]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
m68k: use caller supplied CPUState for interrupt related stuff
[qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "qemu-barrier.h"
24
25 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
26 // Work around ugly bugs in glibc that mangle global register contents
27 #undef env
28 #define env cpu_single_env
29 #endif
30
31 int tb_invalidated_flag;
32
33 //#define CONFIG_DEBUG_EXEC
34
35 int qemu_cpu_has_work(CPUState *env)
36 {
37 return cpu_has_work(env);
38 }
39
40 void cpu_loop_exit(CPUState *env1)
41 {
42 env1->current_tb = NULL;
43 longjmp(env1->jmp_env, 1);
44 }
45
46 /* exit the current TB from a signal handler. The host registers are
47 restored in a state compatible with the CPU emulator
48 */
49 #if defined(CONFIG_SOFTMMU)
50 void cpu_resume_from_signal(CPUState *env1, void *puc)
51 {
52 env = env1;
53
54 /* XXX: restore cpu registers saved in host registers */
55
56 env->exception_index = -1;
57 longjmp(env->jmp_env, 1);
58 }
59 #endif
60
61 /* Execute the code without caching the generated code. An interpreter
62 could be used if available. */
63 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
64 {
65 unsigned long next_tb;
66 TranslationBlock *tb;
67
68 /* Should never happen.
69 We only end up here when an existing TB is too long. */
70 if (max_cycles > CF_COUNT_MASK)
71 max_cycles = CF_COUNT_MASK;
72
73 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
74 max_cycles);
75 env->current_tb = tb;
76 /* execute the generated code */
77 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
78 env->current_tb = NULL;
79
80 if ((next_tb & 3) == 2) {
81 /* Restore PC. This may happen if async event occurs before
82 the TB starts executing. */
83 cpu_pc_from_tb(env, tb);
84 }
85 tb_phys_invalidate(tb, -1);
86 tb_free(tb);
87 }
88
89 static TranslationBlock *tb_find_slow(target_ulong pc,
90 target_ulong cs_base,
91 uint64_t flags)
92 {
93 TranslationBlock *tb, **ptb1;
94 unsigned int h;
95 tb_page_addr_t phys_pc, phys_page1, phys_page2;
96 target_ulong virt_page2;
97
98 tb_invalidated_flag = 0;
99
100 /* find translated block using physical mappings */
101 phys_pc = get_page_addr_code(env, pc);
102 phys_page1 = phys_pc & TARGET_PAGE_MASK;
103 phys_page2 = -1;
104 h = tb_phys_hash_func(phys_pc);
105 ptb1 = &tb_phys_hash[h];
106 for(;;) {
107 tb = *ptb1;
108 if (!tb)
109 goto not_found;
110 if (tb->pc == pc &&
111 tb->page_addr[0] == phys_page1 &&
112 tb->cs_base == cs_base &&
113 tb->flags == flags) {
114 /* check next page if needed */
115 if (tb->page_addr[1] != -1) {
116 virt_page2 = (pc & TARGET_PAGE_MASK) +
117 TARGET_PAGE_SIZE;
118 phys_page2 = get_page_addr_code(env, virt_page2);
119 if (tb->page_addr[1] == phys_page2)
120 goto found;
121 } else {
122 goto found;
123 }
124 }
125 ptb1 = &tb->phys_hash_next;
126 }
127 not_found:
128 /* if no translated code available, then translate it now */
129 tb = tb_gen_code(env, pc, cs_base, flags, 0);
130
131 found:
132 /* Move the last found TB to the head of the list */
133 if (likely(*ptb1)) {
134 *ptb1 = tb->phys_hash_next;
135 tb->phys_hash_next = tb_phys_hash[h];
136 tb_phys_hash[h] = tb;
137 }
138 /* we add the TB in the virtual pc hash table */
139 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
140 return tb;
141 }
142
143 static inline TranslationBlock *tb_find_fast(void)
144 {
145 TranslationBlock *tb;
146 target_ulong cs_base, pc;
147 int flags;
148
149 /* we record a subset of the CPU state. It will
150 always be the same before a given translated block
151 is executed. */
152 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
153 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
154 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
155 tb->flags != flags)) {
156 tb = tb_find_slow(pc, cs_base, flags);
157 }
158 return tb;
159 }
160
161 static CPUDebugExcpHandler *debug_excp_handler;
162
163 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
164 {
165 CPUDebugExcpHandler *old_handler = debug_excp_handler;
166
167 debug_excp_handler = handler;
168 return old_handler;
169 }
170
171 static void cpu_handle_debug_exception(CPUState *env)
172 {
173 CPUWatchpoint *wp;
174
175 if (!env->watchpoint_hit) {
