]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
irq: Introduce and use CPU_INTERRUPT_SSTEP_MASK.
[qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
24 #include "qemu-barrier.h"
25
26 #if !defined(CONFIG_SOFTMMU)
27 #undef EAX
28 #undef ECX
29 #undef EDX
30 #undef EBX
31 #undef ESP
32 #undef EBP
33 #undef ESI
34 #undef EDI
35 #undef EIP
36 #include <signal.h>
37 #ifdef __linux__
38 #include <sys/ucontext.h>
39 #endif
40 #endif
41
42 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
43 // Work around ugly bugs in glibc that mangle global register contents
44 #undef env
45 #define env cpu_single_env
46 #endif
47
48 int tb_invalidated_flag;
49
50 //#define CONFIG_DEBUG_EXEC
51 //#define DEBUG_SIGNAL
52
53 int qemu_cpu_has_work(CPUState *env)
54 {
55 return cpu_has_work(env);
56 }
57
58 void cpu_loop_exit(void)
59 {
60 env->current_tb = NULL;
61 longjmp(env->jmp_env, 1);
62 }
63
64 /* exit the current TB from a signal handler. The host registers are
65 restored in a state compatible with the CPU emulator
66 */
67 void cpu_resume_from_signal(CPUState *env1, void *puc)
68 {
69 #if !defined(CONFIG_SOFTMMU)
70 #ifdef __linux__
71 struct ucontext *uc = puc;
72 #elif defined(__OpenBSD__)
73 struct sigcontext *uc = puc;
74 #endif
75 #endif
76
77 env = env1;
78
79 /* XXX: restore cpu registers saved in host registers */
80
81 #if !defined(CONFIG_SOFTMMU)
82 if (puc) {
83 /* XXX: use siglongjmp ? */
84 #ifdef __linux__
85 #ifdef __ia64
86 sigprocmask(SIG_SETMASK, (sigset_t *)&uc->uc_sigmask, NULL);
87 #else
88 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
89 #endif
90 #elif defined(__OpenBSD__)
91 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
92 #endif
93 }
94 #endif
95 env->exception_index = -1;
96 longjmp(env->jmp_env, 1);
97 }
98
99 /* Execute the code without caching the generated code. An interpreter
100 could be used if available. */
101 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
102 {
103 unsigned long next_tb;
104 TranslationBlock *tb;
105
106 /* Should never happen.
107 We only end up here when an existing TB is too long. */
108 if (max_cycles > CF_COUNT_MASK)
109 max_cycles = CF_COUNT_MASK;
110
111 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
112 max_cycles);
113 env->current_tb = tb;
114 /* execute the generated code */
115 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
116 env->current_tb = NULL;
117
118 if ((next_tb & 3) == 2) {
119 /* Restore PC. This may happen if async event occurs before
120 the TB starts executing. */
121 cpu_pc_from_tb(env, tb);
122 }
123 tb_phys_invalidate(tb, -1);
124 tb_free(tb);
125 }
126
127 static TranslationBlock *tb_find_slow(target_ulong pc,
128 target_ulong cs_base,
129 uint64_t flags)
130 {
131 TranslationBlock *tb, **ptb1;
132 unsigned int h;
133 tb_page_addr_t phys_pc, phys_page1, phys_page2;
134 target_ulong virt_page2;
135
136 tb_invalidated_flag = 0;
137
138 /* find translated block using physical mappings */
139 phys_pc = get_page_addr_code(env, pc);
140 phys_page1 = phys_pc & TARGET_PAGE_MASK;
141 phys_page2 = -1;
142 h = tb_phys_hash_func(phys_pc);
143 ptb1 = &tb_phys_hash[h];
144 for(;;) {
145 tb = *ptb1;
146 if (!tb)
147 goto not_found;
148 if (tb->pc == pc &&
149 tb->page_addr[0] == phys_page1 &&
150 tb->cs_base == cs_base &&
151 tb->flags == flags) {
152 /* check next page if needed */
153 if (tb->page_addr[1] != -1) {
154 virt_page2 = (pc & TARGET_PAGE_MASK) +
155 TARGET_PAGE_SIZE;
156 phys_page2 = get_page_addr_code(env, virt_page2);
157 if (tb->page_addr[1] == phys_page2)
158 goto found;
159 } else {
160 goto found;
161 }
162 }
163 ptb1 = &tb->phys_hash_next;
164 }
165 not_found:
166 /* if no translated code available, then translate it now */
167 tb = tb_gen_code(env, pc, cs_base, flags, 0);
168
169 found:
170 /* Move the last found TB to the head of the list */
171 if (likely(*ptb1)) {
172 *ptb1 = tb->phys_hash_next;
173 tb->phys_hash_next = tb_phys_hash[h];
174 tb_phys_hash[h] = tb;
175 }
176 /* we add the TB in the virtual pc hash table */
177 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
178 return tb;
179 }
180
181 static inline TranslationBlock *tb_find_fast(void)
182 {
183 TranslationBlock *tb;
184 target_ulong cs_base, pc;
185 int flags;
186
187 /* we record a subset of the CPU state. It will
188 always be the same before a given translated block
189 is executed. */
190 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
191 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
192 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
193 tb->flags != flags)) {
194 tb = tb_find_slow(pc, cs_base, flags);
195 }
196 return tb;
197 }
198
199 static CPUDebugExcpHandler *debug_excp_handler;
200
201 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
202 {
203 CPUDebugExcpHandler *old_handler = debug_excp_handler;
