]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
Unbreak large mem support by removing kqemu
[qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
24
25 #if !defined(CONFIG_SOFTMMU)
26 #undef EAX
27 #undef ECX
28 #undef EDX
29 #undef EBX
30 #undef ESP
31 #undef EBP
32 #undef ESI
33 #undef EDI
34 #undef EIP
35 #include <signal.h>
36 #ifdef __linux__
37 #include <sys/ucontext.h>
38 #endif
39 #endif
40
41 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
42 // Work around ugly bugs in glibc that mangle global register contents
43 #undef env
44 #define env cpu_single_env
45 #endif
46
47 int tb_invalidated_flag;
48
49 //#define CONFIG_DEBUG_EXEC
50 //#define DEBUG_SIGNAL
51
52 int qemu_cpu_has_work(CPUState *env)
53 {
54 return cpu_has_work(env);
55 }
56
57 void cpu_loop_exit(void)
58 {
59 /* NOTE: the register at this point must be saved by hand because
60 longjmp restore them */
61 regs_to_env();
62 longjmp(env->jmp_env, 1);
63 }
64
65 /* exit the current TB from a signal handler. The host registers are
66 restored in a state compatible with the CPU emulator
67 */
68 void cpu_resume_from_signal(CPUState *env1, void *puc)
69 {
70 #if !defined(CONFIG_SOFTMMU)
71 #ifdef __linux__
72 struct ucontext *uc = puc;
73 #elif defined(__OpenBSD__)
74 struct sigcontext *uc = puc;
75 #endif
76 #endif
77
78 env = env1;
79
80 /* XXX: restore cpu registers saved in host registers */
81
82 #if !defined(CONFIG_SOFTMMU)
83 if (puc) {
84 /* XXX: use siglongjmp ? */
85 #ifdef __linux__
86 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
87 #elif defined(__OpenBSD__)
88 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
89 #endif
90 }
91 #endif
92 env->exception_index = -1;
93 longjmp(env->jmp_env, 1);
94 }
95
96 /* Execute the code without caching the generated code. An interpreter
97 could be used if available. */
98 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
99 {
100 unsigned long next_tb;
101 TranslationBlock *tb;
102
103 /* Should never happen.
104 We only end up here when an existing TB is too long. */
105 if (max_cycles > CF_COUNT_MASK)
106 max_cycles = CF_COUNT_MASK;
107
108 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
109 max_cycles);
110 env->current_tb = tb;
111 /* execute the generated code */
112 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
113
114 if ((next_tb & 3) == 2) {
115 /* Restore PC. This may happen if async event occurs before
116 the TB starts executing. */
117 cpu_pc_from_tb(env, tb);
118 }
119 tb_phys_invalidate(tb, -1);
120 tb_free(tb);
121 }
122
123 static TranslationBlock *tb_find_slow(target_ulong pc,
124 target_ulong cs_base,
125 uint64_t flags)
126 {
127 TranslationBlock *tb, **ptb1;
128 unsigned int h;
129 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
130
131 tb_invalidated_flag = 0;
132
133 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
134
135 /* find translated block using physical mappings */
136 phys_pc = get_phys_addr_code(env, pc);
137 phys_page1 = phys_pc & TARGET_PAGE_MASK;
138 phys_page2 = -1;
139 h = tb_phys_hash_func(phys_pc);
140 ptb1 = &tb_phys_hash[h];
141 for(;;) {
142 tb = *ptb1;
143 if (!tb)
144 goto not_found;
145 if (tb->pc == pc &&
146 tb->page_addr[0] == phys_page1 &&
147 tb->cs_base == cs_base &&
148 tb->flags == flags) {
149 /* check next page if needed */
150 if (tb->page_addr[1] != -1) {
151 virt_page2 = (pc & TARGET_PAGE_MASK) +
152 TARGET_PAGE_SIZE;
153 phys_page2 = get_phys_addr_code(env, virt_page2);
154 if (tb->page_addr[1] == phys_page2)
155 goto found;
156 } else {
157 goto found;
158 }
159 }
160 ptb1 = &tb->phys_hash_next;
161 }
162 not_found:
163 /* if no translated code available, then translate it now */
164 tb = tb_gen_code(env, pc, cs_base, flags, 0);
165
166 found:
167 /* we add the TB in the virtual pc hash table */
168 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
169 return tb;
170 }
171
172 static inline TranslationBlock *tb_find_fast(void)
173 {
174 TranslationBlock *tb;
175 target_ulong cs_base, pc;
176 int flags;
177
178 /* we record a subset of the CPU state. It will
179 always be the same before a given translated block
180 is executed. */
181 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
182 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
183 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
184 tb->flags != flags)) {
185 tb = tb_find_slow(pc, cs_base, flags);
186 }
187 return tb;
188 }
189
190 static CPUDebugExcpHandler *debug_excp_handler;
191
192 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
193 {
194 CPUDebugExcpHandler *old_handler = debug_excp_handler;
195
196 debug_excp_handler = handler;
197 return old_handler;
198 }
199
200 static void cpu_handle_debug_exception(CPUState *env)
201 {
202 CPUWatchpoint *wp;
203
204 if (!env->watchpoint_hit)
205 TAILQ_FOREACH(wp, &env->watchpoints, entry)
206 wp->flags &= ~BP_WATCHPOINT_HIT;
207
208 if (debug_excp_handler)
209 debug_excp_handler(env);
210 }
211
212 /* main execution loop */
213
214 int cpu_exec(CPUState *env1)
215 {
216 #define DECLARE_HOST_REGS 1
217 #include "hostregs_helper.h"
218 int ret, interrupt_request;
219 TranslationBlock *tb;
220 uint8_t *tc_ptr;
221 unsigned long next_tb;
222
223 if (cpu_halted(env1) == EXCP_HALTED)
224 return EXCP_HALTED;
225
226 cpu_single_env = env1;
227
228 /* first we save global registers */
229 #define SAVE_HOST_REGS 1
230 #include "hostregs_helper.h"
231 env = env1;
232
233 env_to_regs();
