]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
Add Arm926 core support.
[qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
23
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
37
38 int tb_invalidated_flag;
39
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
42
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
46 {
47 longjmp(env->jmp_env, 1);
48 }
49 #endif
50 #ifndef TARGET_SPARC
51 #define reg_T2
52 #endif
53
54 /* exit the current TB from a signal handler. The host registers are
55 restored in a state compatible with the CPU emulator
56 */
57 void cpu_resume_from_signal(CPUState *env1, void *puc)
58 {
59 #if !defined(CONFIG_SOFTMMU)
60 struct ucontext *uc = puc;
61 #endif
62
63 env = env1;
64
65 /* XXX: restore cpu registers saved in host registers */
66
67 #if !defined(CONFIG_SOFTMMU)
68 if (puc) {
69 /* XXX: use siglongjmp ? */
70 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71 }
72 #endif
73 longjmp(env->jmp_env, 1);
74 }
75
76
77 static TranslationBlock *tb_find_slow(target_ulong pc,
78 target_ulong cs_base,
79 unsigned int flags)
80 {
81 TranslationBlock *tb, **ptb1;
82 int code_gen_size;
83 unsigned int h;
84 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85 uint8_t *tc_ptr;
86
87 spin_lock(&tb_lock);
88
89 tb_invalidated_flag = 0;
90
91 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
93 /* find translated block using physical mappings */
94 phys_pc = get_phys_addr_code(env, pc);
95 phys_page1 = phys_pc & TARGET_PAGE_MASK;
96 phys_page2 = -1;
97 h = tb_phys_hash_func(phys_pc);
98 ptb1 = &tb_phys_hash[h];
99 for(;;) {
100 tb = *ptb1;
101 if (!tb)
102 goto not_found;
103 if (tb->pc == pc &&
104 tb->page_addr[0] == phys_page1 &&
105 tb->cs_base == cs_base &&
106 tb->flags == flags) {
107 /* check next page if needed */
108 if (tb->page_addr[1] != -1) {
109 virt_page2 = (pc & TARGET_PAGE_MASK) +
110 TARGET_PAGE_SIZE;
111 phys_page2 = get_phys_addr_code(env, virt_page2);
112 if (tb->page_addr[1] == phys_page2)
113 goto found;
114 } else {
115 goto found;
116 }
117 }
118 ptb1 = &tb->phys_hash_next;
119 }
120 not_found:
121 /* if no translated code available, then translate it now */
122 tb = tb_alloc(pc);
123 if (!tb) {
124 /* flush must be done */
125 tb_flush(env);
126 /* cannot fail at this point */
127 tb = tb_alloc(pc);
128 /* don't forget to invalidate previous TB info */
129 tb_invalidated_flag = 1;
130 }
131 tc_ptr = code_gen_ptr;
132 tb->tc_ptr = tc_ptr;
133 tb->cs_base = cs_base;
134 tb->flags = flags;
135 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
138 /* check next page if needed */
139 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140 phys_page2 = -1;
141 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142 phys_page2 = get_phys_addr_code(env, virt_page2);
143 }
144 tb_link_phys(tb, phys_pc, phys_page2);
145
146 found:
147 /* we add the TB in the virtual pc hash table */
148 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149 spin_unlock(&tb_lock);
150 return tb;
151 }
152
153 static inline TranslationBlock *tb_find_fast(void)
154 {
155 TranslationBlock *tb;
156 target_ulong cs_base, pc;
157 unsigned int flags;
158
159 /* we record a subset of the CPU state. It will
160 always be the same before a given translated block
161 is executed. */
162 #if defined(TARGET_I386)
163 flags = env->hflags;
164 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165 cs_base = env->segs[R_CS].base;
166 pc = cs_base + env->eip;
167 #elif defined(TARGET_ARM)
168 flags = env->thumb | (env->vfp.vec_len << 1)
169 | (env->vfp.vec_stride << 4);
170 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171 flags |= (1 << 6);
172 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173 flags |= (1 << 7);
174 cs_base = 0;
175 pc = env->regs[15];
176 #elif defined(TARGET_SPARC)
177 #ifdef TARGET_SPARC64
178 flags = (env->pstate << 2) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
179 #else
180 flags = env->psrs | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1);
181 #endif
182 cs_base = env->npc;
183 pc = env->pc;
184 #elif defined(TARGET_PPC)
185 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
186 (msr_se << MSR_SE) | (msr_le << MSR_LE);
187 cs_base = 0;
188 pc = env->nip;
189 #elif defined(TARGET_MIPS)
190 flags = env->hflags & (MIPS_HFLAGS_TMASK | MIPS_HFLAG_BMASK);
191 cs_base = 0;
192 pc = env->PC;
193 #else
194 #error unsupported CPU
195 #endif
196 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
197 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
198 tb->flags != flags, 0)) {
199 tb = tb_find_slow(pc, cs_base, flags);
200 /* Note: we do it here to avoid a gcc bug on Mac OS X when
201 doing it in tb_find_slow */
202 if (tb_invalidated_flag) {
203 /* as some TB could have been invalidated because
204 of memory exceptions while generating the code, we
