]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
Merge remote-tracking branch 'mjt/mjt-iov2' into staging
[qemu.git] / cpu-exec.c
1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "cpu.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "qemu-barrier.h"
24 #include "qtest.h"
25
26 int tb_invalidated_flag;
27
28 //#define CONFIG_DEBUG_EXEC
29
30 bool qemu_cpu_has_work(CPUArchState *env)
31 {
32 return cpu_has_work(env);
33 }
34
35 void cpu_loop_exit(CPUArchState *env)
36 {
37 env->current_tb = NULL;
38 longjmp(env->jmp_env, 1);
39 }
40
41 /* exit the current TB from a signal handler. The host registers are
42 restored in a state compatible with the CPU emulator
43 */
44 #if defined(CONFIG_SOFTMMU)
45 void cpu_resume_from_signal(CPUArchState *env, void *puc)
46 {
47 /* XXX: restore cpu registers saved in host registers */
48
49 env->exception_index = -1;
50 longjmp(env->jmp_env, 1);
51 }
52 #endif
53
54 /* Execute the code without caching the generated code. An interpreter
55 could be used if available. */
56 static void cpu_exec_nocache(CPUArchState *env, int max_cycles,
57 TranslationBlock *orig_tb)
58 {
59 tcg_target_ulong next_tb;
60 TranslationBlock *tb;
61
62 /* Should never happen.
63 We only end up here when an existing TB is too long. */
64 if (max_cycles > CF_COUNT_MASK)
65 max_cycles = CF_COUNT_MASK;
66
67 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
68 max_cycles);
69 env->current_tb = tb;
70 /* execute the generated code */
71 next_tb = tcg_qemu_tb_exec(env, tb->tc_ptr);
72 env->current_tb = NULL;
73
74 if ((next_tb & 3) == 2) {
75 /* Restore PC. This may happen if async event occurs before
76 the TB starts executing. */
77 cpu_pc_from_tb(env, tb);
78 }
79 tb_phys_invalidate(tb, -1);
80 tb_free(tb);
81 }
82
83 static TranslationBlock *tb_find_slow(CPUArchState *env,
84 target_ulong pc,
85 target_ulong cs_base,
86 uint64_t flags)
87 {
88 TranslationBlock *tb, **ptb1;
89 unsigned int h;
90 tb_page_addr_t phys_pc, phys_page1;
91 target_ulong virt_page2;
92
93 tb_invalidated_flag = 0;
94
95 /* find translated block using physical mappings */
96 phys_pc = get_page_addr_code(env, pc);
97 phys_page1 = phys_pc & TARGET_PAGE_MASK;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
100 for(;;) {
101 tb = *ptb1;
102 if (!tb)
103 goto not_found;
104 if (tb->pc == pc &&
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 tb_page_addr_t phys_page2;
111
112 virt_page2 = (pc & TARGET_PAGE_MASK) +
113 TARGET_PAGE_SIZE;
114 phys_page2 = get_page_addr_code(env, virt_page2);
115 if (tb->page_addr[1] == phys_page2)
116 goto found;
117 } else {
118 goto found;
119 }
120 }
121 ptb1 = &tb->phys_hash_next;
122 }
123 not_found:
124 /* if no translated code available, then translate it now */
125 tb = tb_gen_code(env, pc, cs_base, flags, 0);
126
127 found:
128 /* Move the last found TB to the head of the list */
129 if (likely(*ptb1)) {
130 *ptb1 = tb->phys_hash_next;
131 tb->phys_hash_next = tb_phys_hash[h];
132 tb_phys_hash[h] = tb;
133 }
134 /* we add the TB in the virtual pc hash table */
135 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
136 return tb;
137 }
138
139 static inline TranslationBlock *tb_find_fast(CPUArchState *env)
140 {
141 TranslationBlock *tb;
142 target_ulong cs_base, pc;
143 int flags;
144
145 /* we record a subset of the CPU state. It will
146 always be the same before a given translated block
147 is executed. */
148 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
149 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
150 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
151 tb->flags != flags)) {
152 tb = tb_find_slow(env, pc, cs_base, flags);
153 }
154 return tb;
155 }
156
157 static CPUDebugExcpHandler *debug_excp_handler;
158
159 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
160 {
161 CPUDebugExcpHandler *old_handler = debug_excp_handler;
162
163 debug_excp_handler = handler;
164 return old_handler;