234 #if defined(TARGET_I386)
235 /* put eflags in CPU temporary format */
236 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
237 DF = 1 - (2 * ((env->eflags >> 10) & 1));
238 CC_OP = CC_OP_EFLAGS;
239 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
240 #elif defined(TARGET_SPARC)
241 #elif defined(TARGET_M68K)
242 env->cc_op = CC_OP_FLAGS;
243 env->cc_dest = env->sr & 0xf;
244 env->cc_x = (env->sr >> 4) & 1;
245 #elif defined(TARGET_ALPHA)
246 #elif defined(TARGET_ARM)
247 #elif defined(TARGET_PPC)
248 #elif defined(TARGET_MICROBLAZE)
249 #elif defined(TARGET_MIPS)
250 #elif defined(TARGET_SH4)
251 #elif defined(TARGET_CRIS)
252 /* XXXXX */
253 #else
254 #error unsupported target CPU
255 #endif
256 env->exception_index = -1;
257
258 /* prepare setjmp context for exception handling */
259 for(;;) {
260 if (setjmp(env->jmp_env) == 0) {
261 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
262 #undef env
263 env = cpu_single_env;
264 #define env cpu_single_env
265 #endif
266 env->current_tb = NULL;
267 /* if an exception is pending, we execute it here */
268 if (env->exception_index >= 0) {
269 if (env->exception_index >= EXCP_INTERRUPT) {
270 /* exit request from the cpu execution loop */
271 ret = env->exception_index;
272 if (ret == EXCP_DEBUG)
273 cpu_handle_debug_exception(env);
274 break;
275 } else {
276 #if defined(CONFIG_USER_ONLY)
277 /* if user mode only, we simulate a fake exception
278 which will be handled outside the cpu execution
279 loop */
280 #if defined(TARGET_I386)
281 do_interrupt_user(env->exception_index,
282 env->exception_is_int,
283 env->error_code,
284 env->exception_next_eip);
285 /* successfully delivered */
286 env->old_exception = -1;
287 #endif
288 ret = env->exception_index;
289 break;
290 #else
291 #if defined(TARGET_I386)
292 /* simulate a real cpu exception. On i386, it can
293 trigger new exceptions, but we do not handle
294 double or triple faults yet. */
295 do_interrupt(env->exception_index,
296 env->exception_is_int,
297 env->error_code,
298 env->exception_next_eip, 0);
299 /* successfully delivered */
300 env->old_exception = -1;
301 #elif defined(TARGET_PPC)
302 do_interrupt(env);
303 #elif defined(TARGET_MICROBLAZE)
304 do_interrupt(env);
305 #elif defined(TARGET_MIPS)
306 do_interrupt(env);
307 #elif defined(TARGET_SPARC)
308 do_interrupt(env);
309 #elif defined(TARGET_ARM)
310 do_interrupt(env);
311 #elif defined(TARGET_SH4)
312 do_interrupt(env);
313 #elif defined(TARGET_ALPHA)
314 do_interrupt(env);
315 #elif defined(TARGET_CRIS)
316 do_interrupt(env);
317 #elif defined(TARGET_M68K)
318 do_interrupt(0);
319 #endif
320 #endif
321 }
322 env->exception_index = -1;
323 }
324
325 if (kvm_enabled()) {
326 kvm_cpu_exec(env);
327 longjmp(env->jmp_env, 1);
328 }
329
330 next_tb = 0; /* force lookup of first TB */
331 for(;;) {
332 interrupt_request = env->interrupt_request;
333 if (unlikely(interrupt_request)) {
334 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
335 /* Mask out external interrupts for this step. */
336 interrupt_request &= ~(CPU_INTERRUPT_HARD |
337 CPU_INTERRUPT_FIQ |
338 CPU_INTERRUPT_SMI |
339 CPU_INTERRUPT_NMI);
340 }
341 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
342 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
343 env->exception_index = EXCP_DEBUG;
344 cpu_loop_exit();
345 }
346 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
347 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
348 defined(TARGET_MICROBLAZE)
349 if (interrupt_request & CPU_INTERRUPT_HALT) {
350 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
351 env->halted = 1;
352 env->exception_index = EXCP_HLT;
353 cpu_loop_exit();
354 }
355 #endif
356 #if defined(TARGET_I386)
357 if (interrupt_request & CPU_INTERRUPT_INIT) {
358 svm_check_intercept(SVM_EXIT_INIT);
359 do_cpu_init(env);
360 env->exception_index = EXCP_HALTED;
361 cpu_loop_exit();
362 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
363 do_cpu_sipi(env);
364 } else if (env->hflags2 & HF2_GIF_MASK) {
365 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
366 !(env->hflags & HF_SMM_MASK)) {
367 svm_check_intercept(SVM_EXIT_SMI);
368 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
369 do_smm_enter();
370 next_tb = 0;
371 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
372 !(env->hflags2 & HF2_NMI_MASK)) {
373 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
374 env->hflags2 |= HF2_NMI_MASK;
375 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
376 next_tb = 0;
377 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
378 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
379 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
380 next_tb = 0;
381 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
382 (((env->hflags2 & HF2_VINTR_MASK) &&
383 (env->hflags2 & HF2_HIF_MASK)) ||
384 (!(env->hflags2 & HF2_VINTR_MASK) &&
385 (env->eflags & IF_MASK &&
386 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
387 int intno;
388 svm_check_intercept(SVM_EXIT_INTR);
389 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
390 intno = cpu_get_pic_interrupt(env);
391 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
392 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
393 #undef env
394 env = cpu_single_env;
395 #define env cpu_single_env
396 #endif
397 do_interrupt(intno, 0, 0, 0, 1);
398 /* ensure that no TB jump will be modified as
399 the program flow was changed */