205 must recompute the hash index here */
206 T0 = 0;
207 }
208 }
209 return tb;
210 }
211
212
213 /* main execution loop */
214
215 int cpu_exec(CPUState *env1)
216 {
217 int saved_T0, saved_T1;
218 #if defined(reg_T2)
219 int saved_T2;
220 #endif
221 CPUState *saved_env;
222 #if defined(TARGET_I386)
223 #ifdef reg_EAX
224 int saved_EAX;
225 #endif
226 #ifdef reg_ECX
227 int saved_ECX;
228 #endif
229 #ifdef reg_EDX
230 int saved_EDX;
231 #endif
232 #ifdef reg_EBX
233 int saved_EBX;
234 #endif
235 #ifdef reg_ESP
236 int saved_ESP;
237 #endif
238 #ifdef reg_EBP
239 int saved_EBP;
240 #endif
241 #ifdef reg_ESI
242 int saved_ESI;
243 #endif
244 #ifdef reg_EDI
245 int saved_EDI;
246 #endif
247 #elif defined(TARGET_SPARC)
248 #if defined(reg_REGWPTR)
249 uint32_t *saved_regwptr;
250 #endif
251 #endif
252 #ifdef __sparc__
253 int saved_i7, tmp_T0;
254 #endif
255 int ret, interrupt_request;
256 void (*gen_func)(void);
257 TranslationBlock *tb;
258 uint8_t *tc_ptr;
259
260 #if defined(TARGET_I386)
261 /* handle exit of HALTED state */
262 if (env1->hflags & HF_HALTED_MASK) {
263 /* disable halt condition */
264 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
265 (env1->eflags & IF_MASK)) {
266 env1->hflags &= ~HF_HALTED_MASK;
267 } else {
268 return EXCP_HALTED;
269 }
270 }
271 #elif defined(TARGET_PPC)
272 if (env1->halted) {
273 if (env1->msr[MSR_EE] &&
274 (env1->interrupt_request &
275 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
276 env1->halted = 0;
277 } else {
278 return EXCP_HALTED;
279 }
280 }
281 #elif defined(TARGET_SPARC)
282 if (env1->halted) {
283 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
284 (env1->psret != 0)) {
285 env1->halted = 0;
286 } else {
287 return EXCP_HALTED;
288 }
289 }
290 #elif defined(TARGET_ARM)
291 if (env1->halted) {
292 /* An interrupt wakes the CPU even if the I and F CPSR bits are
293 set. */
294 if (env1->interrupt_request
295 & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
296 env1->halted = 0;
297 } else {
298 return EXCP_HALTED;
299 }
300 }
301 #elif defined(TARGET_MIPS)
302 if (env1->halted) {
303 if (env1->interrupt_request &
304 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
305 env1->halted = 0;
306 } else {
307 return EXCP_HALTED;
308 }
309 }
310 #endif
311
312 cpu_single_env = env1;
313
314 /* first we save global registers */
315 saved_env = env;
316 env = env1;
317 saved_T0 = T0;
318 saved_T1 = T1;
319 #if defined(reg_T2)
320 saved_T2 = T2;
321 #endif
322 #ifdef __sparc__
323 /* we also save i7 because longjmp may not restore it */
324 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
325 #endif
326
327 #if defined(TARGET_I386)
328 #ifdef reg_EAX
329 saved_EAX = EAX;
330 #endif
331 #ifdef reg_ECX
332 saved_ECX = ECX;
333 #endif
334 #ifdef reg_EDX
335 saved_EDX = EDX;
336 #endif
337 #ifdef reg_EBX
338 saved_EBX = EBX;
339 #endif
340 #ifdef reg_ESP
341 saved_ESP = ESP;
342 #endif
343 #ifdef reg_EBP
344 saved_EBP = EBP;
345 #endif
346 #ifdef reg_ESI
347 saved_ESI = ESI;
348 #endif
349 #ifdef reg_EDI
350 saved_EDI = EDI;
351 #endif
352
353 env_to_regs();
354 /* put eflags in CPU temporary format */
355 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
356 DF = 1 - (2 * ((env->eflags >> 10) & 1));
357 CC_OP = CC_OP_EFLAGS;
358 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
359 #elif defined(TARGET_ARM)
360 #elif defined(TARGET_SPARC)
361 #if defined(reg_REGWPTR)
362 saved_regwptr = REGWPTR;
363 #endif
364 #elif defined(TARGET_PPC)
365 #elif defined(TARGET_MIPS)
366 #else
367 #error unsupported target CPU
368 #endif
369 env->exception_index = -1;
370
371 /* prepare setjmp context for exception handling */
372 for(;;) {
373 if (setjmp(env->jmp_env) == 0) {
374 env->current_tb = NULL;
375 /* if an exception is pending, we execute it here */
376 if (env->exception_index >= 0) {
377 if (env->exception_index >= EXCP_INTERRUPT) {
378 /* exit request from the cpu execution loop */
379 ret = env->exception_index;
380 break;
381 } else if (env->user_mode_only) {
382 /* if user mode only, we simulate a fake exception
383 which will be hanlded outside the cpu execution
384 loop */
385 #if defined(TARGET_I386)
386 do_interrupt_user(env->exception_index,
387 env->exception_is_int,
388 env->error_code,
389 env->exception_next_eip);
390 #endif
391 ret = env->exception_index;
392 break;
393 } else {
394 #if defined(TARGET_I386)
395 /* simulate a real cpu exception. On i386, it can
396 trigger new exceptions, but we do not handle
397 double or triple faults yet. */
398 do_interrupt(env->exception_index,
399 env->exception_is_int,
400 env->error_code,
401 env->exception_next_eip, 0);
402 #elif defined(TARGET_PPC)
403 do_interrupt(env);
404 #elif defined(TARGET_MIPS)
405 do_interrupt(env);
406 #elif defined(TARGET_SPARC)
407 do_interrupt(env->exception_index);