204
205 debug_excp_handler = handler;
206 return old_handler;
207 }
208
209 static void cpu_handle_debug_exception(CPUState *env)
210 {
211 CPUWatchpoint *wp;
212
213 if (!env->watchpoint_hit) {
214 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
215 wp->flags &= ~BP_WATCHPOINT_HIT;
216 }
217 }
218 if (debug_excp_handler) {
219 debug_excp_handler(env);
220 }
221 }
222
223 /* main execution loop */
224
225 volatile sig_atomic_t exit_request;
226
227 int cpu_exec(CPUState *env1)
228 {
229 volatile host_reg_t saved_env_reg;
230 int ret, interrupt_request;
231 TranslationBlock *tb;
232 uint8_t *tc_ptr;
233 unsigned long next_tb;
234
235 if (env1->halted) {
236 if (!cpu_has_work(env1)) {
237 return EXCP_HALTED;
238 }
239
240 env1->halted = 0;
241 }
242
243 cpu_single_env = env1;
244
245 /* the access to env below is actually saving the global register's
246 value, so that files not including target-xyz/exec.h are free to
247 use it. */
248 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg) != sizeof (env));
249 saved_env_reg = (host_reg_t) env;
250 barrier();
251 env = env1;
252
253 if (unlikely(exit_request)) {
254 env->exit_request = 1;
255 }
256
257 #if defined(TARGET_I386)
258 /* put eflags in CPU temporary format */
259 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
260 DF = 1 - (2 * ((env->eflags >> 10) & 1));
261 CC_OP = CC_OP_EFLAGS;
262 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
263 #elif defined(TARGET_SPARC)
264 #elif defined(TARGET_M68K)
265 env->cc_op = CC_OP_FLAGS;
266 env->cc_dest = env->sr & 0xf;
267 env->cc_x = (env->sr >> 4) & 1;
268 #elif defined(TARGET_ALPHA)
269 #elif defined(TARGET_ARM)
270 #elif defined(TARGET_UNICORE32)
271 #elif defined(TARGET_PPC)
272 #elif defined(TARGET_LM32)
273 #elif defined(TARGET_MICROBLAZE)
274 #elif defined(TARGET_MIPS)
275 #elif defined(TARGET_SH4)
276 #elif defined(TARGET_CRIS)
277 #elif defined(TARGET_S390X)
278 /* XXXXX */
279 #else
280 #error unsupported target CPU
281 #endif
282 env->exception_index = -1;
283
284 /* prepare setjmp context for exception handling */
285 for(;;) {
286 if (setjmp(env->jmp_env) == 0) {
287 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
288 #undef env
289 env = cpu_single_env;
290 #define env cpu_single_env
291 #endif
292 /* if an exception is pending, we execute it here */
293 if (env->exception_index >= 0) {
294 if (env->exception_index >= EXCP_INTERRUPT) {
295 /* exit request from the cpu execution loop */
296 ret = env->exception_index;
297 if (ret == EXCP_DEBUG) {
298 cpu_handle_debug_exception(env);
299 }
300 break;
301 } else {
302 #if defined(CONFIG_USER_ONLY)
303 /* if user mode only, we simulate a fake exception
304 which will be handled outside the cpu execution
305 loop */
306 #if defined(TARGET_I386)
307 do_interrupt_user(env->exception_index,
308 env->exception_is_int,
309 env->error_code,
310 env->exception_next_eip);
311 /* successfully delivered */
312 env->old_exception = -1;
313 #endif
314 ret = env->exception_index;
315 break;
316 #else
317 #if defined(TARGET_I386)
318 /* simulate a real cpu exception. On i386, it can
319 trigger new exceptions, but we do not handle
320 double or triple faults yet. */
321 do_interrupt(env->exception_index,
322 env->exception_is_int,
323 env->error_code,
324 env->exception_next_eip, 0);
325 /* successfully delivered */
326 env->old_exception = -1;
327 #elif defined(TARGET_PPC)
328 do_interrupt(env);
329 #elif defined(TARGET_LM32)
330 do_interrupt(env);
331 #elif defined(TARGET_MICROBLAZE)
332 do_interrupt(env);
333 #elif defined(TARGET_MIPS)
334 do_interrupt(env);
335 #elif defined(TARGET_SPARC)
336 do_interrupt(env);
337 #elif defined(TARGET_ARM)
338 do_interrupt(env);
339 #elif defined(TARGET_UNICORE32)
340 do_interrupt(env);
341 #elif defined(TARGET_SH4)
342 do_interrupt(env);
343 #elif defined(TARGET_ALPHA)
344 do_interrupt(env);
345 #elif defined(TARGET_CRIS)
346 do_interrupt(env);
347 #elif defined(TARGET_M68K)
348 do_interrupt(0);
349 #elif defined(TARGET_S390X)
350 do_interrupt(env);
351 #endif
352 env->exception_index = -1;
353 #endif
354 }
355 }
356
357 next_tb = 0; /* force lookup of first TB */
358 for(;;) {
359 interrupt_request = env->interrupt_request;
360 if (unlikely(interrupt_request)) {
361 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
362 /* Mask out external interrupts for this step. */
363 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
364 }
365 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
366 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
367 env->exception_index = EXCP_DEBUG;
368 cpu_loop_exit();
369 }
370 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
371 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
372 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