176 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
177 wp->flags &= ~BP_WATCHPOINT_HIT;
178 }
179 }
180 if (debug_excp_handler) {
181 debug_excp_handler(env);
182 }
183 }
184
185 /* main execution loop */
186
187 volatile sig_atomic_t exit_request;
188
189 int cpu_exec(CPUState *env1)
190 {
191 volatile host_reg_t saved_env_reg;
192 int ret, interrupt_request;
193 TranslationBlock *tb;
194 uint8_t *tc_ptr;
195 unsigned long next_tb;
196
197 if (env1->halted) {
198 if (!cpu_has_work(env1)) {
199 return EXCP_HALTED;
200 }
201
202 env1->halted = 0;
203 }
204
205 cpu_single_env = env1;
206
207 /* the access to env below is actually saving the global register's
208 value, so that files not including target-xyz/exec.h are free to
209 use it. */
210 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg) != sizeof (env));
211 saved_env_reg = (host_reg_t) env;
212 barrier();
213 env = env1;
214
215 if (unlikely(exit_request)) {
216 env->exit_request = 1;
217 }
218
219 #if defined(TARGET_I386)
220 /* put eflags in CPU temporary format */
221 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
222 DF = 1 - (2 * ((env->eflags >> 10) & 1));
223 CC_OP = CC_OP_EFLAGS;
224 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
225 #elif defined(TARGET_SPARC)
226 #elif defined(TARGET_M68K)
227 env->cc_op = CC_OP_FLAGS;
228 env->cc_dest = env->sr & 0xf;
229 env->cc_x = (env->sr >> 4) & 1;
230 #elif defined(TARGET_ALPHA)
231 #elif defined(TARGET_ARM)
232 #elif defined(TARGET_UNICORE32)
233 #elif defined(TARGET_PPC)
234 #elif defined(TARGET_LM32)
235 #elif defined(TARGET_MICROBLAZE)
236 #elif defined(TARGET_MIPS)
237 #elif defined(TARGET_SH4)
238 #elif defined(TARGET_CRIS)
239 #elif defined(TARGET_S390X)
240 /* XXXXX */
241 #else
242 #error unsupported target CPU
243 #endif
244 env->exception_index = -1;
245
246 /* prepare setjmp context for exception handling */
247 for(;;) {
248 if (setjmp(env->jmp_env) == 0) {
249 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
250 #undef env
251 env = cpu_single_env;
252 #define env cpu_single_env
253 #endif
254 /* if an exception is pending, we execute it here */
255 if (env->exception_index >= 0) {
256 if (env->exception_index >= EXCP_INTERRUPT) {
257 /* exit request from the cpu execution loop */
258 ret = env->exception_index;
259 if (ret == EXCP_DEBUG) {
260 cpu_handle_debug_exception(env);
261 }
262 break;
263 } else {
264 #if defined(CONFIG_USER_ONLY)
265 /* if user mode only, we simulate a fake exception
266 which will be handled outside the cpu execution
267 loop */
268 #if defined(TARGET_I386)
269 do_interrupt(env);
270 #endif
271 ret = env->exception_index;
272 break;
273 #else
274 #if defined(TARGET_I386)
275 do_interrupt(env);
276 #elif defined(TARGET_PPC)
277 do_interrupt(env);
278 #elif defined(TARGET_LM32)
279 do_interrupt(env);
280 #elif defined(TARGET_MICROBLAZE)
281 do_interrupt(env);
282 #elif defined(TARGET_MIPS)
283 do_interrupt(env);
284 #elif defined(TARGET_SPARC)
285 do_interrupt(env);
286 #elif defined(TARGET_ARM)
287 do_interrupt(env);
288 #elif defined(TARGET_UNICORE32)
289 do_interrupt(env);
290 #elif defined(TARGET_SH4)
291 do_interrupt(env);
292 #elif defined(TARGET_ALPHA)
293 do_interrupt(env);
294 #elif defined(TARGET_CRIS)
295 do_interrupt(env);
296 #elif defined(TARGET_M68K)
297 do_interrupt(env);
298 #elif defined(TARGET_S390X)
299 do_interrupt(env);
300 #endif
301 env->exception_index = -1;
302 #endif
303 }
304 }
305
306 next_tb = 0; /* force lookup of first TB */
307 for(;;) {
308 interrupt_request = env->interrupt_request;
309 if (unlikely(interrupt_request)) {
310 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
311 /* Mask out external interrupts for this step. */
312 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
313 }
314 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
315 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
316 env->exception_index = EXCP_DEBUG;
317 cpu_loop_exit(env);
318 }
319 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
320 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
321 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
322 if (interrupt_request & CPU_INTERRUPT_HALT) {
323 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