408 #elif defined(TARGET_ARM)
409 do_interrupt(env);
410 #endif
411 }
412 env->exception_index = -1;
413 }
414 #ifdef USE_KQEMU
415 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
416 int ret;
417 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
418 ret = kqemu_cpu_exec(env);
419 /* put eflags in CPU temporary format */
420 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
421 DF = 1 - (2 * ((env->eflags >> 10) & 1));
422 CC_OP = CC_OP_EFLAGS;
423 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
424 if (ret == 1) {
425 /* exception */
426 longjmp(env->jmp_env, 1);
427 } else if (ret == 2) {
428 /* softmmu execution needed */
429 } else {
430 if (env->interrupt_request != 0) {
431 /* hardware interrupt will be executed just after */
432 } else {
433 /* otherwise, we restart */
434 longjmp(env->jmp_env, 1);
435 }
436 }
437 }
438 #endif
439
440 T0 = 0; /* force lookup of first TB */
441 for(;;) {
442 #ifdef __sparc__
443 /* g1 can be modified by some libc? functions */
444 tmp_T0 = T0;
445 #endif
446 interrupt_request = env->interrupt_request;
447 if (__builtin_expect(interrupt_request, 0)) {
448 #if defined(TARGET_I386)
449 /* if hardware interrupt pending, we execute it */
450 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
451 (env->eflags & IF_MASK) &&
452 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
453 int intno;
454 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
455 intno = cpu_get_pic_interrupt(env);
456 if (loglevel & CPU_LOG_TB_IN_ASM) {
457 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
458 }
459 do_interrupt(intno, 0, 0, 0, 1);
460 /* ensure that no TB jump will be modified as
461 the program flow was changed */
462 #ifdef __sparc__
463 tmp_T0 = 0;
464 #else
465 T0 = 0;
466 #endif
467 }
468 #elif defined(TARGET_PPC)
469 #if 0
470 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
471 cpu_ppc_reset(env);
472 }
473 #endif
474 if (msr_ee != 0) {
475 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
476 /* Raise it */
477 env->exception_index = EXCP_EXTERNAL;
478 env->error_code = 0;
479 do_interrupt(env);
480 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
481 #ifdef __sparc__
482 tmp_T0 = 0;
483 #else
484 T0 = 0;
485 #endif
486 } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
487 /* Raise it */
488 env->exception_index = EXCP_DECR;
489 env->error_code = 0;
490 do_interrupt(env);
491 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
492 #ifdef __sparc__
493 tmp_T0 = 0;
494 #else
495 T0 = 0;
496 #endif
497 }
498 }
499 #elif defined(TARGET_MIPS)
500 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
501 (env->CP0_Status & (1 << CP0St_IE)) &&
502 (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
503 !(env->hflags & MIPS_HFLAG_EXL) &&
504 !(env->hflags & MIPS_HFLAG_ERL) &&
505 !(env->hflags & MIPS_HFLAG_DM)) {
506 /* Raise it */
507 env->exception_index = EXCP_EXT_INTERRUPT;
508 env->error_code = 0;
509 do_interrupt(env);
510 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
511 #ifdef __sparc__
512 tmp_T0 = 0;
513 #else
514 T0 = 0;
515 #endif
516 }
517 #elif defined(TARGET_SPARC)
518 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
519 (env->psret != 0)) {
520 int pil = env->interrupt_index & 15;
521 int type = env->interrupt_index & 0xf0;
522
523 if (((type == TT_EXTINT) &&
524 (pil == 15 || pil > env->psrpil)) ||
525 type != TT_EXTINT) {
526 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
527 do_interrupt(env->interrupt_index);
528 env->interrupt_index = 0;
529 #ifdef __sparc__
530 tmp_T0 = 0;
531 #else
532 T0 = 0;
533 #endif
534 }
535 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
536 //do_interrupt(0, 0, 0, 0, 0);
537 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
538 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
539 env1->halted = 1;
540 return EXCP_HALTED;
541 }
542 #elif defined(TARGET_ARM)
543 if (interrupt_request & CPU_INTERRUPT_FIQ
544 && !(env->uncached_cpsr & CPSR_F)) {
545 env->exception_index = EXCP_FIQ;
546 do_interrupt(env);
547 }
548 if (interrupt_request & CPU_INTERRUPT_HARD
549 && !(env->uncached_cpsr & CPSR_I)) {
550 env->exception_index = EXCP_IRQ;
551 do_interrupt(env);
552 }
553 #endif
554 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
555 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
556 /* ensure that no TB jump will be modified as
557 the program flow was changed */
558 #ifdef __sparc__
559 tmp_T0 = 0;
560 #else
561 T0 = 0;
562 #endif
563 }
564 if (interrupt_request & CPU_INTERRUPT_EXIT) {
565 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
566 env->exception_index = EXCP_INTERRUPT;
567 cpu_loop_exit();
568 }
569 }
570 #ifdef DEBUG_EXEC
571 if ((loglevel & CPU_LOG_TB_CPU)) {
572 #if defined(TARGET_I386)
573 /* restore flags in standard format */
574 #ifdef reg_EAX
575 env->regs[R_EAX] = EAX;
