]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
hw/pl011.c: Avoid crash on read when no chr backend present
[qemu.git] / cpu-exec.c
1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "cpu.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "qemu-barrier.h"
24 #include "qtest.h"
25
26 int tb_invalidated_flag;
27
28 //#define CONFIG_DEBUG_EXEC
29
30 bool qemu_cpu_has_work(CPUArchState *env)
31 {
32 return cpu_has_work(env);
33 }
34
35 void cpu_loop_exit(CPUArchState *env)
36 {
37 env->current_tb = NULL;
38 longjmp(env->jmp_env, 1);
39 }
40
41 /* exit the current TB from a signal handler. The host registers are
42 restored in a state compatible with the CPU emulator
43 */
44 #if defined(CONFIG_SOFTMMU)
45 void cpu_resume_from_signal(CPUArchState *env, void *puc)
46 {
47 /* XXX: restore cpu registers saved in host registers */
48
49 env->exception_index = -1;
50 longjmp(env->jmp_env, 1);
51 }
52 #endif
53
54 /* Execute the code without caching the generated code. An interpreter
55 could be used if available. */
56 static void cpu_exec_nocache(CPUArchState *env, int max_cycles,
57 TranslationBlock *orig_tb)
58 {
59 tcg_target_ulong next_tb;
60 TranslationBlock *tb;
61
62 /* Should never happen.
63 We only end up here when an existing TB is too long. */
64 if (max_cycles > CF_COUNT_MASK)
65 max_cycles = CF_COUNT_MASK;
66
67 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
68 max_cycles);
69 env->current_tb = tb;
70 /* execute the generated code */
71 next_tb = tcg_qemu_tb_exec(env, tb->tc_ptr);
72 env->current_tb = NULL;
73
74 if ((next_tb & 3) == 2) {
75 /* Restore PC. This may happen if async event occurs before
76 the TB starts executing. */
77 cpu_pc_from_tb(env, tb);
78 }
79 tb_phys_invalidate(tb, -1);
80 tb_free(tb);
81 }
82
83 static TranslationBlock *tb_find_slow(CPUArchState *env,
84 target_ulong pc,
85 target_ulong cs_base,
86 uint64_t flags)
87 {
88 TranslationBlock *tb, **ptb1;
89 unsigned int h;
90 tb_page_addr_t phys_pc, phys_page1;
91 target_ulong virt_page2;
92
93 tb_invalidated_flag = 0;
94
95 /* find translated block using physical mappings */
96 phys_pc = get_page_addr_code(env, pc);
97 phys_page1 = phys_pc & TARGET_PAGE_MASK;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
100 for(;;) {
101 tb = *ptb1;
102 if (!tb)
103 goto not_found;
104 if (tb->pc == pc &&
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 tb_page_addr_t phys_page2;
111
112 virt_page2 = (pc & TARGET_PAGE_MASK) +
113 TARGET_PAGE_SIZE;
114 phys_page2 = get_page_addr_code(env, virt_page2);
115 if (tb->page_addr[1] == phys_page2)
116 goto found;
117 } else {
118 goto found;
119 }
120 }
121 ptb1 = &tb->phys_hash_next;
122 }
123 not_found:
124 /* if no translated code available, then translate it now */
125 tb = tb_gen_code(env, pc, cs_base, flags, 0);
126
127 found:
128 /* Move the last found TB to the head of the list */
129 if (likely(*ptb1)) {
130 *ptb1 = tb->phys_hash_next;
131 tb->phys_hash_next = tb_phys_hash[h];
132 tb_phys_hash[h] = tb;
133 }
134 /* we add the TB in the virtual pc hash table */
135 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
136 return tb;
137 }
138
139 static inline TranslationBlock *tb_find_fast(CPUArchState *env)
140 {
141 TranslationBlock *tb;
142 target_ulong cs_base, pc;
143 int flags;
144
145 /* we record a subset of the CPU state. It will
146 always be the same before a given translated block
147 is executed. */
148 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
149 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
150 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
151 tb->flags != flags)) {
152 tb = tb_find_slow(env, pc, cs_base, flags);
153 }
154 return tb;
155 }
156
157 static CPUDebugExcpHandler *debug_excp_handler;
158
159 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
160 {
161 CPUDebugExcpHandler *old_handler = debug_excp_handler;
162
163 debug_excp_handler = handler;
164 return old_handler;
165 }
166
167 static void cpu_handle_debug_exception(CPUArchState *env)