165 }
166
167 static void cpu_handle_debug_exception(CPUArchState *env)
168 {
169 CPUWatchpoint *wp;
170
171 if (!env->watchpoint_hit) {
172 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
173 wp->flags &= ~BP_WATCHPOINT_HIT;
174 }
175 }
176 if (debug_excp_handler) {
177 debug_excp_handler(env);
178 }
179 }
180
181 /* main execution loop */
182
183 volatile sig_atomic_t exit_request;
184
185 int cpu_exec(CPUArchState *env)
186 {
187 #ifdef TARGET_PPC
188 CPUState *cpu = ENV_GET_CPU(env);
189 #endif
190 int ret, interrupt_request;
191 TranslationBlock *tb;
192 uint8_t *tc_ptr;
193 tcg_target_ulong next_tb;
194
195 if (env->halted) {
196 if (!cpu_has_work(env)) {
197 return EXCP_HALTED;
198 }
199
200 env->halted = 0;
201 }
202
203 cpu_single_env = env;
204
205 if (unlikely(exit_request)) {
206 env->exit_request = 1;
207 }
208
209 #if defined(TARGET_I386)
210 /* put eflags in CPU temporary format */
211 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
212 DF = 1 - (2 * ((env->eflags >> 10) & 1));
213 CC_OP = CC_OP_EFLAGS;
214 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
215 #elif defined(TARGET_SPARC)
216 #elif defined(TARGET_M68K)
217 env->cc_op = CC_OP_FLAGS;
218 env->cc_dest = env->sr & 0xf;
219 env->cc_x = (env->sr >> 4) & 1;
220 #elif defined(TARGET_ALPHA)
221 #elif defined(TARGET_ARM)
222 #elif defined(TARGET_UNICORE32)
223 #elif defined(TARGET_PPC)
224 env->reserve_addr = -1;
225 #elif defined(TARGET_LM32)
226 #elif defined(TARGET_MICROBLAZE)
227 #elif defined(TARGET_MIPS)
228 #elif defined(TARGET_SH4)
229 #elif defined(TARGET_CRIS)
230 #elif defined(TARGET_S390X)
231 #elif defined(TARGET_XTENSA)
232 /* XXXXX */
233 #else
234 #error unsupported target CPU
235 #endif
236 env->exception_index = -1;
237
238 /* prepare setjmp context for exception handling */
239 for(;;) {
240 if (setjmp(env->jmp_env) == 0) {
241 /* if an exception is pending, we execute it here */
242 if (env->exception_index >= 0) {
243 if (env->exception_index >= EXCP_INTERRUPT) {
244 /* exit request from the cpu execution loop */
245 ret = env->exception_index;
246 if (ret == EXCP_DEBUG) {
247 cpu_handle_debug_exception(env);
248 }
249 break;
250 } else {
251 #if defined(CONFIG_USER_ONLY)
252 /* if user mode only, we simulate a fake exception
253 which will be handled outside the cpu execution
254 loop */
255 #if defined(TARGET_I386)
256 do_interrupt(env);
257 #endif
258 ret = env->exception_index;
259 break;
260 #else
261 do_interrupt(env);
262 env->exception_index = -1;
263 #endif
264 }
265 }
266
267 next_tb = 0; /* force lookup of first TB */
268 for(;;) {
269 interrupt_request = env->interrupt_request;
270 if (unlikely(interrupt_request)) {
271 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
272 /* Mask out external interrupts for this step. */
273 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
274 }
275 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
276 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
277 env->exception_index = EXCP_DEBUG;
278 cpu_loop_exit(env);
279 }
280 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
281 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
282 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
283 if (interrupt_request & CPU_INTERRUPT_HALT) {
284 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
285 env->halted = 1;
286 env->exception_index = EXCP_HLT;
287 cpu_loop_exit(env);
288 }
289 #endif
290 #if defined(TARGET_I386)
291 if (interrupt_request & CPU_INTERRUPT_INIT) {
292 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT,
293 0);
294 do_cpu_init(x86_env_get_cpu(env));
295 env->exception_index = EXCP_HALTED;
296 cpu_loop_exit(env);
297 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
298 do_cpu_sipi(x86_env_get_cpu(env));
299 } else if (env->hflags2 & HF2_GIF_MASK) {
300 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
301 !(env->hflags & HF_SMM_MASK)) {