576 #endif
577 #ifdef reg_EBX
578 env->regs[R_EBX] = EBX;
579 #endif
580 #ifdef reg_ECX
581 env->regs[R_ECX] = ECX;
582 #endif
583 #ifdef reg_EDX
584 env->regs[R_EDX] = EDX;
585 #endif
586 #ifdef reg_ESI
587 env->regs[R_ESI] = ESI;
588 #endif
589 #ifdef reg_EDI
590 env->regs[R_EDI] = EDI;
591 #endif
592 #ifdef reg_EBP
593 env->regs[R_EBP] = EBP;
594 #endif
595 #ifdef reg_ESP
596 env->regs[R_ESP] = ESP;
597 #endif
598 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
599 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
600 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
601 #elif defined(TARGET_ARM)
602 cpu_dump_state(env, logfile, fprintf, 0);
603 #elif defined(TARGET_SPARC)
604 REGWPTR = env->regbase + (env->cwp * 16);
605 env->regwptr = REGWPTR;
606 cpu_dump_state(env, logfile, fprintf, 0);
607 #elif defined(TARGET_PPC)
608 cpu_dump_state(env, logfile, fprintf, 0);
609 #elif defined(TARGET_MIPS)
610 cpu_dump_state(env, logfile, fprintf, 0);
611 #else
612 #error unsupported target CPU
613 #endif
614 }
615 #endif
616 tb = tb_find_fast();
617 #ifdef DEBUG_EXEC
618 if ((loglevel & CPU_LOG_EXEC)) {
619 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
620 (long)tb->tc_ptr, tb->pc,
621 lookup_symbol(tb->pc));
622 }
623 #endif
624 #ifdef __sparc__
625 T0 = tmp_T0;
626 #endif
627 /* see if we can patch the calling TB. When the TB
628 spans two pages, we cannot safely do a direct
629 jump. */
630 {
631 if (T0 != 0 &&
632 #if USE_KQEMU
633 (env->kqemu_enabled != 2) &&
634 #endif
635 tb->page_addr[1] == -1
636 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
637 && (tb->cflags & CF_CODE_COPY) ==
638 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
639 #endif
640 ) {
641 spin_lock(&tb_lock);
642 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
643 #if defined(USE_CODE_COPY)
644 /* propagates the FP use info */
645 ((TranslationBlock *)(T0 & ~3))->cflags |=
646 (tb->cflags & CF_FP_USED);
647 #endif
648 spin_unlock(&tb_lock);
649 }
650 }
651 tc_ptr = tb->tc_ptr;
652 env->current_tb = tb;
653 /* execute the generated code */
654 gen_func = (void *)tc_ptr;
655 #if defined(__sparc__)
656 __asm__ __volatile__("call %0\n\t"
657 "mov %%o7,%%i0"
658 : /* no outputs */
659 : "r" (gen_func)
660 : "i0", "i1", "i2", "i3", "i4", "i5");
661 #elif defined(__arm__)
662 asm volatile ("mov pc, %0\n\t"
663 ".global exec_loop\n\t"
664 "exec_loop:\n\t"
665 : /* no outputs */
666 : "r" (gen_func)
667 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
668 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
669 {
670 if (!(tb->cflags & CF_CODE_COPY)) {
671 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
672 save_native_fp_state(env);
673 }
674 gen_func();
675 } else {
676 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
677 restore_native_fp_state(env);
678 }
679 /* we work with native eflags */
680 CC_SRC = cc_table[CC_OP].compute_all();
681 CC_OP = CC_OP_EFLAGS;
682 asm(".globl exec_loop\n"
683 "\n"
684 "debug1:\n"
685 " pushl %%ebp\n"
686 " fs movl %10, %9\n"
687 " fs movl %11, %%eax\n"
688 " andl $0x400, %%eax\n"
689 " fs orl %8, %%eax\n"
690 " pushl %%eax\n"
691 " popf\n"
692 " fs movl %%esp, %12\n"
693 " fs movl %0, %%eax\n"
694 " fs movl %1, %%ecx\n"
695 " fs movl %2, %%edx\n"
696 " fs movl %3, %%ebx\n"
697 " fs movl %4, %%esp\n"
698 " fs movl %5, %%ebp\n"
699 " fs movl %6, %%esi\n"
700 " fs movl %7, %%edi\n"
701 " fs jmp *%9\n"
702 "exec_loop:\n"
703 " fs movl %%esp, %4\n"
704 " fs movl %12, %%esp\n"
705 " fs movl %%eax, %0\n"
706 " fs movl %%ecx, %1\n"
707 " fs movl %%edx, %2\n"
708 " fs movl %%ebx, %3\n"
709 " fs movl %%ebp, %5\n"
710 " fs movl %%esi, %6\n"
711 " fs movl %%edi, %7\n"
712 " pushf\n"
713 " popl %%eax\n"
714 " movl %%eax, %%ecx\n"
715 " andl $0x400, %%ecx\n"
716 " shrl $9, %%ecx\n"
717 " andl $0x8d5, %%eax\n"
718 " fs movl %%eax, %8\n"
719 " movl $1, %%eax\n"
720 " subl %%ecx, %%eax\n"
721 " fs movl %%eax, %11\n"
722 " fs movl %9, %%ebx\n" /* get T0 value */
723 " popl %%ebp\n"
724 :
725 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
726 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
727 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
728 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
729 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
730 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
731 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
732 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
733 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
734 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
735 "a" (gen_func),
736 "m" (*(uint8_t *)offsetof(CPUState, df)),
737 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
738 : "%ecx", "%edx"
739 );
740 }
741 }
742 #elif defined(__ia64)
743 struct fptr {
744 void *ip;
745 void *gp;
746 } fp;