168 {
169 CPUWatchpoint *wp;
170
171 if (!env->watchpoint_hit) {
172 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
173 wp->flags &= ~BP_WATCHPOINT_HIT;
174 }
175 }
176 if (debug_excp_handler) {
177 debug_excp_handler(env);
178 }
179 }
180
181 /* main execution loop */
182
183 volatile sig_atomic_t exit_request;
184
185 int cpu_exec(CPUArchState *env)
186 {
187 #ifdef TARGET_PPC
188 CPUState *cpu = ENV_GET_CPU(env);
189 #endif
190 int ret, interrupt_request;
191 TranslationBlock *tb;
192 uint8_t *tc_ptr;
193 tcg_target_ulong next_tb;
194
195 if (env->halted) {
196 if (!cpu_has_work(env)) {
197 return EXCP_HALTED;
198 }
199
200 env->halted = 0;
201 }
202
203 cpu_single_env = env;
204
205 if (unlikely(exit_request)) {
206 env->exit_request = 1;
207 }
208
209 #if defined(TARGET_I386)
210 /* put eflags in CPU temporary format */
211 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
212 DF = 1 - (2 * ((env->eflags >> 10) & 1));
213 CC_OP = CC_OP_EFLAGS;
214 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
215 #elif defined(TARGET_SPARC)
216 #elif defined(TARGET_M68K)
217 env->cc_op = CC_OP_FLAGS;
218 env->cc_dest = env->sr & 0xf;
219 env->cc_x = (env->sr >> 4) & 1;
220 #elif defined(TARGET_ALPHA)
221 #elif defined(TARGET_ARM)
222 #elif defined(TARGET_UNICORE32)
223 #elif defined(TARGET_PPC)
224 env->reserve_addr = -1;
225 #elif defined(TARGET_LM32)
226 #elif defined(TARGET_MICROBLAZE)
227 #elif defined(TARGET_MIPS)
228 #elif defined(TARGET_SH4)
229 #elif defined(TARGET_CRIS)
230 #elif defined(TARGET_S390X)
231 #elif defined(TARGET_XTENSA)
232 /* XXXXX */
233 #else
234 #error unsupported target CPU
235 #endif
236 env->exception_index = -1;
237
238 /* prepare setjmp context for exception handling */
239 for(;;) {
240 if (setjmp(env->jmp_env) == 0) {
241 /* if an exception is pending, we execute it here */
242 if (env->exception_index >= 0) {
243 if (env->exception_index >= EXCP_INTERRUPT) {
244 /* exit request from the cpu execution loop */
245 ret = env->exception_index;
246 if (ret == EXCP_DEBUG) {
247 cpu_handle_debug_exception(env);
248 }
249 break;
250 } else {
251 #if defined(CONFIG_USER_ONLY)
252 /* if user mode only, we simulate a fake exception
253 which will be handled outside the cpu execution
254 loop */
255 #if defined(TARGET_I386)
256 do_interrupt(env);
257 #endif
258 ret = env->exception_index;
259 break;
260 #else
261 do_interrupt(env);
262 env->exception_index = -1;
263 #endif
264 }
265 }
266
267 next_tb = 0; /* force lookup of first TB */
268 for(;;) {
269 interrupt_request = env->interrupt_request;
270 if (unlikely(interrupt_request)) {
271 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
272 /* Mask out external interrupts for this step. */
273 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
274 }
275 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
276 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
277 env->exception_index = EXCP_DEBUG;
278 cpu_loop_exit(env);
279 }
280 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
281 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
282 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
283 if (interrupt_request & CPU_INTERRUPT_HALT) {
284 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
285 env->halted = 1;
286 env->exception_index = EXCP_HLT;
287 cpu_loop_exit(env);
288 }
289 #endif
290 #if defined(TARGET_I386)
291 #if !defined(CONFIG_USER_ONLY)
292 if (interrupt_request & CPU_INTERRUPT_POLL) {
293 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
294 apic_poll_irq(env->apic_state);
295 }
296 #endif
297 if (interrupt_request & CPU_INTERRUPT_INIT) {
298 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT,
299 0);
300 do_cpu_init(x86_env_get_cpu(env));
301 env->exception_index = EXCP_HALTED;
302 cpu_loop_exit(env);
303 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
304 do_cpu_sipi(x86_env_get_cpu(env));
305 } else if (env->hflags2 & HF2_GIF_MASK) {
306 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