302 cpu_svm_check_intercept_param(env, SVM_EXIT_SMI,
303 0);
304 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
305 do_smm_enter(env);
306 next_tb = 0;
307 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
308 !(env->hflags2 & HF2_NMI_MASK)) {
309 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
310 env->hflags2 |= HF2_NMI_MASK;
311 do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
312 next_tb = 0;
313 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
314 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
315 do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
316 next_tb = 0;
317 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
318 (((env->hflags2 & HF2_VINTR_MASK) &&
319 (env->hflags2 & HF2_HIF_MASK)) ||
320 (!(env->hflags2 & HF2_VINTR_MASK) &&
321 (env->eflags & IF_MASK &&
322 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
323 int intno;
324 cpu_svm_check_intercept_param(env, SVM_EXIT_INTR,
325 0);
326 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
327 intno = cpu_get_pic_interrupt(env);
328 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
329 do_interrupt_x86_hardirq(env, intno, 1);
330 /* ensure that no TB jump will be modified as
331 the program flow was changed */
332 next_tb = 0;
333 #if !defined(CONFIG_USER_ONLY)
334 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
335 (env->eflags & IF_MASK) &&
336 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
337 int intno;
338 /* FIXME: this should respect TPR */
339 cpu_svm_check_intercept_param(env, SVM_EXIT_VINTR,
340 0);
341 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
342 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
343 do_interrupt_x86_hardirq(env, intno, 1);
344 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
345 next_tb = 0;
346 #endif
347 }
348 }
349 #elif defined(TARGET_PPC)
350 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
351 cpu_reset(cpu);
352 }
353 if (interrupt_request & CPU_INTERRUPT_HARD) {
354 ppc_hw_interrupt(env);
355 if (env->pending_interrupts == 0)
356 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
357 next_tb = 0;
358 }
359 #elif defined(TARGET_LM32)
360 if ((interrupt_request & CPU_INTERRUPT_HARD)
361 && (env->ie & IE_IE)) {
362 env->exception_index = EXCP_IRQ;
363 do_interrupt(env);
364 next_tb = 0;
365 }
366 #elif defined(TARGET_MICROBLAZE)
367 if ((interrupt_request & CPU_INTERRUPT_HARD)
368 && (env->sregs[SR_MSR] & MSR_IE)
369 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
370 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
371 env->exception_index = EXCP_IRQ;
372 do_interrupt(env);
373 next_tb = 0;
374 }
375 #elif defined(TARGET_MIPS)
376 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
377 cpu_mips_hw_interrupts_pending(env)) {
378 /* Raise it */
379 env->exception_index = EXCP_EXT_INTERRUPT;
380 env->error_code = 0;
381 do_interrupt(env);
382 next_tb = 0;
383 }
384 #elif defined(TARGET_SPARC)
385 if (interrupt_request & CPU_INTERRUPT_HARD) {
386 if (cpu_interrupts_enabled(env) &&
387 env->interrupt_index > 0) {
388 int pil = env->interrupt_index & 0xf;
389 int type = env->interrupt_index & 0xf0;
390
391 if (((type == TT_EXTINT) &&
392 cpu_pil_allowed(env, pil)) ||
393 type != TT_EXTINT) {
394 env->exception_index = env->interrupt_index;
395 do_interrupt(env);
396 next_tb = 0;
397 }
398 }
399 }
400 #elif defined(TARGET_ARM)
401 if (interrupt_request & CPU_INTERRUPT_FIQ
402 && !(env->uncached_cpsr & CPSR_F)) {
403 env->exception_index = EXCP_FIQ;
404 do_interrupt(env);
405 next_tb = 0;
406 }
407 /* ARMv7-M interrupt return works by loading a magic value
408 into the PC. On real hardware the load causes the
409 return to occur. The qemu implementation performs the
410 jump normally, then does the exception return when the
411 CPU tries to execute code at the magic address.
412 This will cause the magic PC value to be pushed to
413 the stack if an interrupt occurred at the wrong time.