747
748 fp.ip = tc_ptr;
749 fp.gp = code_gen_buffer + 2 * (1 << 20);
750 (*(void (*)(void)) &fp)();
751 #else
752 gen_func();
753 #endif
754 env->current_tb = NULL;
755 /* reset soft MMU for next block (it can currently
756 only be set by a memory fault) */
757 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
758 if (env->hflags & HF_SOFTMMU_MASK) {
759 env->hflags &= ~HF_SOFTMMU_MASK;
760 /* do not allow linking to another block */
761 T0 = 0;
762 }
763 #endif
764 #if defined(USE_KQEMU)
765 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
766 if (kqemu_is_ok(env) &&
767 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
768 cpu_loop_exit();
769 }
770 #endif
771 }
772 } else {
773 env_to_regs();
774 }
775 } /* for(;;) */
776
777
778 #if defined(TARGET_I386)
779 #if defined(USE_CODE_COPY)
780 if (env->native_fp_regs) {
781 save_native_fp_state(env);
782 }
783 #endif
784 /* restore flags in standard format */
785 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
786
787 /* restore global registers */
788 #ifdef reg_EAX
789 EAX = saved_EAX;
790 #endif
791 #ifdef reg_ECX
792 ECX = saved_ECX;
793 #endif
794 #ifdef reg_EDX
795 EDX = saved_EDX;
796 #endif
797 #ifdef reg_EBX
798 EBX = saved_EBX;
799 #endif
800 #ifdef reg_ESP
801 ESP = saved_ESP;
802 #endif
803 #ifdef reg_EBP
804 EBP = saved_EBP;
805 #endif
806 #ifdef reg_ESI
807 ESI = saved_ESI;
808 #endif
809 #ifdef reg_EDI
810 EDI = saved_EDI;
811 #endif
812 #elif defined(TARGET_ARM)
813 /* XXX: Save/restore host fpu exception state?. */
814 #elif defined(TARGET_SPARC)
815 #if defined(reg_REGWPTR)
816 REGWPTR = saved_regwptr;
817 #endif
818 #elif defined(TARGET_PPC)
819 #elif defined(TARGET_MIPS)
820 #else
821 #error unsupported target CPU
822 #endif
823 #ifdef __sparc__
824 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
825 #endif
826 T0 = saved_T0;
827 T1 = saved_T1;
828 #if defined(reg_T2)
829 T2 = saved_T2;
830 #endif
831 env = saved_env;
832 /* fail safe : never use cpu_single_env outside cpu_exec() */
833 cpu_single_env = NULL;
834 return ret;
835 }
836
837 /* must only be called from the generated code as an exception can be
838 generated */
839 void tb_invalidate_page_range(target_ulong start, target_ulong end)
840 {
841 /* XXX: cannot enable it yet because it yields to MMU exception
842 where NIP != read address on PowerPC */
843 #if 0
844 target_ulong phys_addr;
845 phys_addr = get_phys_addr_code(env, start);
846 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
847 #endif
848 }
849
850 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
851
852 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
853 {
854 CPUX86State *saved_env;
855
856 saved_env = env;
857 env = s;
858 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
859 selector &= 0xffff;
860 cpu_x86_load_seg_cache(env, seg_reg, selector,
861 (selector << 4), 0xffff, 0);
862 } else {
863 load_seg(seg_reg, selector);
864 }
865 env = saved_env;
866 }
867
868 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
869 {
870 CPUX86State *saved_env;
871
872 saved_env = env;
873 env = s;
874
875 helper_fsave((target_ulong)ptr, data32);
876
877 env = saved_env;
878 }
879
880 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
881 {
882 CPUX86State *saved_env;
883
884 saved_env = env;
885 env = s;
886
887 helper_frstor((target_ulong)ptr, data32);
888
889 env = saved_env;
890 }
891
892 #endif /* TARGET_I386 */
893
894 #if !defined(CONFIG_SOFTMMU)
895
896 #if defined(TARGET_I386)
897
898 /* 'pc' is the host PC at which the exception was raised. 'address' is
899 the effective address of the memory exception. 'is_write' is 1 if a
900 write caused the exception and otherwise 0'. 'old_set' is the
901 signal set which should be restored */
902 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
903 int is_write, sigset_t *old_set,
904 void *puc)
905 {
906 TranslationBlock *tb;
907 int ret;
908
909 if (cpu_single_env)
910 env = cpu_single_env; /* XXX: find a correct solution for multithread */
911 #if defined(DEBUG_SIGNAL)
912 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
913 pc, address, is_write, *(unsigned long *)old_set);
914 #endif
915 /* XXX: locking issue */
916 if (is_write && page_unprotect(address, pc, puc)) {
917 return 1;
918 }
919
920 /* see if it is an MMU fault */
921 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
922 ((env->hflags & HF_CPL_MASK) == 3), 0);
923 if (ret < 0)
924 return 0; /* not an MMU fault */
925 if (ret == 0)
926 return 1; /* the MMU fault was handled without causing real CPU fault */
927 /* now we have a real cpu fault */
928 tb = tb_find_pc(pc);
929 if (tb) {
930 /* the PC is inside the translated code. It means that we have
931 a virtual CPU fault */
932 cpu_restore_state(tb, env, pc, puc);
933 }
934 if (ret == 1) {
935 #if 0
936 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