400 next_tb = 0;
401 #if !defined(CONFIG_USER_ONLY)
402 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
403 (env->eflags & IF_MASK) &&
404 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
405 int intno;
406 /* FIXME: this should respect TPR */
407 svm_check_intercept(SVM_EXIT_VINTR);
408 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
409 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
410 do_interrupt(intno, 0, 0, 0, 1);
411 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
412 next_tb = 0;
413 #endif
414 }
415 }
416 #elif defined(TARGET_PPC)
417 #if 0
418 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
419 cpu_ppc_reset(env);
420 }
421 #endif
422 if (interrupt_request & CPU_INTERRUPT_HARD) {
423 ppc_hw_interrupt(env);
424 if (env->pending_interrupts == 0)
425 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
426 next_tb = 0;
427 }
428 #elif defined(TARGET_MICROBLAZE)
429 if ((interrupt_request & CPU_INTERRUPT_HARD)
430 && (env->sregs[SR_MSR] & MSR_IE)
431 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
432 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
433 env->exception_index = EXCP_IRQ;
434 do_interrupt(env);
435 next_tb = 0;
436 }
437 #elif defined(TARGET_MIPS)
438 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
439 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
440 (env->CP0_Status & (1 << CP0St_IE)) &&
441 !(env->CP0_Status & (1 << CP0St_EXL)) &&
442 !(env->CP0_Status & (1 << CP0St_ERL)) &&
443 !(env->hflags & MIPS_HFLAG_DM)) {
444 /* Raise it */
445 env->exception_index = EXCP_EXT_INTERRUPT;
446 env->error_code = 0;
447 do_interrupt(env);
448 next_tb = 0;
449 }
450 #elif defined(TARGET_SPARC)
451 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
452 cpu_interrupts_enabled(env)) {
453 int pil = env->interrupt_index & 15;
454 int type = env->interrupt_index & 0xf0;
455
456 if (((type == TT_EXTINT) &&
457 (pil == 15 || pil > env->psrpil)) ||
458 type != TT_EXTINT) {
459 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
460 env->exception_index = env->interrupt_index;
461 do_interrupt(env);
462 env->interrupt_index = 0;
463 next_tb = 0;
464 }
465 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
466 //do_interrupt(0, 0, 0, 0, 0);
467 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
468 }
469 #elif defined(TARGET_ARM)
470 if (interrupt_request & CPU_INTERRUPT_FIQ
471 && !(env->uncached_cpsr & CPSR_F)) {
472 env->exception_index = EXCP_FIQ;
473 do_interrupt(env);
474 next_tb = 0;
475 }
476 /* ARMv7-M interrupt return works by loading a magic value
477 into the PC. On real hardware the load causes the
478 return to occur. The qemu implementation performs the
479 jump normally, then does the exception return when the
480 CPU tries to execute code at the magic address.
481 This will cause the magic PC value to be pushed to
482 the stack if an interrupt occured at the wrong time.
483 We avoid this by disabling interrupts when
484 pc contains a magic address. */
485 if (interrupt_request & CPU_INTERRUPT_HARD
486 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
487 || !(env->uncached_cpsr & CPSR_I))) {
488 env->exception_index = EXCP_IRQ;
489 do_interrupt(env);
490 next_tb = 0;
491 }
492 #elif defined(TARGET_SH4)
493 if (interrupt_request & CPU_INTERRUPT_HARD) {
494 do_interrupt(env);
495 next_tb = 0;
496 }
497 #elif defined(TARGET_ALPHA)
498 if (interrupt_request & CPU_INTERRUPT_HARD) {
499 do_interrupt(env);
500 next_tb = 0;
501 }
502 #elif defined(TARGET_CRIS)
503 if (interrupt_request & CPU_INTERRUPT_HARD
504 && (env->pregs[PR_CCS] & I_FLAG)) {
505 env->exception_index = EXCP_IRQ;
506 do_interrupt(env);
507 next_tb = 0;
508 }
509 if (interrupt_request & CPU_INTERRUPT_NMI
510 && (env->pregs[PR_CCS] & M_FLAG)) {
511 env->exception_index = EXCP_NMI;
512 do_interrupt(env);
513 next_tb = 0;
514 }
515 #elif defined(TARGET_M68K)
516 if (interrupt_request & CPU_INTERRUPT_HARD
517 && ((env->sr & SR_I) >> SR_I_SHIFT)
518 < env->pending_level) {
519 /* Real hardware gets the interrupt vector via an
520 IACK cycle at this point. Current emulated
521 hardware doesn't rely on this, so we
522 provide/save the vector when the interrupt is
523 first signalled. */
524 env->exception_index = env->pending_vector;
525 do_interrupt(1);
526 next_tb = 0;
527 }
528 #endif
529 /* Don't use the cached interupt_request value,
530 do_interrupt may have updated the EXITTB flag. */
531 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
532 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
533 /* ensure that no TB jump will be modified as
534 the program flow was changed */
535 next_tb = 0;
536 }
537 }
538 if (unlikely(env->exit_request)) {
539 env->exit_request = 0;
540 env->exception_index = EXCP_INTERRUPT;
541 cpu_loop_exit();
542 }
543 #ifdef CONFIG_DEBUG_EXEC
544 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
545 /* restore flags in standard format */
546 regs_to_env();
547 #if defined(TARGET_I386)
548 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
549 log_cpu_state(env, X86_DUMP_CCOP);
550 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
551 #elif defined(TARGET_ARM)
552 log_cpu_state(env, 0);
553 #elif defined(TARGET_SPARC)
554 log_cpu_state(env, 0);
555 #elif defined(TARGET_PPC)
556 log_cpu_state(env, 0);
557 #elif defined(TARGET_M68K)
558 cpu_m68k_flush_flags(env, env->cc_op);
559 env->cc_op = CC_OP_FLAGS;
560 env->sr = (env->sr & 0xffe0)
561 | env->cc_dest | (env->cc_x << 4);