373 if (interrupt_request & CPU_INTERRUPT_HALT) {
374 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
375 env->halted = 1;
376 env->exception_index = EXCP_HLT;
377 cpu_loop_exit();
378 }
379 #endif
380 #if defined(TARGET_I386)
381 if (interrupt_request & CPU_INTERRUPT_INIT) {
382 svm_check_intercept(SVM_EXIT_INIT);
383 do_cpu_init(env);
384 env->exception_index = EXCP_HALTED;
385 cpu_loop_exit();
386 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
387 do_cpu_sipi(env);
388 } else if (env->hflags2 & HF2_GIF_MASK) {
389 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
390 !(env->hflags & HF_SMM_MASK)) {
391 svm_check_intercept(SVM_EXIT_SMI);
392 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
393 do_smm_enter();
394 next_tb = 0;
395 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
396 !(env->hflags2 & HF2_NMI_MASK)) {
397 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
398 env->hflags2 |= HF2_NMI_MASK;
399 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
400 next_tb = 0;
401 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
402 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
403 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
404 next_tb = 0;
405 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
406 (((env->hflags2 & HF2_VINTR_MASK) &&
407 (env->hflags2 & HF2_HIF_MASK)) ||
408 (!(env->hflags2 & HF2_VINTR_MASK) &&
409 (env->eflags & IF_MASK &&
410 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
411 int intno;
412 svm_check_intercept(SVM_EXIT_INTR);
413 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
414 intno = cpu_get_pic_interrupt(env);
415 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
416 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
417 #undef env
418 env = cpu_single_env;
419 #define env cpu_single_env
420 #endif
421 do_interrupt(intno, 0, 0, 0, 1);
422 /* ensure that no TB jump will be modified as
423 the program flow was changed */
424 next_tb = 0;
425 #if !defined(CONFIG_USER_ONLY)
426 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
427 (env->eflags & IF_MASK) &&
428 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
429 int intno;
430 /* FIXME: this should respect TPR */
431 svm_check_intercept(SVM_EXIT_VINTR);
432 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
433 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
434 do_interrupt(intno, 0, 0, 0, 1);
435 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
436 next_tb = 0;
437 #endif
438 }
439 }
440 #elif defined(TARGET_PPC)
441 #if 0
442 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
443 cpu_reset(env);
444 }
445 #endif
446 if (interrupt_request & CPU_INTERRUPT_HARD) {
447 ppc_hw_interrupt(env);
448 if (env->pending_interrupts == 0)
449 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
450 next_tb = 0;
451 }
452 #elif defined(TARGET_LM32)
453 if ((interrupt_request & CPU_INTERRUPT_HARD)
454 && (env->ie & IE_IE)) {
455 env->exception_index = EXCP_IRQ;
456 do_interrupt(env);
457 next_tb = 0;
458 }
459 #elif defined(TARGET_MICROBLAZE)
460 if ((interrupt_request & CPU_INTERRUPT_HARD)
461 && (env->sregs[SR_MSR] & MSR_IE)
462 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
463 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
464 env->exception_index = EXCP_IRQ;
465 do_interrupt(env);
466 next_tb = 0;
467 }
468 #elif defined(TARGET_MIPS)
469 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
470 cpu_mips_hw_interrupts_pending(env)) {
471 /* Raise it */
472 env->exception_index = EXCP_EXT_INTERRUPT;
473 env->error_code = 0;
474 do_interrupt(env);
475 next_tb = 0;
476 }
477 #elif defined(TARGET_SPARC)
478 if (interrupt_request & CPU_INTERRUPT_HARD) {
479 if (cpu_interrupts_enabled(env) &&
480 env->interrupt_index > 0) {
481 int pil = env->interrupt_index & 0xf;
482 int type = env->interrupt_index & 0xf0;
483
484 if (((type == TT_EXTINT) &&
485 cpu_pil_allowed(env, pil)) ||
486 type != TT_EXTINT) {
487 env->exception_index = env->interrupt_index;
488 do_interrupt(env);
489 next_tb = 0;
490 }
491 }
492 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
493 //do_interrupt(0, 0, 0, 0, 0);
494 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
495 }
496 #elif defined(TARGET_ARM)
497 if (interrupt_request & CPU_INTERRUPT_FIQ
498 && !(env->uncached_cpsr & CPSR_F)) {
499 env->exception_index = EXCP_FIQ;
500 do_interrupt(env);
501 next_tb = 0;
502 }
503 /* ARMv7-M interrupt return works by loading a magic value
504 into the PC. On real hardware the load causes the
505 return to occur. The qemu implementation performs the
506 jump normally, then does the exception return when the
507 CPU tries to execute code at the magic address.
508 This will cause the magic PC value to be pushed to
509 the stack if an interrupt occured at the wrong time.