937 env->eip, env->cr[2], env->error_code);
938 #endif
939 /* we restore the process signal mask as the sigreturn should
940 do it (XXX: use sigsetjmp) */
941 sigprocmask(SIG_SETMASK, old_set, NULL);
942 raise_exception_err(env->exception_index, env->error_code);
943 } else {
944 /* activate soft MMU for this block */
945 env->hflags |= HF_SOFTMMU_MASK;
946 cpu_resume_from_signal(env, puc);
947 }
948 /* never comes here */
949 return 1;
950 }
951
952 #elif defined(TARGET_ARM)
953 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
954 int is_write, sigset_t *old_set,
955 void *puc)
956 {
957 TranslationBlock *tb;
958 int ret;
959
960 if (cpu_single_env)
961 env = cpu_single_env; /* XXX: find a correct solution for multithread */
962 #if defined(DEBUG_SIGNAL)
963 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
964 pc, address, is_write, *(unsigned long *)old_set);
965 #endif
966 /* XXX: locking issue */
967 if (is_write && page_unprotect(address, pc, puc)) {
968 return 1;
969 }
970 /* see if it is an MMU fault */
971 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
972 if (ret < 0)
973 return 0; /* not an MMU fault */
974 if (ret == 0)
975 return 1; /* the MMU fault was handled without causing real CPU fault */
976 /* now we have a real cpu fault */
977 tb = tb_find_pc(pc);
978 if (tb) {
979 /* the PC is inside the translated code. It means that we have
980 a virtual CPU fault */
981 cpu_restore_state(tb, env, pc, puc);
982 }
983 /* we restore the process signal mask as the sigreturn should
984 do it (XXX: use sigsetjmp) */
985 sigprocmask(SIG_SETMASK, old_set, NULL);
986 cpu_loop_exit();
987 }
988 #elif defined(TARGET_SPARC)
989 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
990 int is_write, sigset_t *old_set,
991 void *puc)
992 {
993 TranslationBlock *tb;
994 int ret;
995
996 if (cpu_single_env)
997 env = cpu_single_env; /* XXX: find a correct solution for multithread */
998 #if defined(DEBUG_SIGNAL)
999 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1000 pc, address, is_write, *(unsigned long *)old_set);
1001 #endif
1002 /* XXX: locking issue */
1003 if (is_write && page_unprotect(address, pc, puc)) {
1004 return 1;
1005 }
1006 /* see if it is an MMU fault */
1007 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
1008 if (ret < 0)
1009 return 0; /* not an MMU fault */
1010 if (ret == 0)
1011 return 1; /* the MMU fault was handled without causing real CPU fault */
1012 /* now we have a real cpu fault */
1013 tb = tb_find_pc(pc);
1014 if (tb) {
1015 /* the PC is inside the translated code. It means that we have
1016 a virtual CPU fault */
1017 cpu_restore_state(tb, env, pc, puc);
1018 }
1019 /* we restore the process signal mask as the sigreturn should
1020 do it (XXX: use sigsetjmp) */
1021 sigprocmask(SIG_SETMASK, old_set, NULL);
1022 cpu_loop_exit();
1023 }
1024 #elif defined (TARGET_PPC)
1025 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1026 int is_write, sigset_t *old_set,
1027 void *puc)
1028 {
1029 TranslationBlock *tb;
1030 int ret;
1031
1032 if (cpu_single_env)
1033 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1034 #if defined(DEBUG_SIGNAL)
1035 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1036 pc, address, is_write, *(unsigned long *)old_set);
1037 #endif
1038 /* XXX: locking issue */
1039 if (is_write && page_unprotect(address, pc, puc)) {
1040 return 1;
1041 }
1042
1043 /* see if it is an MMU fault */
1044 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1045 if (ret < 0)
1046 return 0; /* not an MMU fault */
1047 if (ret == 0)
1048 return 1; /* the MMU fault was handled without causing real CPU fault */
1049
1050 /* now we have a real cpu fault */
1051 tb = tb_find_pc(pc);
1052 if (tb) {
1053 /* the PC is inside the translated code. It means that we have
1054 a virtual CPU fault */
1055 cpu_restore_state(tb, env, pc, puc);
1056 }
1057 if (ret == 1) {
1058 #if 0
1059 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1060 env->nip, env->error_code, tb);
1061 #endif
1062 /* we restore the process signal mask as the sigreturn should
1063 do it (XXX: use sigsetjmp) */
1064 sigprocmask(SIG_SETMASK, old_set, NULL);
1065 do_raise_exception_err(env->exception_index, env->error_code);
1066 } else {
1067 /* activate soft MMU for this block */
1068 cpu_resume_from_signal(env, puc);
1069 }
1070 /* never comes here */
1071 return 1;
1072 }
1073
1074 #elif defined (TARGET_MIPS)
1075 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1076 int is_write, sigset_t *old_set,
1077 void *puc)
1078 {
1079 TranslationBlock *tb;
1080 int ret;
1081
1082 if (cpu_single_env)
1083 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1084 #if defined(DEBUG_SIGNAL)
1085 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1086 pc, address, is_write, *(unsigned long *)old_set);