562 log_cpu_state(env, 0);
563 #elif defined(TARGET_MICROBLAZE)
564 log_cpu_state(env, 0);
565 #elif defined(TARGET_MIPS)
566 log_cpu_state(env, 0);
567 #elif defined(TARGET_SH4)
568 log_cpu_state(env, 0);
569 #elif defined(TARGET_ALPHA)
570 log_cpu_state(env, 0);
571 #elif defined(TARGET_CRIS)
572 log_cpu_state(env, 0);
573 #else
574 #error unsupported target CPU
575 #endif
576 }
577 #endif
578 spin_lock(&tb_lock);
579 tb = tb_find_fast();
580 /* Note: we do it here to avoid a gcc bug on Mac OS X when
581 doing it in tb_find_slow */
582 if (tb_invalidated_flag) {
583 /* as some TB could have been invalidated because
584 of memory exceptions while generating the code, we
585 must recompute the hash index here */
586 next_tb = 0;
587 tb_invalidated_flag = 0;
588 }
589 #ifdef CONFIG_DEBUG_EXEC
590 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
591 (long)tb->tc_ptr, tb->pc,
592 lookup_symbol(tb->pc));
593 #endif
594 /* see if we can patch the calling TB. When the TB
595 spans two pages, we cannot safely do a direct
596 jump. */
597 {
598 if (next_tb != 0 && tb->page_addr[1] == -1) {
599 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
600 }
601 }
602 spin_unlock(&tb_lock);
603 env->current_tb = tb;
604
605 /* cpu_interrupt might be called while translating the
606 TB, but before it is linked into a potentially
607 infinite loop and becomes env->current_tb. Avoid
608 starting execution if there is a pending interrupt. */
609 if (unlikely (env->exit_request))
610 env->current_tb = NULL;
611
612 while (env->current_tb) {
613 tc_ptr = tb->tc_ptr;
614 /* execute the generated code */
615 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
616 #undef env
617 env = cpu_single_env;
618 #define env cpu_single_env
619 #endif
620 next_tb = tcg_qemu_tb_exec(tc_ptr);
621 env->current_tb = NULL;
622 if ((next_tb & 3) == 2) {
623 /* Instruction counter expired. */
624 int insns_left;
625 tb = (TranslationBlock *)(long)(next_tb & ~3);
626 /* Restore PC. */
627 cpu_pc_from_tb(env, tb);
628 insns_left = env->icount_decr.u32;
629 if (env->icount_extra && insns_left >= 0) {
630 /* Refill decrementer and continue execution. */
631 env->icount_extra += insns_left;
632 if (env->icount_extra > 0xffff) {
633 insns_left = 0xffff;
634 } else {
635 insns_left = env->icount_extra;
636 }
637 env->icount_extra -= insns_left;
638 env->icount_decr.u16.low = insns_left;
639 } else {
640 if (insns_left > 0) {
641 /* Execute remaining instructions. */
642 cpu_exec_nocache(insns_left, tb);
643 }
644 env->exception_index = EXCP_INTERRUPT;
645 next_tb = 0;
646 cpu_loop_exit();
647 }
648 }
649 }
650 /* reset soft MMU for next block (it can currently
651 only be set by a memory fault) */
652 } /* for(;;) */
653 } else {
654 env_to_regs();
655 }
656 } /* for(;;) */
657
658
659 #if defined(TARGET_I386)
660 /* restore flags in standard format */
661 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
662 #elif defined(TARGET_ARM)
663 /* XXX: Save/restore host fpu exception state?. */
664 #elif defined(TARGET_SPARC)
665 #elif defined(TARGET_PPC)
666 #elif defined(TARGET_M68K)
667 cpu_m68k_flush_flags(env, env->cc_op);
668 env->cc_op = CC_OP_FLAGS;
669 env->sr = (env->sr & 0xffe0)
670 | env->cc_dest | (env->cc_x << 4);
671 #elif defined(TARGET_MICROBLAZE)
672 #elif defined(TARGET_MIPS)
673 #elif defined(TARGET_SH4)
674 #elif defined(TARGET_ALPHA)
675 #elif defined(TARGET_CRIS)
676 /* XXXXX */
677 #else
678 #error unsupported target CPU
679 #endif
680
681 /* restore global registers */
682 #include "hostregs_helper.h"
683
684 /* fail safe : never use cpu_single_env outside cpu_exec() */
685 cpu_single_env = NULL;
686 return ret;
687 }
688
689 /* must only be called from the generated code as an exception can be
690 generated */
691 void tb_invalidate_page_range(target_ulong start, target_ulong end)
692 {
693 /* XXX: cannot enable it yet because it yields to MMU exception
694 where NIP != read address on PowerPC */
695 #if 0
696 target_ulong phys_addr;
697 phys_addr = get_phys_addr_code(env, start);
698 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
699 #endif
700 }
701
702 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
703
704 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
705 {
706 CPUX86State *saved_env;
707
708 saved_env = env;
709 env = s;
710 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
711 selector &= 0xffff;
712 cpu_x86_load_seg_cache(env, seg_reg, selector,
713 (selector << 4), 0xffff, 0);
714 } else {
715 helper_load_seg(seg_reg, selector);
716 }
717 env = saved_env;
718 }
719
720 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
721 {
722 CPUX86State *saved_env;
723
724 saved_env = env;
725 env = s;
726
727 helper_fsave(ptr, data32);
728
729 env = saved_env;
730 }
731
732 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
733 {
734 CPUX86State *saved_env;
735
736 saved_env = env;
737 env = s;
738
739 helper_frstor(ptr, data32);
740
741 env = saved_env;
742 }
743
744 #endif /* TARGET_I386 */
745
746 #if !defined(CONFIG_SOFTMMU)
747
748 #if defined(TARGET_I386)
749
750 /* 'pc' is the host PC at which the exception was raised. 'address' is
751 the effective address of the memory exception. 'is_write' is 1 if a
752 write caused the exception and otherwise 0'. 'old_set' is the
753 signal set which should be restored */
754 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
755 int is_write, sigset_t *old_set,
