]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
fixed TB linking in case of code invalidation (fixes random segfaults)
[qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
23
24 int tb_invalidated_flag;
25
26 //#define DEBUG_EXEC
27 //#define DEBUG_SIGNAL
28
29 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
30 /* XXX: unify with i386 target */
31 void cpu_loop_exit(void)
32 {
33 longjmp(env->jmp_env, 1);
34 }
35 #endif
36
37 /* main execution loop */
38
39 int cpu_exec(CPUState *env1)
40 {
41 int saved_T0, saved_T1, saved_T2;
42 CPUState *saved_env;
43 #ifdef reg_EAX
44 int saved_EAX;
45 #endif
46 #ifdef reg_ECX
47 int saved_ECX;
48 #endif
49 #ifdef reg_EDX
50 int saved_EDX;
51 #endif
52 #ifdef reg_EBX
53 int saved_EBX;
54 #endif
55 #ifdef reg_ESP
56 int saved_ESP;
57 #endif
58 #ifdef reg_EBP
59 int saved_EBP;
60 #endif
61 #ifdef reg_ESI
62 int saved_ESI;
63 #endif
64 #ifdef reg_EDI
65 int saved_EDI;
66 #endif
67 #ifdef __sparc__
68 int saved_i7, tmp_T0;
69 #endif
70 int code_gen_size, ret, interrupt_request;
71 void (*gen_func)(void);
72 TranslationBlock *tb, **ptb;
73 uint8_t *tc_ptr, *cs_base, *pc;
74 unsigned int flags;
75
76 /* first we save global registers */
77 saved_T0 = T0;
78 saved_T1 = T1;
79 saved_T2 = T2;
80 saved_env = env;
81 env = env1;
82 #ifdef __sparc__
83 /* we also save i7 because longjmp may not restore it */
84 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
85 #endif
86
87 #if defined(TARGET_I386)
88 #ifdef reg_EAX
89 saved_EAX = EAX;
90 EAX = env->regs[R_EAX];
91 #endif
92 #ifdef reg_ECX
93 saved_ECX = ECX;
94 ECX = env->regs[R_ECX];
95 #endif
96 #ifdef reg_EDX
97 saved_EDX = EDX;
98 EDX = env->regs[R_EDX];
99 #endif
100 #ifdef reg_EBX
101 saved_EBX = EBX;
102 EBX = env->regs[R_EBX];
103 #endif
104 #ifdef reg_ESP
105 saved_ESP = ESP;
106 ESP = env->regs[R_ESP];
107 #endif
108 #ifdef reg_EBP
109 saved_EBP = EBP;
110 EBP = env->regs[R_EBP];
111 #endif
112 #ifdef reg_ESI
113 saved_ESI = ESI;
114 ESI = env->regs[R_ESI];
115 #endif
116 #ifdef reg_EDI
117 saved_EDI = EDI;
118 EDI = env->regs[R_EDI];
119 #endif
120
121 /* put eflags in CPU temporary format */
122 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
123 DF = 1 - (2 * ((env->eflags >> 10) & 1));
124 CC_OP = CC_OP_EFLAGS;
125 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
126 #elif defined(TARGET_ARM)
127 {
128 unsigned int psr;
129 psr = env->cpsr;
130 env->CF = (psr >> 29) & 1;
131 env->NZF = (psr & 0xc0000000) ^ 0x40000000;
132 env->VF = (psr << 3) & 0x80000000;
133 env->cpsr = psr & ~0xf0000000;
134 }
135 #elif defined(TARGET_SPARC)
136 #else
137 #error unsupported target CPU
138 #endif
139 env->exception_index = -1;
140
141 /* prepare setjmp context for exception handling */
142 for(;;) {
143 if (setjmp(env->jmp_env) == 0) {
144 /* if an exception is pending, we execute it here */
145 if (env->exception_index >= 0) {
146 if (env->exception_index >= EXCP_INTERRUPT) {
147 /* exit request from the cpu execution loop */
148 ret = env->exception_index;
149 break;
150 } else if (env->user_mode_only) {
151 /* if user mode only, we simulate a fake exception
152 which will be hanlded outside the cpu execution
153 loop */
154 #if defined(TARGET_I386)
155 do_interrupt_user(env->exception_index,
156 env->exception_is_int,
157 env->error_code,
158 env->exception_next_eip);
159 #endif
160 ret = env->exception_index;
161 break;
162 } else {
163 #if defined(TARGET_I386)
164 /* simulate a real cpu exception. On i386, it can
165 trigger new exceptions, but we do not handle
166 double or triple faults yet. */
167 do_interrupt(env->exception_index,
168 env->exception_is_int,
169 env->error_code,
170 env->exception_next_eip, 0);
171 #endif
172 }
173 env->exception_index = -1;
174 }
175 T0 = 0; /* force lookup of first TB */
176 for(;;) {
177 #ifdef __sparc__
178 /* g1 can be modified by some libc? functions */
179 tmp_T0 = T0;
180 #endif
181 interrupt_request = env->interrupt_request;
182 if (__builtin_expect(interrupt_request, 0)) {
183 #if defined(TARGET_I386)
184 /* if hardware interrupt pending, we execute it */