1087 #endif
1088 /* XXX: locking issue */
1089 if (is_write && page_unprotect(address, pc, puc)) {
1090 return 1;
1091 }
1092
1093 /* see if it is an MMU fault */
1094 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1095 if (ret < 0)
1096 return 0; /* not an MMU fault */
1097 if (ret == 0)
1098 return 1; /* the MMU fault was handled without causing real CPU fault */
1099
1100 /* now we have a real cpu fault */
1101 tb = tb_find_pc(pc);
1102 if (tb) {
1103 /* the PC is inside the translated code. It means that we have
1104 a virtual CPU fault */
1105 cpu_restore_state(tb, env, pc, puc);
1106 }
1107 if (ret == 1) {
1108 #if 0
1109 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1110 env->nip, env->error_code, tb);
1111 #endif
1112 /* we restore the process signal mask as the sigreturn should
1113 do it (XXX: use sigsetjmp) */
1114 sigprocmask(SIG_SETMASK, old_set, NULL);
1115 do_raise_exception_err(env->exception_index, env->error_code);
1116 } else {
1117 /* activate soft MMU for this block */
1118 cpu_resume_from_signal(env, puc);
1119 }
1120 /* never comes here */
1121 return 1;
1122 }
1123
1124 #else
1125 #error unsupported target CPU
1126 #endif
1127
1128 #if defined(__i386__)
1129
1130 #if defined(USE_CODE_COPY)
1131 static void cpu_send_trap(unsigned long pc, int trap,
1132 struct ucontext *uc)
1133 {
1134 TranslationBlock *tb;
1135
1136 if (cpu_single_env)
1137 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1138 /* now we have a real cpu fault */
1139 tb = tb_find_pc(pc);
1140 if (tb) {
1141 /* the PC is inside the translated code. It means that we have
1142 a virtual CPU fault */
1143 cpu_restore_state(tb, env, pc, uc);
1144 }
1145 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1146 raise_exception_err(trap, env->error_code);
1147 }
1148 #endif
1149
1150 int cpu_signal_handler(int host_signum, struct siginfo *info,
1151 void *puc)
1152 {
1153 struct ucontext *uc = puc;
1154 unsigned long pc;
1155 int trapno;
1156
1157 #ifndef REG_EIP
1158 /* for glibc 2.1 */
1159 #define REG_EIP EIP
1160 #define REG_ERR ERR
1161 #define REG_TRAPNO TRAPNO
1162 #endif
1163 pc = uc->uc_mcontext.gregs[REG_EIP];
1164 trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
1165 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1166 if (trapno == 0x00 || trapno == 0x05) {
1167 /* send division by zero or bound exception */
1168 cpu_send_trap(pc, trapno, uc);
1169 return 1;
1170 } else
1171 #endif
1172 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1173 trapno == 0xe ?
1174 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1175 &uc->uc_sigmask, puc);
1176 }
1177
1178 #elif defined(__x86_64__)
1179
1180 int cpu_signal_handler(int host_signum, struct siginfo *info,
1181 void *puc)
1182 {
1183 struct ucontext *uc = puc;
1184 unsigned long pc;
1185
1186 pc = uc->uc_mcontext.gregs[REG_RIP];
1187 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1188 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1189 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1190 &uc->uc_sigmask, puc);
1191 }
1192
1193 #elif defined(__powerpc__)
1194
1195 /***********************************************************************
1196 * signal context platform-specific definitions
1197 * From Wine
1198 */
1199 #ifdef linux
1200 /* All Registers access - only for local access */
1201 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1202 /* Gpr Registers access */
1203 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1204 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1205 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1206 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1207 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1208 # define LR_sig(context) REG_sig(link, context) /* Link register */
1209 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1210 /* Float Registers access */
1211 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1212 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1213 /* Exception Registers access */
1214 # define DAR_sig(context) REG_sig(dar, context)
1215 # define DSISR_sig(context) REG_sig(dsisr, context)
1216 # define TRAP_sig(context) REG_sig(trap, context)
1217 #endif /* linux */
1218
1219 #ifdef __APPLE__
1220 # include <sys/ucontext.h>
1221 typedef struct ucontext SIGCONTEXT;
1222 /* All Registers access - only for local access */
1223 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1224 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1225 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1226 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1227 /* Gpr Registers access */
1228 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1229 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1230 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1231 # define CTR_sig(context) REG_sig(ctr, context)