756 void *puc)
757 {
758 TranslationBlock *tb;
759 int ret;
760
761 if (cpu_single_env)
762 env = cpu_single_env; /* XXX: find a correct solution for multithread */
763 #if defined(DEBUG_SIGNAL)
764 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
765 pc, address, is_write, *(unsigned long *)old_set);
766 #endif
767 /* XXX: locking issue */
768 if (is_write && page_unprotect(h2g(address), pc, puc)) {
769 return 1;
770 }
771
772 /* see if it is an MMU fault */
773 ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
774 if (ret < 0)
775 return 0; /* not an MMU fault */
776 if (ret == 0)
777 return 1; /* the MMU fault was handled without causing real CPU fault */
778 /* now we have a real cpu fault */
779 tb = tb_find_pc(pc);
780 if (tb) {
781 /* the PC is inside the translated code. It means that we have
782 a virtual CPU fault */
783 cpu_restore_state(tb, env, pc, puc);
784 }
785 if (ret == 1) {
786 #if 0
787 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
788 env->eip, env->cr[2], env->error_code);
789 #endif
790 /* we restore the process signal mask as the sigreturn should
791 do it (XXX: use sigsetjmp) */
792 sigprocmask(SIG_SETMASK, old_set, NULL);
793 raise_exception_err(env->exception_index, env->error_code);
794 } else {
795 /* activate soft MMU for this block */
796 env->hflags |= HF_SOFTMMU_MASK;
797 cpu_resume_from_signal(env, puc);
798 }
799 /* never comes here */
800 return 1;
801 }
802
803 #elif defined(TARGET_ARM)
804 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
805 int is_write, sigset_t *old_set,
806 void *puc)
807 {
808 TranslationBlock *tb;
809 int ret;
810
811 if (cpu_single_env)
812 env = cpu_single_env; /* XXX: find a correct solution for multithread */
813 #if defined(DEBUG_SIGNAL)
814 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
815 pc, address, is_write, *(unsigned long *)old_set);
816 #endif
817 /* XXX: locking issue */
818 if (is_write && page_unprotect(h2g(address), pc, puc)) {
819 return 1;
820 }
821 /* see if it is an MMU fault */
822 ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
823 if (ret < 0)
824 return 0; /* not an MMU fault */
825 if (ret == 0)
826 return 1; /* the MMU fault was handled without causing real CPU fault */
827 /* now we have a real cpu fault */
828 tb = tb_find_pc(pc);
829 if (tb) {
830 /* the PC is inside the translated code. It means that we have
831 a virtual CPU fault */
832 cpu_restore_state(tb, env, pc, puc);
833 }
834 /* we restore the process signal mask as the sigreturn should
835 do it (XXX: use sigsetjmp) */
836 sigprocmask(SIG_SETMASK, old_set, NULL);
837 cpu_loop_exit();
838 /* never comes here */
839 return 1;
840 }
841 #elif defined(TARGET_SPARC)
842 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
843 int is_write, sigset_t *old_set,
844 void *puc)
845 {
846 TranslationBlock *tb;
847 int ret;
848
849 if (cpu_single_env)
850 env = cpu_single_env; /* XXX: find a correct solution for multithread */
851 #if defined(DEBUG_SIGNAL)
852 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
853 pc, address, is_write, *(unsigned long *)old_set);
854 #endif
855 /* XXX: locking issue */
856 if (is_write && page_unprotect(h2g(address), pc, puc)) {
857 return 1;
858 }
859 /* see if it is an MMU fault */
860 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
861 if (ret < 0)
862 return 0; /* not an MMU fault */
863 if (ret == 0)
864 return 1; /* the MMU fault was handled without causing real CPU fault */
865 /* now we have a real cpu fault */
866 tb = tb_find_pc(pc);
867 if (tb) {
868 /* the PC is inside the translated code. It means that we have
869 a virtual CPU fault */
870 cpu_restore_state(tb, env, pc, puc);
871 }
872 /* we restore the process signal mask as the sigreturn should
873 do it (XXX: use sigsetjmp) */
874 sigprocmask(SIG_SETMASK, old_set, NULL);
875 cpu_loop_exit();
876 /* never comes here */
877 return 1;
878 }
879 #elif defined (TARGET_PPC)
880 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
881 int is_write, sigset_t *old_set,
882 void *puc)
883 {
884 TranslationBlock *tb;
885 int ret;
886
887 if (cpu_single_env)
888 env = cpu_single_env; /* XXX: find a correct solution for multithread */
889 #if defined(DEBUG_SIGNAL)
890 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
891 pc, address, is_write, *(unsigned long *)old_set);
892 #endif
893 /* XXX: locking issue */
894 if (is_write && page_unprotect(h2g(address), pc, puc)) {
895 return 1;
896 }
897
898 /* see if it is an MMU fault */
899 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
900 if (ret < 0)
901 return 0; /* not an MMU fault */
902 if (ret == 0)
903 return 1; /* the MMU fault was handled without causing real CPU fault */
904
905 /* now we have a real cpu fault */
906 tb = tb_find_pc(pc);
907 if (tb) {
908 /* the PC is inside the translated code. It means that we have
909 a virtual CPU fault */
910 cpu_restore_state(tb, env, pc, puc);
911 }
912 if (ret == 1) {
913 #if 0
914 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
915 env->nip, env->error_code, tb);
916 #endif
917 /* we restore the process signal mask as the sigreturn should
918 do it (XXX: use sigsetjmp) */
919 sigprocmask(SIG_SETMASK, old_set, NULL);
920 cpu_loop_exit();
921 } else {
922 /* activate soft MMU for this block */
923 cpu_resume_from_signal(env, puc);
924 }
925 /* never comes here */
926 return 1;
927 }
928
929 #elif defined(TARGET_M68K)
930 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