185 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
186 (env->eflags & IF_MASK) &&
187 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
188 int intno;
189 intno = cpu_x86_get_pic_interrupt(env);
190 if (loglevel) {
191 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
192 }
193 do_interrupt(intno, 0, 0, 0, 1);
194 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
195 /* ensure that no TB jump will be modified as
196 the program flow was changed */
197 #ifdef __sparc__
198 tmp_T0 = 0;
199 #else
200 T0 = 0;
201 #endif
202 }
203 #endif
204 if (interrupt_request & CPU_INTERRUPT_EXIT) {
205 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
206 env->exception_index = EXCP_INTERRUPT;
207 cpu_loop_exit();
208 }
209 }
210 #ifdef DEBUG_EXEC
211 if (loglevel) {
212 #if defined(TARGET_I386)
213 /* restore flags in standard format */
214 env->regs[R_EAX] = EAX;
215 env->regs[R_EBX] = EBX;
216 env->regs[R_ECX] = ECX;
217 env->regs[R_EDX] = EDX;
218 env->regs[R_ESI] = ESI;
219 env->regs[R_EDI] = EDI;
220 env->regs[R_EBP] = EBP;
221 env->regs[R_ESP] = ESP;
222 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
223 cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
224 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
225 #elif defined(TARGET_ARM)
226 env->cpsr = compute_cpsr();
227 cpu_arm_dump_state(env, logfile, 0);
228 env->cpsr &= ~0xf0000000;
229 #elif defined(TARGET_SPARC)
230 cpu_sparc_dump_state (env, logfile, 0);
231 #else
232 #error unsupported target CPU
233 #endif
234 }
235 #endif
236 /* we record a subset of the CPU state. It will
237 always be the same before a given translated block
238 is executed. */
239 #if defined(TARGET_I386)
240 flags = env->hflags;
241 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
242 cs_base = env->segs[R_CS].base;
243 pc = cs_base + env->eip;
244 #elif defined(TARGET_ARM)
245 flags = 0;
246 cs_base = 0;
247 pc = (uint8_t *)env->regs[15];
248 #elif defined(TARGET_SPARC)
249 flags = 0;
250 cs_base = 0;
251 if (env->npc) {
252 env->pc = env->npc;
253 env->npc = 0;
254 }
255 pc = (uint8_t *) env->pc;
256 #else
257 #error unsupported CPU
258 #endif
259 tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
260 flags);
261 if (!tb) {
262 spin_lock(&tb_lock);
263 /* if no translated code available, then translate it now */
264 tb = tb_alloc((unsigned long)pc);
265 if (!tb) {
266 /* flush must be done */
267 tb_flush();
268 /* cannot fail at this point */
269 tb = tb_alloc((unsigned long)pc);
270 /* don't forget to invalidate previous TB info */
271 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
272 T0 = 0;
273 }
274 tc_ptr = code_gen_ptr;
275 tb->tc_ptr = tc_ptr;
276 tb->cs_base = (unsigned long)cs_base;
277 tb->flags = flags;
278 tb_invalidated_flag = 0;
279 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
280 if (tb_invalidated_flag) {
281 /* as some TB could have been invalidated because
282 of memory exceptions while generating the code, we
283 must recompute the hash index here */
284 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
285 while (*ptb != NULL)
286 ptb = &(*ptb)->hash_next;
287 T0 = 0;
288 }
289 *ptb = tb;
290 tb->hash_next = NULL;
291 tb_link(tb);
292 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
293 spin_unlock(&tb_lock);
294 }
295 #ifdef DEBUG_EXEC
296 if (loglevel) {
297 fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
298 (long)tb->tc_ptr, (long)tb->pc,
299 lookup_symbol((void *)tb->pc));
300 }
301 #endif
302 #ifdef __sparc__
303 T0 = tmp_T0;
304 #endif
305 /* see if we can patch the calling TB. */
306 if (T0 != 0) {
307 spin_lock(&tb_lock);
308 tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
309 spin_unlock(&tb_lock);
310 }
311 tc_ptr = tb->tc_ptr;
312 env->current_tb = tb;
313 /* execute the generated code */
314 gen_func = (void *)tc_ptr;
315 #if defined(__sparc__)
316 __asm__ __volatile__("call %0\n\t"
317 "mov %%o7,%%i0"
318 : /* no outputs */
319 : "r" (gen_func)
320 : "i0", "i1", "i2", "i3", "i4", "i5");
321 #elif defined(__arm__)
322 asm volatile ("mov pc, %0\n\t"
323 ".global exec_loop\n\t"
324 "exec_loop:\n\t"