1232 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1233 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1234 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1235 /* Float Registers access */
1236 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1237 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1238 /* Exception Registers access */
1239 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1240 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1241 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1242 #endif /* __APPLE__ */
1243
1244 int cpu_signal_handler(int host_signum, struct siginfo *info,
1245 void *puc)
1246 {
1247 struct ucontext *uc = puc;
1248 unsigned long pc;
1249 int is_write;
1250
1251 pc = IAR_sig(uc);
1252 is_write = 0;
1253 #if 0
1254 /* ppc 4xx case */
1255 if (DSISR_sig(uc) & 0x00800000)
1256 is_write = 1;
1257 #else
1258 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1259 is_write = 1;
1260 #endif
1261 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1262 is_write, &uc->uc_sigmask, puc);
1263 }
1264
1265 #elif defined(__alpha__)
1266
1267 int cpu_signal_handler(int host_signum, struct siginfo *info,
1268 void *puc)
1269 {
1270 struct ucontext *uc = puc;
1271 uint32_t *pc = uc->uc_mcontext.sc_pc;
1272 uint32_t insn = *pc;
1273 int is_write = 0;
1274
1275 /* XXX: need kernel patch to get write flag faster */
1276 switch (insn >> 26) {
1277 case 0x0d: // stw
1278 case 0x0e: // stb
1279 case 0x0f: // stq_u
1280 case 0x24: // stf
1281 case 0x25: // stg
1282 case 0x26: // sts
1283 case 0x27: // stt
1284 case 0x2c: // stl
1285 case 0x2d: // stq
1286 case 0x2e: // stl_c
1287 case 0x2f: // stq_c
1288 is_write = 1;
1289 }
1290
1291 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1292 is_write, &uc->uc_sigmask, puc);
1293 }
1294 #elif defined(__sparc__)
1295
1296 int cpu_signal_handler(int host_signum, struct siginfo *info,
1297 void *puc)
1298 {
1299 uint32_t *regs = (uint32_t *)(info + 1);
1300 void *sigmask = (regs + 20);
1301 unsigned long pc;
1302 int is_write;
1303 uint32_t insn;
1304
1305 /* XXX: is there a standard glibc define ? */
1306 pc = regs[1];
1307 /* XXX: need kernel patch to get write flag faster */
1308 is_write = 0;
1309 insn = *(uint32_t *)pc;
1310 if ((insn >> 30) == 3) {
1311 switch((insn >> 19) & 0x3f) {
1312 case 0x05: // stb
1313 case 0x06: // sth
1314 case 0x04: // st
1315 case 0x07: // std
1316 case 0x24: // stf
1317 case 0x27: // stdf
1318 case 0x25: // stfsr
1319 is_write = 1;
1320 break;
1321 }
1322 }
1323 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1324 is_write, sigmask, NULL);
1325 }
1326
1327 #elif defined(__arm__)
1328
1329 int cpu_signal_handler(int host_signum, struct siginfo *info,
1330 void *puc)
1331 {
1332 struct ucontext *uc = puc;
1333 unsigned long pc;
1334 int is_write;
1335
1336 pc = uc->uc_mcontext.gregs[R15];
1337 /* XXX: compute is_write */
1338 is_write = 0;
1339 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1340 is_write,
1341 &uc->uc_sigmask);
1342 }
1343
1344 #elif defined(__mc68000)
1345
1346 int cpu_signal_handler(int host_signum, struct siginfo *info,
1347 void *puc)
1348 {
1349 struct ucontext *uc = puc;
1350 unsigned long pc;
1351 int is_write;
1352
1353 pc = uc->uc_mcontext.gregs[16];
1354 /* XXX: compute is_write */
1355 is_write = 0;
1356 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1357 is_write,
1358 &uc->uc_sigmask, puc);
1359 }
1360
1361 #elif defined(__ia64)
1362
1363 #ifndef __ISR_VALID
1364 /* This ought to be in <bits/siginfo.h>... */
1365 # define __ISR_VALID 1
1366 # define si_flags _sifields._sigfault._si_pad0
1367 #endif
1368
1369 int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
1370 {
1371 struct ucontext *uc = puc;
1372 unsigned long ip;
1373 int is_write = 0;
1374
1375 ip = uc->uc_mcontext.sc_ip;
1376 switch (host_signum) {
1377 case SIGILL:
1378 case SIGFPE:
1379 case SIGSEGV:
1380 case SIGBUS:
1381 case SIGTRAP:
1382 if (info->si_code && (info->si_flags & __ISR_VALID))
1383 /* ISR.W (write-access) is bit 33: */
1384 is_write = (info->si_isr >> 33) & 1;
1385 break;
1386
1387 default:
1388 break;
1389 }
1390 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1391 is_write,
1392 &uc->uc_sigmask, puc);
1393 }
1394
1395 #elif defined(__s390__)
1396
1397 int cpu_signal_handler(int host_signum, struct siginfo *info,
1398 void *puc)
1399 {
1400 struct ucontext *uc = puc;
1401 unsigned long pc;
1402 int is_write;
1403
1404 pc = uc->uc_mcontext.psw.addr;
1405 /* XXX: compute is_write */
1406 is_write = 0;
1407 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1408 is_write,
1409 &uc->uc_sigmask, puc);
1410 }
1411
1412 #else
1413
1414 #error host CPU specific signal handler needed
1415
1416 #endif
1417
1418 #endif /* !defined(CONFIG_SOFTMMU) */