931 int is_write, sigset_t *old_set,
932 void *puc)
933 {
934 TranslationBlock *tb;
935 int ret;
936
937 if (cpu_single_env)
938 env = cpu_single_env; /* XXX: find a correct solution for multithread */
939 #if defined(DEBUG_SIGNAL)
940 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
941 pc, address, is_write, *(unsigned long *)old_set);
942 #endif
943 /* XXX: locking issue */
944 if (is_write && page_unprotect(address, pc, puc)) {
945 return 1;
946 }
947 /* see if it is an MMU fault */
948 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
949 if (ret < 0)
950 return 0; /* not an MMU fault */
951 if (ret == 0)
952 return 1; /* the MMU fault was handled without causing real CPU fault */
953 /* now we have a real cpu fault */
954 tb = tb_find_pc(pc);
955 if (tb) {
956 /* the PC is inside the translated code. It means that we have
957 a virtual CPU fault */
958 cpu_restore_state(tb, env, pc, puc);
959 }
960 /* we restore the process signal mask as the sigreturn should
961 do it (XXX: use sigsetjmp) */
962 sigprocmask(SIG_SETMASK, old_set, NULL);
963 cpu_loop_exit();
964 /* never comes here */
965 return 1;
966 }
967
968 #elif defined (TARGET_MIPS)
969 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
970 int is_write, sigset_t *old_set,
971 void *puc)
972 {
973 TranslationBlock *tb;
974 int ret;
975
976 if (cpu_single_env)
977 env = cpu_single_env; /* XXX: find a correct solution for multithread */
978 #if defined(DEBUG_SIGNAL)
979 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
980 pc, address, is_write, *(unsigned long *)old_set);
981 #endif
982 /* XXX: locking issue */
983 if (is_write && page_unprotect(h2g(address), pc, puc)) {
984 return 1;
985 }
986
987 /* see if it is an MMU fault */
988 ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
989 if (ret < 0)
990 return 0; /* not an MMU fault */
991 if (ret == 0)
992 return 1; /* the MMU fault was handled without causing real CPU fault */
993
994 /* now we have a real cpu fault */
995 tb = tb_find_pc(pc);
996 if (tb) {
997 /* the PC is inside the translated code. It means that we have
998 a virtual CPU fault */
999 cpu_restore_state(tb, env, pc, puc);
1000 }
1001 if (ret == 1) {
1002 #if 0
1003 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1004 env->PC, env->error_code, tb);
1005 #endif
1006 /* we restore the process signal mask as the sigreturn should
1007 do it (XXX: use sigsetjmp) */
1008 sigprocmask(SIG_SETMASK, old_set, NULL);
1009 cpu_loop_exit();
1010 } else {
1011 /* activate soft MMU for this block */
1012 cpu_resume_from_signal(env, puc);
1013 }
1014 /* never comes here */
1015 return 1;
1016 }
1017
1018 #elif defined (TARGET_MICROBLAZE)
1019 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1020 int is_write, sigset_t *old_set,
1021 void *puc)
1022 {
1023 TranslationBlock *tb;
1024 int ret;
1025
1026 if (cpu_single_env)
1027 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1028 #if defined(DEBUG_SIGNAL)
1029 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1030 pc, address, is_write, *(unsigned long *)old_set);
1031 #endif
1032 /* XXX: locking issue */
1033 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1034 return 1;
1035 }
1036
1037 /* see if it is an MMU fault */
1038 ret = cpu_mb_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1039 if (ret < 0)
1040 return 0; /* not an MMU fault */
1041 if (ret == 0)
1042 return 1; /* the MMU fault was handled without causing real CPU fault */
1043
1044 /* now we have a real cpu fault */
1045 tb = tb_find_pc(pc);
1046 if (tb) {
1047 /* the PC is inside the translated code. It means that we have
1048 a virtual CPU fault */
1049 cpu_restore_state(tb, env, pc, puc);
1050 }
1051 if (ret == 1) {
1052 #if 0
1053 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1054 env->PC, env->error_code, tb);
1055 #endif
1056 /* we restore the process signal mask as the sigreturn should
1057 do it (XXX: use sigsetjmp) */
1058 sigprocmask(SIG_SETMASK, old_set, NULL);
1059 cpu_loop_exit();
1060 } else {
1061 /* activate soft MMU for this block */
1062 cpu_resume_from_signal(env, puc);
1063 }
1064 /* never comes here */
1065 return 1;
1066 }
1067
1068 #elif defined (TARGET_SH4)
1069 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1070 int is_write, sigset_t *old_set,
1071 void *puc)
1072 {
1073 TranslationBlock *tb;
1074 int ret;
1075
1076 if (cpu_single_env)
1077 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1078 #if defined(DEBUG_SIGNAL)
1079 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1080 pc, address, is_write, *(unsigned long *)old_set);
1081 #endif
1082 /* XXX: locking issue */
1083 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1084 return 1;
1085 }
1086
1087 /* see if it is an MMU fault */
1088 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1089 if (ret < 0)
1090 return 0; /* not an MMU fault */
1091 if (ret == 0)
1092 return 1; /* the MMU fault was handled without causing real CPU fault */
1093
1094 /* now we have a real cpu fault */
1095 tb = tb_find_pc(pc);
1096 if (tb) {
1097 /* the PC is inside the translated code. It means that we have
1098 a virtual CPU fault */
1099 cpu_restore_state(tb, env, pc, puc);
1100 }
1101 #if 0
1102 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1103 env->nip, env->error_code, tb);
1104 #endif
1105 /* we restore the process signal mask as the sigreturn should
1106 do it (XXX: use sigsetjmp) */
