdef __sparc__
292 T0 = tmp_T0;
293 #endif
294 /* see if we can patch the calling TB. */
295 if (T0 != 0) {
296 spin_lock(&tb_lock);
297 tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
298 spin_unlock(&tb_lock);
299 }
300 tc_ptr = tb->tc_ptr;
301 env->current_tb = tb;
302 /* execute the generated code */
303 gen_func = (void *)tc_ptr;
304 #if defined(__sparc__)
305 __asm__ __volatile__("call %0\n\t"
306 "mov %%o7,%%i0"
307 : /* no outputs */
308 : "r" (gen_func)
309 : "i0", "i1", "i2", "i3", "i4", "i5");
310 #elif defined(__arm__)
311 asm volatile ("mov pc, %0\n\t"
312 ".global exec_loop\n\t"
313 "exec_loop:\n\t"
314 : /* no outputs */
315 : "r" (gen_func)
316 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
317 #else
318 gen_func();
319 #endif
320 env->current_tb = NULL;
321 /* reset soft MMU for next block (it can currently
322 only be set by a memory fault) */
323 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
324 if (env->hflags & HF_SOFTMMU_MASK) {
325 env->hflags &= ~HF_SOFTMMU_MASK;
326 /* do not allow linking to another block */
327 T0 = 0;
328 }
329 #endif
330 }
331 } else {
332 }
333 } /* for(;;) */
334
335
336 #if defined(TARGET_I386)
337 /* restore flags in standard format */
338 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
339
340 /* restore global registers */
341 #ifdef reg_EAX
342 EAX = saved_EAX;
343 #endif
344 #ifdef reg_ECX
345 ECX = saved_ECX;
346 #endif
347 #ifdef reg_EDX
348 EDX = saved_EDX;
349 #endif
350 #ifdef reg_EBX
351 EBX = saved_EBX;
352 #endif
353 #ifdef reg_ESP
354 ESP = saved_ESP;
355 #endif
356 #ifdef reg_EBP
357 EBP = saved_EBP;
358 #endif
359 #ifdef reg_ESI
360 ESI = saved_ESI;
361 #endif
362 #ifdef reg_EDI
363 EDI = saved_EDI;
364 #endif
365 #elif defined(TARGET_ARM)
366 env->cpsr = compute_cpsr();
367 #elif defined(TARGET_SPARC)
368 #else
369 #error unsupported target CPU
370 #endif
371 #ifdef __sparc__
372 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
373 #endif
374 T0 = saved_T0;
375 T1 = saved_T1;
376 T2 = saved_T2;
377 env = saved_env;
378 return ret;
379 }
380
381 #if defined(TARGET_I386)
382
383 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
384 {
385 CPUX86State *saved_env;
386
387 saved_env = env;
388 env = s;
389 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
390 selector &= 0xffff;
391 cpu_x86_load_seg_cache(env, seg_reg, selector,
392 (uint8_t *)(selector << 4), 0xffff, 0);
393 } else {
394 load_seg(seg_reg, selector, 0);
395 }
396 env = saved_env;
397 }
398
399 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
400 {
401 CPUX86State *saved_env;
402
403 saved_env = env;
404 env = s;
405
406 helper_fsave(ptr, data32);
407
408 env = saved_env;
409 }
410
411 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
412 {
413 CPUX86State *saved_env;
414
415 saved_env = env;
416 env = s;
417
418 helper_frstor(ptr, data32);
419
420 env = saved_env;
421 }
422
423 #endif /* TARGET_I386 */
424
425 #undef EAX
426 #undef ECX
427 #undef EDX
428 #undef EBX
429 #undef ESP
430 #undef EBP
431 #undef ESI
432 #undef EDI
433 #undef EIP
434 #include <signal.h>
435 #include <sys/ucontext.h>
436
437 #if defined(TARGET_I386)
438
439 /* 'pc' is the host PC at which the exception was raised. 'address' is
440 the effective address of the memory exception. 'is_write' is 1 if a
441 write caused the exception and otherwise 0'. 'old_set' is the
442 signal set which should be restored */
443 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
444 int is_write, sigset_t *old_set)
445 {
446 TranslationBlock *tb;
447 int ret;
448
449 if (cpu_single_env)
450 env = cpu_single_env; /* XXX: find a correct solution for multithread */
451 #if defined(DEBUG_SIGNAL)
452 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
453 pc, address, is_write, *(unsigned long *)old_set);
454 #endif
455 /* XXX: locking issue */
456 if (is_write && page_unprotect(address)) {
457 return 1;
458 }
459 /* see if it is an MMU fault */
460 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
461 ((env->hflags & HF_CPL_MASK) == 3), 0);
462 if (ret < 0)
463 return 0; /* not an MMU fault */
464 if (ret == 0)
465 return 1; /* the MMU fault was handled without causing real CPU fault */
466 /* now we have a real cpu fault */
467 tb = tb_find_pc(pc);
468 if (tb) {
469 /* the PC is inside the translated code. It means that we have
470 a virtual CPU fault */
471 cpu_restore_state(tb, env, pc);