325 : /* no outputs */
326 : "r" (gen_func)
327 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
328 #else
329 gen_func();
330 #endif
331 env->current_tb = NULL;
332 /* reset soft MMU for next block (it can currently
333 only be set by a memory fault) */
334 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
335 if (env->hflags & HF_SOFTMMU_MASK) {
336 env->hflags &= ~HF_SOFTMMU_MASK;
337 /* do not allow linking to another block */
338 T0 = 0;
339 }
340 #endif
341 }
342 } else {
343 }
344 } /* for(;;) */
345
346
347 #if defined(TARGET_I386)
348 /* restore flags in standard format */
349 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
350
351 /* restore global registers */
352 #ifdef reg_EAX
353 EAX = saved_EAX;
354 #endif
355 #ifdef reg_ECX
356 ECX = saved_ECX;
357 #endif
358 #ifdef reg_EDX
359 EDX = saved_EDX;
360 #endif
361 #ifdef reg_EBX
362 EBX = saved_EBX;
363 #endif
364 #ifdef reg_ESP
365 ESP = saved_ESP;
366 #endif
367 #ifdef reg_EBP
368 EBP = saved_EBP;
369 #endif
370 #ifdef reg_ESI
371 ESI = saved_ESI;
372 #endif
373 #ifdef reg_EDI
374 EDI = saved_EDI;
375 #endif
376 #elif defined(TARGET_ARM)
377 env->cpsr = compute_cpsr();
378 #elif defined(TARGET_SPARC)
379 #else
380 #error unsupported target CPU
381 #endif
382 #ifdef __sparc__
383 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
384 #endif
385 T0 = saved_T0;
386 T1 = saved_T1;
387 T2 = saved_T2;
388 env = saved_env;
389 return ret;
390 }
391
392 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
393
394 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
395 {
396 CPUX86State *saved_env;
397
398 saved_env = env;
399 env = s;
400 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
401 selector &= 0xffff;
402 cpu_x86_load_seg_cache(env, seg_reg, selector,
403 (uint8_t *)(selector << 4), 0xffff, 0);
404 } else {
405 load_seg(seg_reg, selector, 0);
406 }
407 env = saved_env;
408 }
409
410 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
411 {
412 CPUX86State *saved_env;
413
414 saved_env = env;
415 env = s;
416
417 helper_fsave(ptr, data32);
418
419 env = saved_env;
420 }
421
422 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
423 {
424 CPUX86State *saved_env;
425
426 saved_env = env;
427 env = s;
428
429 helper_frstor(ptr, data32);
430
431 env = saved_env;
432 }
433
434 #endif /* TARGET_I386 */
435
436 #undef EAX
437 #undef ECX
438 #undef EDX
439 #undef EBX
440 #undef ESP
441 #undef EBP
442 #undef ESI
443 #undef EDI
444 #undef EIP
445 #include <signal.h>
446 #include <sys/ucontext.h>
447
448 #if defined(TARGET_I386)
449
450 /* 'pc' is the host PC at which the exception was raised. 'address' is
451 the effective address of the memory exception. 'is_write' is 1 if a
452 write caused the exception and otherwise 0'. 'old_set' is the
453 signal set which should be restored */
454 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
455 int is_write, sigset_t *old_set)
456 {
457 TranslationBlock *tb;
458 int ret;
459
460 if (cpu_single_env)
461 env = cpu_single_env; /* XXX: find a correct solution for multithread */
462 #if defined(DEBUG_SIGNAL)
463 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
464 pc, address, is_write, *(unsigned long *)old_set);
465 #endif
466 /* XXX: locking issue */
467 if (is_write && page_unprotect(address)) {
468 return 1;
469 }
470 /* see if it is an MMU fault */
471 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
472 ((env->hflags & HF_CPL_MASK) == 3), 0);
473 if (ret < 0)
474 return 0; /* not an MMU fault */
475 if (ret == 0)
476 return 1; /* the MMU fault was handled without causing real CPU fault */
477 /* now we have a real cpu fault */
478 tb = tb_find_pc(pc);
479 if (tb) {
480 /* the PC is inside the translated code. It means that we have
481 a virtual CPU fault */
482 cpu_restore_state(tb, env, pc);
483 }
484 if (ret == 1) {
485 #if 0
486 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
487 env->eip, env->cr[2], env->error_code);
488 #endif
489 /* we restore the process signal mask as the sigreturn should
490 do it (XXX: use sigsetjmp) */
491 sigprocmask(SIG_SETMASK, old_set, NULL);