1107 sigprocmask(SIG_SETMASK, old_set, NULL);
1108 cpu_loop_exit();
1109 /* never comes here */
1110 return 1;
1111 }
1112
1113 #elif defined (TARGET_ALPHA)
1114 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1115 int is_write, sigset_t *old_set,
1116 void *puc)
1117 {
1118 TranslationBlock *tb;
1119 int ret;
1120
1121 if (cpu_single_env)
1122 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1123 #if defined(DEBUG_SIGNAL)
1124 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1125 pc, address, is_write, *(unsigned long *)old_set);
1126 #endif
1127 /* XXX: locking issue */
1128 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1129 return 1;
1130 }
1131
1132 /* see if it is an MMU fault */
1133 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1134 if (ret < 0)
1135 return 0; /* not an MMU fault */
1136 if (ret == 0)
1137 return 1; /* the MMU fault was handled without causing real CPU fault */
1138
1139 /* now we have a real cpu fault */
1140 tb = tb_find_pc(pc);
1141 if (tb) {
1142 /* the PC is inside the translated code. It means that we have
1143 a virtual CPU fault */
1144 cpu_restore_state(tb, env, pc, puc);
1145 }
1146 #if 0
1147 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1148 env->nip, env->error_code, tb);
1149 #endif
1150 /* we restore the process signal mask as the sigreturn should
1151 do it (XXX: use sigsetjmp) */
1152 sigprocmask(SIG_SETMASK, old_set, NULL);
1153 cpu_loop_exit();
1154 /* never comes here */
1155 return 1;
1156 }
1157 #elif defined (TARGET_CRIS)
1158 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1159 int is_write, sigset_t *old_set,
1160 void *puc)
1161 {
1162 TranslationBlock *tb;
1163 int ret;
1164
1165 if (cpu_single_env)
1166 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1167 #if defined(DEBUG_SIGNAL)
1168 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1169 pc, address, is_write, *(unsigned long *)old_set);
1170 #endif
1171 /* XXX: locking issue */
1172 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1173 return 1;
1174 }
1175
1176 /* see if it is an MMU fault */
1177 ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1178 if (ret < 0)
1179 return 0; /* not an MMU fault */
1180 if (ret == 0)
1181 return 1; /* the MMU fault was handled without causing real CPU fault */
1182
1183 /* now we have a real cpu fault */
1184 tb = tb_find_pc(pc);
1185 if (tb) {
1186 /* the PC is inside the translated code. It means that we have
1187 a virtual CPU fault */
1188 cpu_restore_state(tb, env, pc, puc);
1189 }
1190 /* we restore the process signal mask as the sigreturn should
1191 do it (XXX: use sigsetjmp) */
1192 sigprocmask(SIG_SETMASK, old_set, NULL);
1193 cpu_loop_exit();
1194 /* never comes here */
1195 return 1;
1196 }
1197
1198 #else
1199 #error unsupported target CPU
1200 #endif
1201
1202 #if defined(__i386__)
1203
1204 #if defined(__APPLE__)
1205 # include <sys/ucontext.h>
1206
1207 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1208 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1209 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1210 # define MASK_sig(context) ((context)->uc_sigmask)
1211 #elif defined(__OpenBSD__)
1212 # define EIP_sig(context) ((context)->sc_eip)
1213 # define TRAP_sig(context) ((context)->sc_trapno)
1214 # define ERROR_sig(context) ((context)->sc_err)
1215 # define MASK_sig(context) ((context)->sc_mask)
1216 #else
1217 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1218 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1219 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1220 # define MASK_sig(context) ((context)->uc_sigmask)
1221 #endif
1222
1223 int cpu_signal_handler(int host_signum, void *pinfo,
1224 void *puc)
1225 {
1226 siginfo_t *info = pinfo;
1227 #if defined(__OpenBSD__)
1228 struct sigcontext *uc = puc;
1229 #else
1230 struct ucontext *uc = puc;
1231 #endif
1232 unsigned long pc;
1233 int trapno;
1234
1235 #ifndef REG_EIP
1236 /* for glibc 2.1 */
1237 #define REG_EIP EIP
1238 #define REG_ERR ERR
1239 #define REG_TRAPNO TRAPNO
1240 #endif
1241 pc = EIP_sig(uc);
1242 trapno = TRAP_sig(uc);
1243 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1244 trapno == 0xe ?
1245 (ERROR_sig(uc) >> 1) & 1 : 0,
1246 &MASK_sig(uc), puc);
1247 }
1248
1249 #elif defined(__x86_64__)
1250
1251 #ifdef __NetBSD__
1252 #define PC_sig(context) _UC_MACHINE_PC(context)
1253 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
1254 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
1255 #define MASK_sig(context) ((context)->uc_sigmask)
1256 #elif defined(__OpenBSD__)
1257 #define PC_sig(context) ((context)->sc_rip)
1258 #define TRAP_sig(context) ((context)->sc_trapno)
1259 #define ERROR_sig(context) ((context)->sc_err)
1260 #define MASK_sig(context) ((context)->sc_mask)
1261 #else
1262 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
1263 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1264 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1265 #define MASK_sig(context) ((context)->uc_sigmask)
1266 #endif
1267
1268 int cpu_signal_handler(int host_signum, void *pinfo,
1269 void *puc)
1270 {
1271 siginfo_t *info = pinfo;
1272 unsigned long pc;
1273 #ifdef __NetBSD__
1274 ucontext_t *uc = puc;
1275 #elif defined(__OpenBSD__)
1276 struct sigcontext *uc = puc;
1277 #else
1278 struct ucontext *uc = puc;
1279 #endif
1280
1281 pc = PC_sig(uc);
1282 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1283 TRAP_sig(uc) == 0xe ?