414 We avoid this by disabling interrupts when
415 pc contains a magic address. */
416 if (interrupt_request & CPU_INTERRUPT_HARD
417 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
418 || !(env->uncached_cpsr & CPSR_I))) {
419 env->exception_index = EXCP_IRQ;
420 do_interrupt(env);
421 next_tb = 0;
422 }
423 #elif defined(TARGET_UNICORE32)
424 if (interrupt_request & CPU_INTERRUPT_HARD
425 && !(env->uncached_asr & ASR_I)) {
426 do_interrupt(env);
427 next_tb = 0;
428 }
429 #elif defined(TARGET_SH4)
430 if (interrupt_request & CPU_INTERRUPT_HARD) {
431 do_interrupt(env);
432 next_tb = 0;
433 }
434 #elif defined(TARGET_ALPHA)
435 {
436 int idx = -1;
437 /* ??? This hard-codes the OSF/1 interrupt levels. */
438 switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) {
439 case 0 ... 3:
440 if (interrupt_request & CPU_INTERRUPT_HARD) {
441 idx = EXCP_DEV_INTERRUPT;
442 }
443 /* FALLTHRU */
444 case 4:
445 if (interrupt_request & CPU_INTERRUPT_TIMER) {
446 idx = EXCP_CLK_INTERRUPT;
447 }
448 /* FALLTHRU */
449 case 5:
450 if (interrupt_request & CPU_INTERRUPT_SMP) {
451 idx = EXCP_SMP_INTERRUPT;
452 }
453 /* FALLTHRU */
454 case 6:
455 if (interrupt_request & CPU_INTERRUPT_MCHK) {
456 idx = EXCP_MCHK;
457 }
458 }
459 if (idx >= 0) {
460 env->exception_index = idx;
461 env->error_code = 0;
462 do_interrupt(env);
463 next_tb = 0;
464 }
465 }
466 #elif defined(TARGET_CRIS)
467 if (interrupt_request & CPU_INTERRUPT_HARD
468 && (env->pregs[PR_CCS] & I_FLAG)
469 && !env->locked_irq) {
470 env->exception_index = EXCP_IRQ;
471 do_interrupt(env);
472 next_tb = 0;
473 }
474 if (interrupt_request & CPU_INTERRUPT_NMI) {
475 unsigned int m_flag_archval;
476 if (env->pregs[PR_VR] < 32) {
477 m_flag_archval = M_FLAG_V10;
478 } else {
479 m_flag_archval = M_FLAG_V32;
480 }
481 if ((env->pregs[PR_CCS] & m_flag_archval)) {
482 env->exception_index = EXCP_NMI;
483 do_interrupt(env);
484 next_tb = 0;
485 }
486 }
487 #elif defined(TARGET_M68K)
488 if (interrupt_request & CPU_INTERRUPT_HARD
489 && ((env->sr & SR_I) >> SR_I_SHIFT)
490 < env->pending_level) {
491 /* Real hardware gets the interrupt vector via an
492 IACK cycle at this point. Current emulated
493 hardware doesn't rely on this, so we
494 provide/save the vector when the interrupt is
495 first signalled. */
496 env->exception_index = env->pending_vector;
497 do_interrupt_m68k_hardirq(env);
498 next_tb = 0;
499 }
500 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
501 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
502 (env->psw.mask & PSW_MASK_EXT)) {
503 do_interrupt(env);
504 next_tb = 0;
505 }
506 #elif defined(TARGET_XTENSA)
507 if (interrupt_request & CPU_INTERRUPT_HARD) {
508 env->exception_index = EXC_IRQ;
509 do_interrupt(env);
510 next_tb = 0;
511 }
512 #endif
513 /* Don't use the cached interrupt_request value,
514 do_interrupt may have updated the EXITTB flag. */
515 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
516 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
517 /* ensure that no TB jump will be modified as
518 the program flow was changed */
519 next_tb = 0;
520 }
521 }
522 if (unlikely(env->exit_request)) {
523 env->exit_request = 0;
524 env->exception_index = EXCP_INTERRUPT;
525 cpu_loop_exit(env);
526 }
527 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
528 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
529 /* restore flags in standard format */
530 #if defined(TARGET_I386)
531 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
532 | (DF & DF_MASK);
533 log_cpu_state(env, X86_DUMP_CCOP);
534 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