492 raise_exception_err(EXCP0E_PAGE, env->error_code);
493 } else {
494 /* activate soft MMU for this block */
495 env->hflags |= HF_SOFTMMU_MASK;
496 sigprocmask(SIG_SETMASK, old_set, NULL);
497 cpu_loop_exit();
498 }
499 /* never comes here */
500 return 1;
501 }
502
503 #elif defined(TARGET_ARM)
504 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
505 int is_write, sigset_t *old_set)
506 {
507 /* XXX: do more */
508 return 0;
509 }
510 #elif defined(TARGET_SPARC)
511 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
512 int is_write, sigset_t *old_set)
513 {
514 return 0;
515 }
516 #else
517 #error unsupported target CPU
518 #endif
519
520 #if defined(__i386__)
521
522 int cpu_signal_handler(int host_signum, struct siginfo *info,
523 void *puc)
524 {
525 struct ucontext *uc = puc;
526 unsigned long pc;
527
528 #ifndef REG_EIP
529 /* for glibc 2.1 */
530 #define REG_EIP EIP
531 #define REG_ERR ERR
532 #define REG_TRAPNO TRAPNO
533 #endif
534 pc = uc->uc_mcontext.gregs[REG_EIP];
535 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
536 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
537 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
538 &uc->uc_sigmask);
539 }
540
541 #elif defined(__powerpc)
542
543 int cpu_signal_handler(int host_signum, struct siginfo *info,
544 void *puc)
545 {
546 struct ucontext *uc = puc;
547 struct pt_regs *regs = uc->uc_mcontext.regs;
548 unsigned long pc;
549 int is_write;
550
551 pc = regs->nip;
552 is_write = 0;
553 #if 0
554 /* ppc 4xx case */
555 if (regs->dsisr & 0x00800000)
556 is_write = 1;
557 #else
558 if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
559 is_write = 1;
560 #endif
561 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
562 is_write, &uc->uc_sigmask);
563 }
564
565 #elif defined(__alpha__)
566
567 int cpu_signal_handler(int host_signum, struct siginfo *info,
568 void *puc)
569 {
570 struct ucontext *uc = puc;
571 uint32_t *pc = uc->uc_mcontext.sc_pc;
572 uint32_t insn = *pc;
573 int is_write = 0;
574
575 /* XXX: need kernel patch to get write flag faster */
576 switch (insn >> 26) {
577 case 0x0d: // stw
578 case 0x0e: // stb
579 case 0x0f: // stq_u
580 case 0x24: // stf
581 case 0x25: // stg
582 case 0x26: // sts
583 case 0x27: // stt
584 case 0x2c: // stl
585 case 0x2d: // stq
586 case 0x2e: // stl_c
587 case 0x2f: // stq_c
588 is_write = 1;
589 }
590
591 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
592 is_write, &uc->uc_sigmask);
593 }
594 #elif defined(__sparc__)
595
596 int cpu_signal_handler(int host_signum, struct siginfo *info,
597 void *puc)
598 {
599 uint32_t *regs = (uint32_t *)(info + 1);
600 void *sigmask = (regs + 20);
601 unsigned long pc;
602 int is_write;
603 uint32_t insn;
604
605 /* XXX: is there a standard glibc define ? */
606 pc = regs[1];
607 /* XXX: need kernel patch to get write flag faster */
608 is_write = 0;
609 insn = *(uint32_t *)pc;
610 if ((insn >> 30) == 3) {
611 switch((insn >> 19) & 0x3f) {
612 case 0x05: // stb
613 case 0x06: // sth
614 case 0x04: // st
615 case 0x07: // std
616 case 0x24: // stf
617 case 0x27: // stdf
618 case 0x25: // stfsr
619 is_write = 1;
620 break;
621 }
622 }
623 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
624 is_write, sigmask);
625 }
626
627 #elif defined(__arm__)
628
629 int cpu_signal_handler(int host_signum, struct siginfo *info,
630 void *puc)
631 {
632 struct ucontext *uc = puc;
633 unsigned long pc;
634 int is_write;
635
636 pc = uc->uc_mcontext.gregs[R15];
637 /* XXX: compute is_write */
638 is_write = 0;
639 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
640 is_write,
641 &uc->uc_sigmask);
642 }
643
644 #elif defined(__mc68000)
645
646 int cpu_signal_handler(int host_signum, struct siginfo *info,
647 void *puc)
648 {
649 struct ucontext *uc = puc;
650 unsigned long pc;
651 int is_write;
652
653 pc = uc->uc_mcontext.gregs[16];
654 /* XXX: compute is_write */
655 is_write = 0;
656 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
657 is_write,
658 &uc->uc_sigmask);
659 }
660
661 #else
662
663 #error host CPU specific signal handler needed
664
665 #endif