510 We avoid this by disabling interrupts when
511 pc contains a magic address. */
512 if (interrupt_request & CPU_INTERRUPT_HARD
513 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
514 || !(env->uncached_cpsr & CPSR_I))) {
515 env->exception_index = EXCP_IRQ;
516 do_interrupt(env);
517 next_tb = 0;
518 }
519 #elif defined(TARGET_UNICORE32)
520 if (interrupt_request & CPU_INTERRUPT_HARD
521 && !(env->uncached_asr & ASR_I)) {
522 do_interrupt(env);
523 next_tb = 0;
524 }
525 #elif defined(TARGET_SH4)
526 if (interrupt_request & CPU_INTERRUPT_HARD) {
527 do_interrupt(env);
528 next_tb = 0;
529 }
530 #elif defined(TARGET_ALPHA)
531 if (interrupt_request & CPU_INTERRUPT_HARD) {
532 do_interrupt(env);
533 next_tb = 0;
534 }
535 #elif defined(TARGET_CRIS)
536 if (interrupt_request & CPU_INTERRUPT_HARD
537 && (env->pregs[PR_CCS] & I_FLAG)
538 && !env->locked_irq) {
539 env->exception_index = EXCP_IRQ;
540 do_interrupt(env);
541 next_tb = 0;
542 }
543 if (interrupt_request & CPU_INTERRUPT_NMI
544 && (env->pregs[PR_CCS] & M_FLAG)) {
545 env->exception_index = EXCP_NMI;
546 do_interrupt(env);
547 next_tb = 0;
548 }
549 #elif defined(TARGET_M68K)
550 if (interrupt_request & CPU_INTERRUPT_HARD
551 && ((env->sr & SR_I) >> SR_I_SHIFT)
552 < env->pending_level) {
553 /* Real hardware gets the interrupt vector via an
554 IACK cycle at this point. Current emulated
555 hardware doesn't rely on this, so we
556 provide/save the vector when the interrupt is
557 first signalled. */
558 env->exception_index = env->pending_vector;
559 do_interrupt(1);
560 next_tb = 0;
561 }
562 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
563 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
564 (env->psw.mask & PSW_MASK_EXT)) {
565 do_interrupt(env);
566 next_tb = 0;
567 }
568 #endif
569 /* Don't use the cached interupt_request value,
570 do_interrupt may have updated the EXITTB flag. */
571 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
572 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
573 /* ensure that no TB jump will be modified as
574 the program flow was changed */
575 next_tb = 0;
576 }
577 }
578 if (unlikely(env->exit_request)) {
579 env->exit_request = 0;
580 env->exception_index = EXCP_INTERRUPT;
581 cpu_loop_exit();
582 }
583 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
584 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
585 /* restore flags in standard format */
586 #if defined(TARGET_I386)
587 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
588 log_cpu_state(env, X86_DUMP_CCOP);
589 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
590 #elif defined(TARGET_M68K)
591 cpu_m68k_flush_flags(env, env->cc_op);
592 env->cc_op = CC_OP_FLAGS;
593 env->sr = (env->sr & 0xffe0)
594 | env->cc_dest | (env->cc_x << 4);
595 log_cpu_state(env, 0);
596 #else
597 log_cpu_state(env, 0);
598 #endif
599 }
600 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
601 spin_lock(&tb_lock);
602 tb = tb_find_fast();
603 /* Note: we do it here to avoid a gcc bug on Mac OS X when
604 doing it in tb_find_slow */
605 if (tb_invalidated_flag) {
606 /* as some TB could have been invalidated because
607 of memory exceptions while generating the code, we
608 must recompute the hash index here */
609 next_tb = 0;
610 tb_invalidated_flag = 0;
611 }
612 #ifdef CONFIG_DEBUG_EXEC
613 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
614 (long)tb->tc_ptr, tb->pc,
615 lookup_symbol(tb->pc));
616 #endif
617 /* see if we can patch the calling TB. When the TB
618 spans two pages, we cannot safely do a direct
619 jump. */
620 if (next_tb != 0 && tb->page_addr[1] == -1) {
621 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
622 }
623 spin_unlock(&tb_lock);
624
625 /* cpu_interrupt might be called while translating the
626 TB, but before it is linked into a potentially
627 infinite loop and becomes env->current_tb. Avoid
628 starting execution if there is a pending interrupt. */
629 env->current_tb = tb;
630 barrier();
631 if (likely(!env->exit_request)) {
632 tc_ptr = tb->tc_ptr;
633 /* execute the generated code */
634 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
635 #undef env
636 env = cpu_single_env;
637 #define env cpu_single_env
638 #endif
639 next_tb = tcg_qemu_tb_exec(tc_ptr);