307 !(env->hflags & HF_SMM_MASK)) {
308 cpu_svm_check_intercept_param(env, SVM_EXIT_SMI,
309 0);
310 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
311 do_smm_enter(env);
312 next_tb = 0;
313 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
314 !(env->hflags2 & HF2_NMI_MASK)) {
315 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
316 env->hflags2 |= HF2_NMI_MASK;
317 do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
318 next_tb = 0;
319 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
320 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
321 do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
322 next_tb = 0;
323 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
324 (((env->hflags2 & HF2_VINTR_MASK) &&
325 (env->hflags2 & HF2_HIF_MASK)) ||
326 (!(env->hflags2 & HF2_VINTR_MASK) &&
327 (env->eflags & IF_MASK &&
328 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
329 int intno;
330 cpu_svm_check_intercept_param(env, SVM_EXIT_INTR,
331 0);
332 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
333 intno = cpu_get_pic_interrupt(env);
334 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
335 do_interrupt_x86_hardirq(env, intno, 1);
336 /* ensure that no TB jump will be modified as
337 the program flow was changed */
338 next_tb = 0;
339 #if !defined(CONFIG_USER_ONLY)
340 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
341 (env->eflags & IF_MASK) &&
342 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
343 int intno;
344 /* FIXME: this should respect TPR */
345 cpu_svm_check_intercept_param(env, SVM_EXIT_VINTR,
346 0);
347 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
348 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
349 do_interrupt_x86_hardirq(env, intno, 1);
350 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
351 next_tb = 0;
352 #endif
353 }
354 }
355 #elif defined(TARGET_PPC)
356 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
357 cpu_reset(cpu);
358 }
359 if (interrupt_request & CPU_INTERRUPT_HARD) {
360 ppc_hw_interrupt(env);
361 if (env->pending_interrupts == 0)
362 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
363 next_tb = 0;
364 }
365 #elif defined(TARGET_LM32)
366 if ((interrupt_request & CPU_INTERRUPT_HARD)
367 && (env->ie & IE_IE)) {
368 env->exception_index = EXCP_IRQ;
369 do_interrupt(env);
370 next_tb = 0;
371 }
372 #elif defined(TARGET_MICROBLAZE)
373 if ((interrupt_request & CPU_INTERRUPT_HARD)
374 && (env->sregs[SR_MSR] & MSR_IE)
375 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
376 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
377 env->exception_index = EXCP_IRQ;
378 do_interrupt(env);
379 next_tb = 0;
380 }
381 #elif defined(TARGET_MIPS)
382 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
383 cpu_mips_hw_interrupts_pending(env)) {
384 /* Raise it */
385 env->exception_index = EXCP_EXT_INTERRUPT;
386 env->error_code = 0;
387 do_interrupt(env);
388 next_tb = 0;
389 }
390 #elif defined(TARGET_SPARC)
391 if (interrupt_request & CPU_INTERRUPT_HARD) {
392 if (cpu_interrupts_enabled(env) &&
393 env->interrupt_index > 0) {
394 int pil = env->interrupt_index & 0xf;
395 int type = env->interrupt_index & 0xf0;
396
397 if (((type == TT_EXTINT) &&
398 cpu_pil_allowed(env, pil)) ||
399 type != TT_EXTINT) {
400 env->exception_index = env->interrupt_index;
401 do_interrupt(env);
402 next_tb = 0;
403 }
404 }
405 }
406 #elif defined(TARGET_ARM)
407 if (interrupt_request & CPU_INTERRUPT_FIQ
408 && !(env->uncached_cpsr & CPSR_F)) {
409 env->exception_index = EXCP_FIQ;
410 do_interrupt(env);
411 next_tb = 0;
412 }
413 /* ARMv7-M interrupt return works by loading a magic value
414 into the PC. On real hardware the load causes the
415 return to occur. The qemu implementation performs the
416 jump normally, then does the exception return when the
417 CPU tries to execute code at the magic address.
418 This will cause the magic PC value to be pushed to
419 the stack if an interrupt occurred at the wrong time.