324 env->halted = 1;
325 env->exception_index = EXCP_HLT;
326 cpu_loop_exit(env);
327 }
328 #endif
329 #if defined(TARGET_I386)
330 if (interrupt_request & CPU_INTERRUPT_INIT) {
331 svm_check_intercept(env, SVM_EXIT_INIT);
332 do_cpu_init(env);
333 env->exception_index = EXCP_HALTED;
334 cpu_loop_exit(env);
335 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
336 do_cpu_sipi(env);
337 } else if (env->hflags2 & HF2_GIF_MASK) {
338 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
339 !(env->hflags & HF_SMM_MASK)) {
340 svm_check_intercept(env, SVM_EXIT_SMI);
341 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
342 do_smm_enter(env);
343 next_tb = 0;
344 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
345 !(env->hflags2 & HF2_NMI_MASK)) {
346 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
347 env->hflags2 |= HF2_NMI_MASK;
348 do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
349 next_tb = 0;
350 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
351 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
352 do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
353 next_tb = 0;
354 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
355 (((env->hflags2 & HF2_VINTR_MASK) &&
356 (env->hflags2 & HF2_HIF_MASK)) ||
357 (!(env->hflags2 & HF2_VINTR_MASK) &&
358 (env->eflags & IF_MASK &&
359 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
360 int intno;
361 svm_check_intercept(env, SVM_EXIT_INTR);
362 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
363 intno = cpu_get_pic_interrupt(env);
364 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
365 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
366 #undef env
367 env = cpu_single_env;
368 #define env cpu_single_env
369 #endif
370 do_interrupt_x86_hardirq(env, intno, 1);
371 /* ensure that no TB jump will be modified as
372 the program flow was changed */
373 next_tb = 0;
374 #if !defined(CONFIG_USER_ONLY)
375 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
376 (env->eflags & IF_MASK) &&
377 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
378 int intno;
379 /* FIXME: this should respect TPR */
380 svm_check_intercept(env, SVM_EXIT_VINTR);
381 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
382 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
383 do_interrupt_x86_hardirq(env, intno, 1);
384 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
385 next_tb = 0;
386 #endif
387 }
388 }
389 #elif defined(TARGET_PPC)
390 #if 0
391 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
392 cpu_reset(env);
393 }
394 #endif
395 if (interrupt_request & CPU_INTERRUPT_HARD) {
396 ppc_hw_interrupt(env);
397 if (env->pending_interrupts == 0)
398 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
399 next_tb = 0;
400 }
401 #elif defined(TARGET_LM32)
402 if ((interrupt_request & CPU_INTERRUPT_HARD)
403 && (env->ie & IE_IE)) {
404 env->exception_index = EXCP_IRQ;
405 do_interrupt(env);
406 next_tb = 0;
407 }
408 #elif defined(TARGET_MICROBLAZE)
409 if ((interrupt_request & CPU_INTERRUPT_HARD)
410 && (env->sregs[SR_MSR] & MSR_IE)
411 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
412 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
413 env->exception_index = EXCP_IRQ;
414 do_interrupt(env);
415 next_tb = 0;
416 }
417 #elif defined(TARGET_MIPS)
418 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
419 cpu_mips_hw_interrupts_pending(env)) {
420 /* Raise it */
421 env->exception_index = EXCP_EXT_INTERRUPT;
422 env->error_code = 0;
423 do_interrupt(env);
424 next_tb = 0;
425 }
426 #elif defined(TARGET_SPARC)
427 if (interrupt_request & CPU_INTERRUPT_HARD) {
428 if (cpu_interrupts_enabled(env) &&
429 env->interrupt_index > 0) {
430 int pil = env->interrupt_index & 0xf;
431 int type = env->interrupt_index & 0xf0;
432
433 if (((type == TT_EXTINT) &&
434 cpu_pil_allowed(env, pil)) ||
435 type != TT_EXTINT) {
436 env->exception_index = env->interrupt_index;
437 do_interrupt(env);
438 next_tb = 0;
439 }
440 }
441 }
442 #elif defined(TARGET_ARM)
443 if (interrupt_request & CPU_INTERRUPT_FIQ
444 && !(env->uncached_cpsr & CPSR_F)) {
445 env->exception_index = EXCP_FIQ;
446 do_interrupt(env);
447 next_tb = 0;