640 if ((next_tb & 3) == 2) {
641 /* Instruction counter expired. */
642 int insns_left;
643 tb = (TranslationBlock *)(long)(next_tb & ~3);
644 /* Restore PC. */
645 cpu_pc_from_tb(env, tb);
646 insns_left = env->icount_decr.u32;
647 if (env->icount_extra && insns_left >= 0) {
648 /* Refill decrementer and continue execution. */
649 env->icount_extra += insns_left;
650 if (env->icount_extra > 0xffff) {
651 insns_left = 0xffff;
652 } else {
653 insns_left = env->icount_extra;
654 }
655 env->icount_extra -= insns_left;
656 env->icount_decr.u16.low = insns_left;
657 } else {
658 if (insns_left > 0) {
659 /* Execute remaining instructions. */
660 cpu_exec_nocache(insns_left, tb);
661 }
662 env->exception_index = EXCP_INTERRUPT;
663 next_tb = 0;
664 cpu_loop_exit();
665 }
666 }
667 }
668 env->current_tb = NULL;
669 /* reset soft MMU for next block (it can currently
670 only be set by a memory fault) */
671 } /* for(;;) */
672 }
673 } /* for(;;) */
674
675
676 #if defined(TARGET_I386)
677 /* restore flags in standard format */
678 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
679 #elif defined(TARGET_ARM)
680 /* XXX: Save/restore host fpu exception state?. */
681 #elif defined(TARGET_UNICORE32)
682 #elif defined(TARGET_SPARC)
683 #elif defined(TARGET_PPC)
684 #elif defined(TARGET_LM32)
685 #elif defined(TARGET_M68K)
686 cpu_m68k_flush_flags(env, env->cc_op);
687 env->cc_op = CC_OP_FLAGS;
688 env->sr = (env->sr & 0xffe0)
689 | env->cc_dest | (env->cc_x << 4);
690 #elif defined(TARGET_MICROBLAZE)
691 #elif defined(TARGET_MIPS)
692 #elif defined(TARGET_SH4)
693 #elif defined(TARGET_ALPHA)
694 #elif defined(TARGET_CRIS)
695 #elif defined(TARGET_S390X)
696 /* XXXXX */
697 #else
698 #error unsupported target CPU
699 #endif
700
701 /* restore global registers */
702 barrier();
703 env = (void *) saved_env_reg;
704
705 /* fail safe : never use cpu_single_env outside cpu_exec() */
706 cpu_single_env = NULL;
707 return ret;
708 }
709
710 /* must only be called from the generated code as an exception can be
711 generated */
712 void tb_invalidate_page_range(target_ulong start, target_ulong end)
713 {
714 /* XXX: cannot enable it yet because it yields to MMU exception
715 where NIP != read address on PowerPC */
716 #if 0
717 target_ulong phys_addr;
718 phys_addr = get_phys_addr_code(env, start);
719 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
720 #endif
721 }
722
723 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
724
725 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
726 {
727 CPUX86State *saved_env;
728
729 saved_env = env;
730 env = s;
731 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
732 selector &= 0xffff;
733 cpu_x86_load_seg_cache(env, seg_reg, selector,
734 (selector << 4), 0xffff, 0);
735 } else {
736 helper_load_seg(seg_reg, selector);
737 }
738 env = saved_env;
739 }
740
741 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
742 {
743 CPUX86State *saved_env;
744
745 saved_env = env;
746 env = s;
747
748 helper_fsave(ptr, data32);
749
750 env = saved_env;
751 }
752
753 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
754 {
755 CPUX86State *saved_env;
756
757 saved_env = env;
758 env = s;
759
760 helper_frstor(ptr, data32);
761
762 env = saved_env;
763 }
764
765 #endif /* TARGET_I386 */
766
767 #if !defined(CONFIG_SOFTMMU)
768
769 #if defined(TARGET_I386)
770 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
771 #else
772 #define EXCEPTION_ACTION cpu_loop_exit()
773 #endif
774
775 /* 'pc' is the host PC at which the exception was raised. 'address' is
776 the effective address of the memory exception. 'is_write' is 1 if a
777 write caused the exception and otherwise 0'. 'old_set' is the
778 signal set which should be restored */
779 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
780 int is_write, sigset_t *old_set,
781 void *puc)
782 {
783 TranslationBlock *tb;
784 int ret;
785
786 if (cpu_single_env)
787 env = cpu_single_env; /* XXX: find a correct solution for multithread */
788 #if defined(DEBUG_SIGNAL)
789 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
790 pc, address, is_write, *(unsigned long *)old_set);
791 #endif
792 /* XXX: locking issue */
793 if (is_write && page_unprotect(h2g(address), pc, puc)) {