420 We avoid this by disabling interrupts when
421 pc contains a magic address. */
422 if (interrupt_request & CPU_INTERRUPT_HARD
423 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
424 || !(env->uncached_cpsr & CPSR_I))) {
425 env->exception_index = EXCP_IRQ;
426 do_interrupt(env);
427 next_tb = 0;
428 }
429 #elif defined(TARGET_UNICORE32)
430 if (interrupt_request & CPU_INTERRUPT_HARD
431 && !(env->uncached_asr & ASR_I)) {
432 do_interrupt(env);
433 next_tb = 0;
434 }
435 #elif defined(TARGET_SH4)
436 if (interrupt_request & CPU_INTERRUPT_HARD) {
437 do_interrupt(env);
438 next_tb = 0;
439 }
440 #elif defined(TARGET_ALPHA)
441 {
442 int idx = -1;
443 /* ??? This hard-codes the OSF/1 interrupt levels. */
444 switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) {
445 case 0 ... 3:
446 if (interrupt_request & CPU_INTERRUPT_HARD) {
447 idx = EXCP_DEV_INTERRUPT;
448 }
449 /* FALLTHRU */
450 case 4:
451 if (interrupt_request & CPU_INTERRUPT_TIMER) {
452 idx = EXCP_CLK_INTERRUPT;
453 }
454 /* FALLTHRU */
455 case 5:
456 if (interrupt_request & CPU_INTERRUPT_SMP) {
457 idx = EXCP_SMP_INTERRUPT;
458 }
459 /* FALLTHRU */
460 case 6:
461 if (interrupt_request & CPU_INTERRUPT_MCHK) {
462 idx = EXCP_MCHK;
463 }
464 }
465 if (idx >= 0) {
466 env->exception_index = idx;
467 env->error_code = 0;
468 do_interrupt(env);
469 next_tb = 0;
470 }
471 }
472 #elif defined(TARGET_CRIS)
473 if (interrupt_request & CPU_INTERRUPT_HARD
474 && (env->pregs[PR_CCS] & I_FLAG)
475 && !env->locked_irq) {
476 env->exception_index = EXCP_IRQ;
477 do_interrupt(env);
478 next_tb = 0;
479 }
480 if (interrupt_request & CPU_INTERRUPT_NMI) {
481 unsigned int m_flag_archval;
482 if (env->pregs[PR_VR] < 32) {
483 m_flag_archval = M_FLAG_V10;
484 } else {
485 m_flag_archval = M_FLAG_V32;
486 }
487 if ((env->pregs[PR_CCS] & m_flag_archval)) {
488 env->exception_index = EXCP_NMI;
489 do_interrupt(env);
490 next_tb = 0;
491 }
492 }
493 #elif defined(TARGET_M68K)
494 if (interrupt_request & CPU_INTERRUPT_HARD
495 && ((env->sr & SR_I) >> SR_I_SHIFT)
496 < env->pending_level) {
497 /* Real hardware gets the interrupt vector via an
498 IACK cycle at this point. Current emulated
499 hardware doesn't rely on this, so we
500 provide/save the vector when the interrupt is
501 first signalled. */
502 env->exception_index = env->pending_vector;
503 do_interrupt_m68k_hardirq(env);
504 next_tb = 0;
505 }
506 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
507 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
508 (env->psw.mask & PSW_MASK_EXT)) {
509 do_interrupt(env);
510 next_tb = 0;
511 }
512 #elif defined(TARGET_XTENSA)
513 if (interrupt_request & CPU_INTERRUPT_HARD) {
514 env->exception_index = EXC_IRQ;
515 do_interrupt(env);
516 next_tb = 0;
517 }
518 #endif
519 /* Don't use the cached interrupt_request value,
520 do_interrupt may have updated the EXITTB flag. */
521 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
522 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
523 /* ensure that no TB jump will be modified as
524 the program flow was changed */
525 next_tb = 0;
526 }
527 }
528 if (unlikely(env->exit_request)) {
529 env->exit_request = 0;
530 env->exception_index = EXCP_INTERRUPT;
531 cpu_loop_exit(env);
532 }
533 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
534 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
535 /* restore flags in standard format */
536 #if defined(TARGET_I386)
537 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
538 | (DF & DF_MASK);
539 log_cpu_state(env, X86_DUMP_CCOP);
540 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