448 }
449 /* ARMv7-M interrupt return works by loading a magic value
450 into the PC. On real hardware the load causes the
451 return to occur. The qemu implementation performs the
452 jump normally, then does the exception return when the
453 CPU tries to execute code at the magic address.
454 This will cause the magic PC value to be pushed to
455 the stack if an interrupt occurred at the wrong time.
456 We avoid this by disabling interrupts when
457 pc contains a magic address. */
458 if (interrupt_request & CPU_INTERRUPT_HARD
459 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
460 || !(env->uncached_cpsr & CPSR_I))) {
461 env->exception_index = EXCP_IRQ;
462 do_interrupt(env);
463 next_tb = 0;
464 }
465 #elif defined(TARGET_UNICORE32)
466 if (interrupt_request & CPU_INTERRUPT_HARD
467 && !(env->uncached_asr & ASR_I)) {
468 do_interrupt(env);
469 next_tb = 0;
470 }
471 #elif defined(TARGET_SH4)
472 if (interrupt_request & CPU_INTERRUPT_HARD) {
473 do_interrupt(env);
474 next_tb = 0;
475 }
476 #elif defined(TARGET_ALPHA)
477 {
478 int idx = -1;
479 /* ??? This hard-codes the OSF/1 interrupt levels. */
480 switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) {
481 case 0 ... 3:
482 if (interrupt_request & CPU_INTERRUPT_HARD) {
483 idx = EXCP_DEV_INTERRUPT;
484 }
485 /* FALLTHRU */
486 case 4:
487 if (interrupt_request & CPU_INTERRUPT_TIMER) {
488 idx = EXCP_CLK_INTERRUPT;
489 }
490 /* FALLTHRU */
491 case 5:
492 if (interrupt_request & CPU_INTERRUPT_SMP) {
493 idx = EXCP_SMP_INTERRUPT;
494 }
495 /* FALLTHRU */
496 case 6:
497 if (interrupt_request & CPU_INTERRUPT_MCHK) {
498 idx = EXCP_MCHK;
499 }
500 }
501 if (idx >= 0) {
502 env->exception_index = idx;
503 env->error_code = 0;
504 do_interrupt(env);
505 next_tb = 0;
506 }
507 }
508 #elif defined(TARGET_CRIS)
509 if (interrupt_request & CPU_INTERRUPT_HARD
510 && (env->pregs[PR_CCS] & I_FLAG)
511 && !env->locked_irq) {
512 env->exception_index = EXCP_IRQ;
513 do_interrupt(env);
514 next_tb = 0;
515 }
516 if (interrupt_request & CPU_INTERRUPT_NMI
517 && (env->pregs[PR_CCS] & M_FLAG)) {
518 env->exception_index = EXCP_NMI;
519 do_interrupt(env);
520 next_tb = 0;
521 }
522 #elif defined(TARGET_M68K)
523 if (interrupt_request & CPU_INTERRUPT_HARD
524 && ((env->sr & SR_I) >> SR_I_SHIFT)
525 < env->pending_level) {
526 /* Real hardware gets the interrupt vector via an
527 IACK cycle at this point. Current emulated
528 hardware doesn't rely on this, so we
529 provide/save the vector when the interrupt is
530 first signalled. */
531 env->exception_index = env->pending_vector;
532 do_interrupt_m68k_hardirq(env);
533 next_tb = 0;
534 }
535 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
536 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
537 (env->psw.mask & PSW_MASK_EXT)) {
538 do_interrupt(env);
539 next_tb = 0;
540 }
541 #endif
542 /* Don't use the cached interrupt_request value,
543 do_interrupt may have updated the EXITTB flag. */
544 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
545 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
546 /* ensure that no TB jump will be modified as
547 the program flow was changed */
548 next_tb = 0;
549 }
550 }
551 if (unlikely(env->exit_request)) {
552 env->exit_request = 0;
553 env->exception_index = EXCP_INTERRUPT;
554 cpu_loop_exit(env);
555 }
556 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
557 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
558 /* restore flags in standard format */
559 #if defined(TARGET_I386)
560 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
561 | (DF & DF_MASK);
562 log_cpu_state(env, X86_DUMP_CCOP);
563 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