794 return 1;
795 }
796
797 /* see if it is an MMU fault */
798 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
799 if (ret < 0)
800 return 0; /* not an MMU fault */
801 if (ret == 0)
802 return 1; /* the MMU fault was handled without causing real CPU fault */
803 /* now we have a real cpu fault */
804 tb = tb_find_pc(pc);
805 if (tb) {
806 /* the PC is inside the translated code. It means that we have
807 a virtual CPU fault */
808 cpu_restore_state(tb, env, pc);
809 }
810
811 /* we restore the process signal mask as the sigreturn should
812 do it (XXX: use sigsetjmp) */
813 sigprocmask(SIG_SETMASK, old_set, NULL);
814 EXCEPTION_ACTION;
815
816 /* never comes here */
817 return 1;
818 }
819
820 #if defined(__i386__)
821
822 #if defined(__APPLE__)
823 # include <sys/ucontext.h>
824
825 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
826 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
827 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
828 # define MASK_sig(context) ((context)->uc_sigmask)
829 #elif defined (__NetBSD__)
830 # include <ucontext.h>
831
832 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
833 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
834 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
835 # define MASK_sig(context) ((context)->uc_sigmask)
836 #elif defined (__FreeBSD__) || defined(__DragonFly__)
837 # include <ucontext.h>
838
839 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
840 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
841 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
842 # define MASK_sig(context) ((context)->uc_sigmask)
843 #elif defined(__OpenBSD__)
844 # define EIP_sig(context) ((context)->sc_eip)
845 # define TRAP_sig(context) ((context)->sc_trapno)
846 # define ERROR_sig(context) ((context)->sc_err)
847 # define MASK_sig(context) ((context)->sc_mask)
848 #else
849 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
850 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
851 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
852 # define MASK_sig(context) ((context)->uc_sigmask)
853 #endif
854
855 int cpu_signal_handler(int host_signum, void *pinfo,
856 void *puc)
857 {
858 siginfo_t *info = pinfo;
859 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
860 ucontext_t *uc = puc;
861 #elif defined(__OpenBSD__)
862 struct sigcontext *uc = puc;
863 #else
864 struct ucontext *uc = puc;
865 #endif
866 unsigned long pc;
867 int trapno;
868
869 #ifndef REG_EIP
870 /* for glibc 2.1 */
871 #define REG_EIP EIP
872 #define REG_ERR ERR
873 #define REG_TRAPNO TRAPNO
874 #endif
875 pc = EIP_sig(uc);
876 trapno = TRAP_sig(uc);
877 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
878 trapno == 0xe ?
879 (ERROR_sig(uc) >> 1) & 1 : 0,
880 &MASK_sig(uc), puc);
881 }
882
883 #elif defined(__x86_64__)
884
885 #ifdef __NetBSD__
886 #define PC_sig(context) _UC_MACHINE_PC(context)
887 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
888 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
889 #define MASK_sig(context) ((context)->uc_sigmask)
890 #elif defined(__OpenBSD__)
891 #define PC_sig(context) ((context)->sc_rip)
892 #define TRAP_sig(context) ((context)->sc_trapno)
893 #define ERROR_sig(context) ((context)->sc_err)
894 #define MASK_sig(context) ((context)->sc_mask)
895 #elif defined (__FreeBSD__) || defined(__DragonFly__)
896 #include <ucontext.h>
897
898 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
899 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
900 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
901 #define MASK_sig(context) ((context)->uc_sigmask)
902 #else
903 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
904 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
905 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
906 #define MASK_sig(context) ((context)->uc_sigmask)
907 #endif
908
909 int cpu_signal_handler(int host_signum, void *pinfo,
910 void *puc)
911 {
912 siginfo_t *info = pinfo;
913 unsigned long pc;
914 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
915 ucontext_t *uc = puc;
916 #elif defined(__OpenBSD__)
917 struct sigcontext *uc = puc;
918 #else
919 struct ucontext *uc = puc;
920 #endif
921
922 pc = PC_sig(uc);