472 }
473 if (ret == 1) {
474 #if 0
475 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
476 env->eip, env->cr[2], env->error_code);
477 #endif
478 /* we restore the process signal mask as the sigreturn should
479 do it (XXX: use sigsetjmp) */
480 sigprocmask(SIG_SETMASK, old_set, NULL);
481 raise_exception_err(EXCP0E_PAGE, env->error_code);
482 } else {
483 /* activate soft MMU for this block */
484 env->hflags |= HF_SOFTMMU_MASK;
485 sigprocmask(SIG_SETMASK, old_set, NULL);
486 cpu_loop_exit();
487 }
488 /* never comes here */
489 return 1;
490 }
491
492 #elif defined(TARGET_ARM)
493 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
494 int is_write, sigset_t *old_set)
495 {
496 /* XXX: do more */
497 return 0;
498 }
499 #elif defined(TARGET_SPARC)
500 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
501 int is_write, sigset_t *old_set)
502 {
503 return 0;
504 }
505 #else
506 #error unsupported target CPU
507 #endif
508
509 #if defined(__i386__)
510
511 int cpu_signal_handler(int host_signum, struct siginfo *info,
512 void *puc)
513 {
514 struct ucontext *uc = puc;
515 unsigned long pc;
516
517 #ifndef REG_EIP
518 /* for glibc 2.1 */
519 #define REG_EIP EIP
520 #define REG_ERR ERR
521 #define REG_TRAPNO TRAPNO
522 #endif
523 pc = uc->uc_mcontext.gregs[REG_EIP];
524 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
525 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
526 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
527 &uc->uc_sigmask);
528 }
529
530 #elif defined(__powerpc)
531
532 int cpu_signal_handler(int host_signum, struct siginfo *info,
533 void *puc)
534 {
535 struct ucontext *uc = puc;
536 struct pt_regs *regs = uc->uc_mcontext.regs;
537 unsigned long pc;
538 int is_write;
539
540 pc = regs->nip;
541 is_write = 0;
542 #if 0
543 /* ppc 4xx case */
544 if (regs->dsisr & 0x00800000)
545 is_write = 1;
546 #else
547 if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
548 is_write = 1;
549 #endif
550 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
551 is_write, &uc->uc_sigmask);
552 }
553
554 #elif defined(__alpha__)
555
556 int cpu_signal_handler(int host_signum, struct siginfo *info,
557 void *puc)
558 {
559 struct ucontext *uc = puc;
560 uint32_t *pc = uc->uc_mcontext.sc_pc;
561 uint32_t insn = *pc;
562 int is_write = 0;
563
564 /* XXX: need kernel patch to get write flag faster */
565 switch (insn >> 26) {
566 case 0x0d: // stw
567 case 0x0e: // stb
568 case 0x0f: // stq_u
569 case 0x24: // stf
570 case 0x25: // stg
571 case 0x26: // sts
572 case 0x27: // stt
573 case 0x2c: // stl
574 case 0x2d: // stq
575 case 0x2e: // stl_c
576 case 0x2f: // stq_c
577 is_write = 1;
578 }
579
580 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
581 is_write, &uc->uc_sigmask);
582 }
583 #elif defined(__sparc__)
584
585 int cpu_signal_handler(int host_signum, struct siginfo *info,
586 void *puc)
587 {
588 uint32_t *regs = (uint32_t *)(info + 1);
589 void *sigmask = (regs + 20);
590 unsigned long pc;
591 int is_write;
592 uint32_t insn;
593
594 /* XXX: is there a standard glibc define ? */
595 pc = regs[1];
596 /* XXX: need kernel patch to get write flag faster */
597 is_write = 0;
598 insn = *(uint32_t *)pc;
599 if ((insn >> 30) == 3) {
600 switch((insn >> 19) & 0x3f) {
601 case 0x05: // stb
602 case 0x06: // sth
603 case 0x04: // st
604 case 0x07: // std
605 case 0x24: // stf
606 case 0x27: // stdf
607 case 0x25: // stfsr
608 is_write = 1;
609 break;
610 }
611 }
612 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
613 is_write, sigmask);
614 }
615
616 #elif defined(__arm__)
617
618 int cpu_signal_handler(int host_signum, struct siginfo *info,
619 void *puc)
620 {
621 struct ucontext *uc = puc;
622 unsigned long pc;
623 int is_write;
624
625 pc = uc->uc_mcontext.gregs[R15];
626 /* XXX: compute is_write */
627 is_write = 0;
628 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
629 is_write,
630 &uc->uc_sigmask);
631 }
632
633 #elif defined(__mc68000)
634
635 int cpu_signal_handler(int host_signum, struct siginfo *info,
636 void *puc)
637 {
638 struct ucontext *uc = puc;
639 unsigned long pc;
640 int is_write;
641
642 pc = uc->uc_mcontext.gregs[16];
643 /* XXX: compute is_write */
644 is_write = 0;
645 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
646 is_write,
647 &uc->uc_sigmask);
648 }
649
650 #else
651
652 #error host CPU specific signal handler needed
653
654 #endif