564 #elif defined(TARGET_M68K)
565 cpu_m68k_flush_flags(env, env->cc_op);
566 env->cc_op = CC_OP_FLAGS;
567 env->sr = (env->sr & 0xffe0)
568 | env->cc_dest | (env->cc_x << 4);
569 log_cpu_state(env, 0);
570 #else
571 log_cpu_state(env, 0);
572 #endif
573 }
574 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
575 spin_lock(&tb_lock);
576 tb = tb_find_fast();
577 /* Note: we do it here to avoid a gcc bug on Mac OS X when
578 doing it in tb_find_slow */
579 if (tb_invalidated_flag) {
580 /* as some TB could have been invalidated because
581 of memory exceptions while generating the code, we
582 must recompute the hash index here */
583 next_tb = 0;
584 tb_invalidated_flag = 0;
585 }
586 #ifdef CONFIG_DEBUG_EXEC
587 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
588 (long)tb->tc_ptr, tb->pc,
589 lookup_symbol(tb->pc));
590 #endif
591 /* see if we can patch the calling TB. When the TB
592 spans two pages, we cannot safely do a direct
593 jump. */
594 if (next_tb != 0 && tb->page_addr[1] == -1) {
595 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
596 }
597 spin_unlock(&tb_lock);
598
599 /* cpu_interrupt might be called while translating the
600 TB, but before it is linked into a potentially
601 infinite loop and becomes env->current_tb. Avoid
602 starting execution if there is a pending interrupt. */
603 env->current_tb = tb;
604 barrier();
605 if (likely(!env->exit_request)) {
606 tc_ptr = tb->tc_ptr;
607 /* execute the generated code */
608 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
609 #undef env
610 env = cpu_single_env;
611 #define env cpu_single_env
612 #endif
613 next_tb = tcg_qemu_tb_exec(tc_ptr);
614 if ((next_tb & 3) == 2) {
615 /* Instruction counter expired. */
616 int insns_left;
617 tb = (TranslationBlock *)(long)(next_tb & ~3);
618 /* Restore PC. */
619 cpu_pc_from_tb(env, tb);
620 insns_left = env->icount_decr.u32;
621 if (env->icount_extra && insns_left >= 0) {
622 /* Refill decrementer and continue execution. */
623 env->icount_extra += insns_left;
624 if (env->icount_extra > 0xffff) {
625 insns_left = 0xffff;
626 } else {
627 insns_left = env->icount_extra;
628 }
629 env->icount_extra -= insns_left;
630 env->icount_decr.u16.low = insns_left;
631 } else {
632 if (insns_left > 0) {
633 /* Execute remaining instructions. */
634 cpu_exec_nocache(insns_left, tb);
635 }
636 env->exception_index = EXCP_INTERRUPT;
637 next_tb = 0;
638 cpu_loop_exit(env);
639 }
640 }
641 }
642 env->current_tb = NULL;
643 /* reset soft MMU for next block (it can currently
644 only be set by a memory fault) */
645 } /* for(;;) */
646 }
647 } /* for(;;) */
648
649
650 #if defined(TARGET_I386)
651 /* restore flags in standard format */
652 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
653 | (DF & DF_MASK);
654 #elif defined(TARGET_ARM)
655 /* XXX: Save/restore host fpu exception state?. */
656 #elif defined(TARGET_UNICORE32)
657 #elif defined(TARGET_SPARC)
658 #elif defined(TARGET_PPC)
659 #elif defined(TARGET_LM32)
660 #elif defined(TARGET_M68K)
661 cpu_m68k_flush_flags(env, env->cc_op);
662 env->cc_op = CC_OP_FLAGS;
663 env->sr = (env->sr & 0xffe0)
664 | env->cc_dest | (env->cc_x << 4);
665 #elif defined(TARGET_MICROBLAZE)
666 #elif defined(TARGET_MIPS)
667 #elif defined(TARGET_SH4)
668 #elif defined(TARGET_ALPHA)
669 #elif defined(TARGET_CRIS)
670 #elif defined(TARGET_S390X)
671 /* XXXXX */
672 #else
673 #error unsupported target CPU
674 #endif
675
676 /* restore global registers */
677 barrier();
678 env = (void *) saved_env_reg;
679
680 /* fail safe : never use cpu_single_env outside cpu_exec() */
681 cpu_single_env = NULL;
682 return ret;
683 }