923 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
924 TRAP_sig(uc) == 0xe ?
925 (ERROR_sig(uc) >> 1) & 1 : 0,
926 &MASK_sig(uc), puc);
927 }
928
929 #elif defined(_ARCH_PPC)
930
931 /***********************************************************************
932 * signal context platform-specific definitions
933 * From Wine
934 */
935 #ifdef linux
936 /* All Registers access - only for local access */
937 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
938 /* Gpr Registers access */
939 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
940 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
941 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
942 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
943 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
944 # define LR_sig(context) REG_sig(link, context) /* Link register */
945 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
946 /* Float Registers access */
947 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
948 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
949 /* Exception Registers access */
950 # define DAR_sig(context) REG_sig(dar, context)
951 # define DSISR_sig(context) REG_sig(dsisr, context)
952 # define TRAP_sig(context) REG_sig(trap, context)
953 #endif /* linux */
954
955 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
956 #include <ucontext.h>
957 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
958 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
959 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
960 # define XER_sig(context) ((context)->uc_mcontext.mc_xer)
961 # define LR_sig(context) ((context)->uc_mcontext.mc_lr)
962 # define CR_sig(context) ((context)->uc_mcontext.mc_cr)
963 /* Exception Registers access */
964 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
965 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
966 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
967 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
968
969 #ifdef __APPLE__
970 # include <sys/ucontext.h>
971 typedef struct ucontext SIGCONTEXT;
972 /* All Registers access - only for local access */
973 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
974 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
975 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
976 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
977 /* Gpr Registers access */
978 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
979 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
980 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
981 # define CTR_sig(context) REG_sig(ctr, context)
982 # define XER_sig(context) REG_sig(xer, context) /* Link register */
983 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
984 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
985 /* Float Registers access */
986 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
987 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
988 /* Exception Registers access */
989 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
990 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
991 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
992 #endif /* __APPLE__ */
993
994 int cpu_signal_handler(int host_signum, void *pinfo,
995 void *puc)
996 {
997 siginfo_t *info = pinfo;
998 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
999 ucontext_t *uc = puc;
1000 #else
1001 struct ucontext *uc = puc;
1002 #endif
1003 unsigned long pc;
1004 int is_write;
1005
1006 pc = IAR_sig(uc);
1007 is_write = 0;
1008 #if 0
1009 /* ppc 4xx case */
1010 if (DSISR_sig(uc) & 0x00800000)
1011 is_write = 1;
1012 #else
1013 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1014 is_write = 1;
1015 #endif
1016 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1017 is_write, &uc->uc_sigmask, puc);
1018 }
1019
1020 #elif defined(__alpha__)
1021
1022 int cpu_signal_handler(int host_signum, void *pinfo,
1023 void *puc)
1024 {
1025 siginfo_t *info = pinfo;
1026 struct ucontext *uc = puc;
1027 uint32_t *pc = uc->uc_mcontext.sc_pc;
1028 uint32_t insn = *pc;
1029 int is_write = 0;
1030
1031 /* XXX: need kernel patch to get write flag faster */
1032 switch (insn >> 26) {
1033 case 0x0d: // stw
1034 case 0x0e: // stb
1035 case 0x0f: // stq_u
1036 case 0x24: // stf
1037 case 0x25: // stg
1038 case 0x26: // sts
1039 case 0x27: // stt
1040 case 0x2c: // stl
1041 case 0x2d: // stq
1042 case 0x2e: // stl_c
1043 case 0x2f: // stq_c
1044 is_write = 1;
1045 }
1046
1047 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1048 is_write, &uc->uc_sigmask, puc);
1049 }
1050 #elif defined(__sparc__)
1051
1052 int cpu_signal_handler(int host_signum, void *pinfo,
1053 void *puc)
1054 {
1055 siginfo_t *info = pinfo;
1056 int is_write;
1057 uint32_t insn;
1058 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1059 uint32_t *regs = (uint32_t *)(info + 1);
1060 void *sigmask = (regs + 20);
1061 /* XXX: is there a standard glibc define ? */
1062 unsigned long pc = regs[1];
1063 #else
1064 #ifdef __linux__
1065 struct sigcontext *sc = puc;
1066 unsigned long pc = sc->sigc_regs.tpc;
1067 void *sigmask = (void *)sc->sigc_mask;
1068 #elif defined(__OpenBSD__)
1069 struct sigcontext *uc = puc;
1070 unsigned long pc = uc->sc_pc;
1071 void *sigmask = (void *)(long)uc->sc_mask;
1072 #endif
1073 #endif
1074
1075 /* XXX: need kernel patch to get write flag faster */
1076 is_write = 0;
1077 insn = *(uint32_t *)pc;
1078 if ((insn >> 30) == 3) {
1079 switch((insn >> 19) & 0x3f) {