535 #elif defined(TARGET_M68K)
536 cpu_m68k_flush_flags(env, env->cc_op);
537 env->cc_op = CC_OP_FLAGS;
538 env->sr = (env->sr & 0xffe0)
539 | env->cc_dest | (env->cc_x << 4);
540 log_cpu_state(env, 0);
541 #else
542 log_cpu_state(env, 0);
543 #endif
544 }
545 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
546 spin_lock(&tb_lock);
547 tb = tb_find_fast(env);
548 /* Note: we do it here to avoid a gcc bug on Mac OS X when
549 doing it in tb_find_slow */
550 if (tb_invalidated_flag) {
551 /* as some TB could have been invalidated because
552 of memory exceptions while generating the code, we
553 must recompute the hash index here */
554 next_tb = 0;
555 tb_invalidated_flag = 0;
556 }
557 #ifdef CONFIG_DEBUG_EXEC
558 qemu_log_mask(CPU_LOG_EXEC, "Trace %p [" TARGET_FMT_lx "] %s\n",
559 tb->tc_ptr, tb->pc,
560 lookup_symbol(tb->pc));
561 #endif
562 /* see if we can patch the calling TB. When the TB
563 spans two pages, we cannot safely do a direct
564 jump. */
565 if (next_tb != 0 && tb->page_addr[1] == -1) {
566 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
567 }
568 spin_unlock(&tb_lock);
569
570 /* cpu_interrupt might be called while translating the
571 TB, but before it is linked into a potentially
572 infinite loop and becomes env->current_tb. Avoid
573 starting execution if there is a pending interrupt. */
574 env->current_tb = tb;
575 barrier();
576 if (likely(!env->exit_request)) {
577 tc_ptr = tb->tc_ptr;
578 /* execute the generated code */
579 next_tb = tcg_qemu_tb_exec(env, tc_ptr);
580 if ((next_tb & 3) == 2) {
581 /* Instruction counter expired. */
582 int insns_left;
583 tb = (TranslationBlock *)(next_tb & ~3);
584 /* Restore PC. */
585 cpu_pc_from_tb(env, tb);
586 insns_left = env->icount_decr.u32;
587 if (env->icount_extra && insns_left >= 0) {
588 /* Refill decrementer and continue execution. */
589 env->icount_extra += insns_left;
590 if (env->icount_extra > 0xffff) {
591 insns_left = 0xffff;
592 } else {
593 insns_left = env->icount_extra;
594 }
595 env->icount_extra -= insns_left;
596 env->icount_decr.u16.low = insns_left;
597 } else {
598 if (insns_left > 0) {
599 /* Execute remaining instructions. */
600 cpu_exec_nocache(env, insns_left, tb);
601 }
602 env->exception_index = EXCP_INTERRUPT;
603 next_tb = 0;
604 cpu_loop_exit(env);
605 }
606 }
607 }
608 env->current_tb = NULL;
609 /* reset soft MMU for next block (it can currently
610 only be set by a memory fault) */
611 } /* for(;;) */
612 } else {
613 /* Reload env after longjmp - the compiler may have smashed all
614 * local variables as longjmp is marked 'noreturn'. */
615 env = cpu_single_env;
616 }
617 } /* for(;;) */
618
619
620 #if defined(TARGET_I386)
621 /* restore flags in standard format */
622 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
623 | (DF & DF_MASK);
624 #elif defined(TARGET_ARM)
625 /* XXX: Save/restore host fpu exception state?. */
626 #elif defined(TARGET_UNICORE32)
627 #elif defined(TARGET_SPARC)
628 #elif defined(TARGET_PPC)
629 #elif defined(TARGET_LM32)
630 #elif defined(TARGET_M68K)
631 cpu_m68k_flush_flags(env, env->cc_op);
632 env->cc_op = CC_OP_FLAGS;
633 env->sr = (env->sr & 0xffe0)
634 | env->cc_dest | (env->cc_x << 4);
635 #elif defined(TARGET_MICROBLAZE)
636 #elif defined(TARGET_MIPS)
637 #elif defined(TARGET_SH4)
638 #elif defined(TARGET_ALPHA)
639 #elif defined(TARGET_CRIS)
640 #elif defined(TARGET_S390X)
641 #elif defined(TARGET_XTENSA)
642 /* XXXXX */
643 #else
644 #error unsupported target CPU
645 #endif
646
647 /* fail safe : never use cpu_single_env outside cpu_exec() */
648 cpu_single_env = NULL;
649 return ret;
650 }