541 #elif defined(TARGET_M68K)
542 cpu_m68k_flush_flags(env, env->cc_op);
543 env->cc_op = CC_OP_FLAGS;
544 env->sr = (env->sr & 0xffe0)
545 | env->cc_dest | (env->cc_x << 4);
546 log_cpu_state(env, 0);
547 #else
548 log_cpu_state(env, 0);
549 #endif
550 }
551 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
552 spin_lock(&tb_lock);
553 tb = tb_find_fast(env);
554 /* Note: we do it here to avoid a gcc bug on Mac OS X when
555 doing it in tb_find_slow */
556 if (tb_invalidated_flag) {
557 /* as some TB could have been invalidated because
558 of memory exceptions while generating the code, we
559 must recompute the hash index here */
560 next_tb = 0;
561 tb_invalidated_flag = 0;
562 }
563 #ifdef CONFIG_DEBUG_EXEC
564 qemu_log_mask(CPU_LOG_EXEC, "Trace %p [" TARGET_FMT_lx "] %s\n",
565 tb->tc_ptr, tb->pc,
566 lookup_symbol(tb->pc));
567 #endif
568 /* see if we can patch the calling TB. When the TB
569 spans two pages, we cannot safely do a direct
570 jump. */
571 if (next_tb != 0 && tb->page_addr[1] == -1) {
572 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
573 }
574 spin_unlock(&tb_lock);
575
576 /* cpu_interrupt might be called while translating the
577 TB, but before it is linked into a potentially
578 infinite loop and becomes env->current_tb. Avoid
579 starting execution if there is a pending interrupt. */
580 env->current_tb = tb;
581 barrier();
582 if (likely(!env->exit_request)) {
583 tc_ptr = tb->tc_ptr;
584 /* execute the generated code */
585 next_tb = tcg_qemu_tb_exec(env, tc_ptr);
586 if ((next_tb & 3) == 2) {
587 /* Instruction counter expired. */
588 int insns_left;
589 tb = (TranslationBlock *)(next_tb & ~3);
590 /* Restore PC. */
591 cpu_pc_from_tb(env, tb);
592 insns_left = env->icount_decr.u32;
593 if (env->icount_extra && insns_left >= 0) {
594 /* Refill decrementer and continue execution. */
595 env->icount_extra += insns_left;
596 if (env->icount_extra > 0xffff) {
597 insns_left = 0xffff;
598 } else {
599 insns_left = env->icount_extra;
600 }
601 env->icount_extra -= insns_left;
602 env->icount_decr.u16.low = insns_left;
603 } else {
604 if (insns_left > 0) {
605 /* Execute remaining instructions. */
606 cpu_exec_nocache(env, insns_left, tb);
607 }
608 env->exception_index = EXCP_INTERRUPT;
609 next_tb = 0;
610 cpu_loop_exit(env);
611 }
612 }
613 }
614 env->current_tb = NULL;
615 /* reset soft MMU for next block (it can currently
616 only be set by a memory fault) */
617 } /* for(;;) */
618 } else {
619 /* Reload env after longjmp - the compiler may have smashed all
620 * local variables as longjmp is marked 'noreturn'. */
621 env = cpu_single_env;
622 }
623 } /* for(;;) */
624
625
626 #if defined(TARGET_I386)
627 /* restore flags in standard format */
628 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
629 | (DF & DF_MASK);
630 #elif defined(TARGET_ARM)
631 /* XXX: Save/restore host fpu exception state?. */
632 #elif defined(TARGET_UNICORE32)
633 #elif defined(TARGET_SPARC)
634 #elif defined(TARGET_PPC)
635 #elif defined(TARGET_LM32)
636 #elif defined(TARGET_M68K)
637 cpu_m68k_flush_flags(env, env->cc_op);
638 env->cc_op = CC_OP_FLAGS;
639 env->sr = (env->sr & 0xffe0)
640 | env->cc_dest | (env->cc_x << 4);
641 #elif defined(TARGET_MICROBLAZE)
642 #elif defined(TARGET_MIPS)
643 #elif defined(TARGET_SH4)
644 #elif defined(TARGET_ALPHA)
645 #elif defined(TARGET_CRIS)
646 #elif defined(TARGET_S390X)
647 #elif defined(TARGET_XTENSA)
648 /* XXXXX */
649 #else
650 #error unsupported target CPU
651 #endif
652
653 /* fail safe : never use cpu_single_env outside cpu_exec() */
654 cpu_single_env = NULL;
655 return ret;
656 }