1080 case 0x05: // stb
1081 case 0x15: // stba
1082 case 0x06: // sth
1083 case 0x16: // stha
1084 case 0x04: // st
1085 case 0x14: // sta
1086 case 0x07: // std
1087 case 0x17: // stda
1088 case 0x0e: // stx
1089 case 0x1e: // stxa
1090 case 0x24: // stf
1091 case 0x34: // stfa
1092 case 0x27: // stdf
1093 case 0x37: // stdfa
1094 case 0x26: // stqf
1095 case 0x36: // stqfa
1096 case 0x25: // stfsr
1097 case 0x3c: // casa
1098 case 0x3e: // casxa
1099 is_write = 1;
1100 break;
1101 }
1102 }
1103 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1104 is_write, sigmask, NULL);
1105 }
1106
1107 #elif defined(__arm__)
1108
1109 int cpu_signal_handler(int host_signum, void *pinfo,
1110 void *puc)
1111 {
1112 siginfo_t *info = pinfo;
1113 struct ucontext *uc = puc;
1114 unsigned long pc;
1115 int is_write;
1116
1117 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1118 pc = uc->uc_mcontext.gregs[R15];
1119 #else
1120 pc = uc->uc_mcontext.arm_pc;
1121 #endif
1122 /* XXX: compute is_write */
1123 is_write = 0;
1124 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1125 is_write,
1126 &uc->uc_sigmask, puc);
1127 }
1128
1129 #elif defined(__mc68000)
1130
1131 int cpu_signal_handler(int host_signum, void *pinfo,
1132 void *puc)
1133 {
1134 siginfo_t *info = pinfo;
1135 struct ucontext *uc = puc;
1136 unsigned long pc;
1137 int is_write;
1138
1139 pc = uc->uc_mcontext.gregs[16];
1140 /* XXX: compute is_write */
1141 is_write = 0;
1142 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1143 is_write,
1144 &uc->uc_sigmask, puc);
1145 }
1146
1147 #elif defined(__ia64)
1148
1149 #ifndef __ISR_VALID
1150 /* This ought to be in <bits/siginfo.h>... */
1151 # define __ISR_VALID 1
1152 #endif
1153
1154 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1155 {
1156 siginfo_t *info = pinfo;
1157 struct ucontext *uc = puc;
1158 unsigned long ip;
1159 int is_write = 0;
1160
1161 ip = uc->uc_mcontext.sc_ip;
1162 switch (host_signum) {
1163 case SIGILL:
1164 case SIGFPE:
1165 case SIGSEGV:
1166 case SIGBUS:
1167 case SIGTRAP:
1168 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1169 /* ISR.W (write-access) is bit 33: */
1170 is_write = (info->si_isr >> 33) & 1;
1171 break;
1172
1173 default:
1174 break;
1175 }
1176 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1177 is_write,
1178 (sigset_t *)&uc->uc_sigmask, puc);
1179 }
1180
1181 #elif defined(__s390__)
1182
1183 int cpu_signal_handler(int host_signum, void *pinfo,
1184 void *puc)
1185 {
1186 siginfo_t *info = pinfo;
1187 struct ucontext *uc = puc;
1188 unsigned long pc;
1189 uint16_t *pinsn;
1190 int is_write = 0;
1191
1192 pc = uc->uc_mcontext.psw.addr;
1193
1194 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
1195 of the normal 2 arguments. The 3rd argument contains the "int_code"
1196 from the hardware which does in fact contain the is_write value.
1197 The rt signal handler, as far as I can tell, does not give this value
1198 at all. Not that we could get to it from here even if it were. */
1199 /* ??? This is not even close to complete, since it ignores all
1200 of the read-modify-write instructions. */
1201 pinsn = (uint16_t *)pc;
1202 switch (pinsn[0] >> 8) {
1203 case 0x50: /* ST */
1204 case 0x42: /* STC */
1205 case 0x40: /* STH */
1206 is_write = 1;
1207 break;
1208 case 0xc4: /* RIL format insns */
1209 switch (pinsn[0] & 0xf) {
1210 case 0xf: /* STRL */
1211 case 0xb: /* STGRL */
1212 case 0x7: /* STHRL */
1213 is_write = 1;
1214 }
1215 break;
1216 case 0xe3: /* RXY format insns */
1217 switch (pinsn[2] & 0xff) {
1218 case 0x50: /* STY */
1219 case 0x24: /* STG */
1220 case 0x72: /* STCY */
1221 case 0x70: /* STHY */
1222 case 0x8e: /* STPQ */
1223 case 0x3f: /* STRVH */
1224 case 0x3e: /* STRV */
1225 case 0x2f: /* STRVG */
1226 is_write = 1;
1227 }
1228 break;
1229 }
1230 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1231 is_write, &uc->uc_sigmask, puc);
1232 }
1233
1234 #elif defined(__mips__)
1235
1236 int cpu_signal_handler(int host_signum, void *pinfo,
1237 void *puc)
1238 {
1239 siginfo_t *info = pinfo;
1240 struct ucontext *uc = puc;
1241 greg_t pc = uc->uc_mcontext.pc;
1242 int is_write;
1243
1244 /* XXX: compute is_write */
1245 is_write = 0;
1246 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1247 is_write, &uc->uc_sigmask, puc);
1248 }
1249
1250 #elif defined(__hppa__)
1251
1252 int cpu_signal_handler(int host_signum, void *pinfo,
1253 void *puc)
1254 {
1255 struct siginfo *info = pinfo;
1256 struct ucontext *uc = puc;
1257 unsigned long pc = uc->uc_mcontext.sc_iaoq[0];
1258 uint32_t insn = *(uint32_t *)pc;
1259 int is_write = 0;
1260
1261 /* XXX: need kernel patch to get write flag faster. */
1262 switch (insn >> 26) {
1263 case 0x1a: /* STW */
1264 case 0x19: /* STH */
1265 case 0x18: /* STB */
1266 case 0x1b: /* STWM */
1267 is_write = 1;
1268 break;
1269
1270 case 0x09: /* CSTWX, FSTWX, FSTWS */
1271 case 0x0b: /* CSTDX, FSTDX, FSTDS */
1272 /* Distinguish from coprocessor load ... */
1273 is_write = (insn >> 9) & 1;
1274 break;
1275
1276 case 0x03:
1277 switch ((insn >> 6) & 15) {
1278 case 0xa: /* STWS */
1279 case 0x9: /* STHS */
1280 case 0x8: /* STBS */
1281 case 0xe: /* STWAS */
1282 case 0xc: /* STBYS */
1283 is_write = 1;
1284 }
1285 break;
1286 }
1287
1288 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1289 is_write, &uc->uc_sigmask, puc);
1290 }
1291
1292 #else
1293
1294 #error host CPU specific signal handler needed
1295
1296 #endif
1297
1298 #endif /* !defined(CONFIG_SOFTMMU) */