1284 (ERROR_sig(uc) >> 1) & 1 : 0,
1285 &MASK_sig(uc), puc);
1286 }
1287
1288 #elif defined(_ARCH_PPC)
1289
1290 /***********************************************************************
1291 * signal context platform-specific definitions
1292 * From Wine
1293 */
1294 #ifdef linux
1295 /* All Registers access - only for local access */
1296 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1297 /* Gpr Registers access */
1298 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1299 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1300 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1301 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1302 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1303 # define LR_sig(context) REG_sig(link, context) /* Link register */
1304 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1305 /* Float Registers access */
1306 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1307 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1308 /* Exception Registers access */
1309 # define DAR_sig(context) REG_sig(dar, context)
1310 # define DSISR_sig(context) REG_sig(dsisr, context)
1311 # define TRAP_sig(context) REG_sig(trap, context)
1312 #endif /* linux */
1313
1314 #ifdef __APPLE__
1315 # include <sys/ucontext.h>
1316 typedef struct ucontext SIGCONTEXT;
1317 /* All Registers access - only for local access */
1318 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1319 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1320 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1321 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1322 /* Gpr Registers access */
1323 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1324 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1325 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1326 # define CTR_sig(context) REG_sig(ctr, context)
1327 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1328 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1329 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1330 /* Float Registers access */
1331 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1332 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1333 /* Exception Registers access */
1334 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1335 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1336 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1337 #endif /* __APPLE__ */
1338
1339 int cpu_signal_handler(int host_signum, void *pinfo,
1340 void *puc)
1341 {
1342 siginfo_t *info = pinfo;
1343 struct ucontext *uc = puc;
1344 unsigned long pc;
1345 int is_write;
1346
1347 pc = IAR_sig(uc);
1348 is_write = 0;
1349 #if 0
1350 /* ppc 4xx case */
1351 if (DSISR_sig(uc) & 0x00800000)
1352 is_write = 1;
1353 #else
1354 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1355 is_write = 1;
1356 #endif
1357 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1358 is_write, &uc->uc_sigmask, puc);
1359 }
1360
1361 #elif defined(__alpha__)
1362
1363 int cpu_signal_handler(int host_signum, void *pinfo,
1364 void *puc)
1365 {
1366 siginfo_t *info = pinfo;
1367 struct ucontext *uc = puc;
1368 uint32_t *pc = uc->uc_mcontext.sc_pc;
1369 uint32_t insn = *pc;
1370 int is_write = 0;
1371
1372 /* XXX: need kernel patch to get write flag faster */
1373 switch (insn >> 26) {
1374 case 0x0d: // stw
1375 case 0x0e: // stb
1376 case 0x0f: // stq_u
1377 case 0x24: // stf
1378 case 0x25: // stg
1379 case 0x26: // sts
1380 case 0x27: // stt
1381 case 0x2c: // stl
1382 case 0x2d: // stq
1383 case 0x2e: // stl_c
1384 case 0x2f: // stq_c
1385 is_write = 1;
1386 }
1387
1388 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1389 is_write, &uc->uc_sigmask, puc);
1390 }
1391 #elif defined(__sparc__)
1392
1393 int cpu_signal_handler(int host_signum, void *pinfo,
1394 void *puc)
1395 {
1396 siginfo_t *info = pinfo;
1397 int is_write;
1398 uint32_t insn;
1399 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1400 uint32_t *regs = (uint32_t *)(info + 1);
1401 void *sigmask = (regs + 20);
1402 /* XXX: is there a standard glibc define ? */
1403 unsigned long pc = regs[1];
1404 #else
1405 #ifdef __linux__
1406 struct sigcontext *sc = puc;
1407 unsigned long pc = sc->sigc_regs.tpc;
1408 void *sigmask = (void *)sc->sigc_mask;
1409 #elif defined(__OpenBSD__)
1410 struct sigcontext *uc = puc;
1411 unsigned long pc = uc->sc_pc;
1412 void *sigmask = (void *)(long)uc->sc_mask;
1413 #endif
1414 #endif
1415
1416 /* XXX: need kernel patch to get write flag faster */
1417 is_write = 0;
1418 insn = *(uint32_t *)pc;
1419 if ((insn >> 30) == 3) {
1420 switch((insn >> 19) & 0x3f) {
1421 case 0x05: // stb
1422 case 0x15: // stba
1423 case 0x06: // sth
1424 case 0x16: // stha
1425 case 0x04: // st
1426 case 0x14: // sta
1427 case 0x07: // std
1428 case 0x17: // stda
1429 case 0x0e: // stx
1430 case 0x1e: // stxa
1431 case 0x24: // stf
1432 case 0x34: // stfa
1433 case 0x27: // stdf
1434 case 0x37: // stdfa
1435 case 0x26: // stqf
1436 case 0x36: // stqfa
1437 case 0x25: // stfsr
1438 case 0x3c: // casa
1439 case 0x3e: // casxa
1440 is_write = 1;
1441 break;
1442 }
1443 }
1444 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1445 is_write, sigmask, NULL);
1446 }
1447
1448 #elif defined(__arm__)
1449
1450 int cpu_signal_handler(int host_signum, void *pinfo,
1451 void *puc)
1452 {
1453 siginfo_t *info = pinfo;
1454 struct ucontext *uc = puc;
1455 unsigned long pc;
1456 int is_write;
1457
1458 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1459 pc = uc->uc_mcontext.gregs[R15];
1460 #else
1461 pc = uc->uc_mcontext.arm_pc;
1462 #endif
1463 /* XXX: compute is_write */
1464 is_write = 0;
1465 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1466 is_write,
1467 &uc->uc_sigmask, puc);
1468 }
1469
1470 #elif defined(__mc68000)
1471
1472 int cpu_signal_handler(int host_signum, void *pinfo,
1473 void *puc)
1474 {
1475 siginfo_t *info = pinfo;
1476 struct ucontext *uc = puc;
1477 unsigned long pc;
1478 int is_write;
1479
1480 pc = uc->uc_mcontext.gregs[16];
1481 /* XXX: compute is_write */
1482 is_write = 0;
1483 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1484 is_write,
1485 &uc->uc_sigmask, puc);
1486 }
1487
1488 #elif defined(__ia64)
1489
1490 #ifndef __ISR_VALID
1491 /* This ought to be in <bits/siginfo.h>... */
1492 # define __ISR_VALID 1
1493 #endif
1494
1495 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1496 {
1497 siginfo_t *info = pinfo;
1498 struct ucontext *uc = puc;
1499 unsigned long ip;
1500 int is_write = 0;
1501
1502 ip = uc->uc_mcontext.sc_ip;
1503 switch (host_signum) {
1504 case SIGILL:
1505 case SIGFPE:
1506 case SIGSEGV:
1507 case SIGBUS:
1508 case SIGTRAP:
1509 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1510 /* ISR.W (write-access) is bit 33: */
1511 is_write = (info->si_isr >> 33) & 1;
1512 break;
1513
1514 default:
1515 break;
1516 }
1517 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1518 is_write,
1519 &uc->uc_sigmask, puc);
1520 }
1521
1522 #elif defined(__s390__)
1523
1524 int cpu_signal_handler(int host_signum, void *pinfo,
1525 void *puc)
1526 {
1527 siginfo_t *info = pinfo;
1528 struct ucontext *uc = puc;
1529 unsigned long pc;
1530 int is_write;
1531
1532 pc = uc->uc_mcontext.psw.addr;
1533 /* XXX: compute is_write */
1534 is_write = 0;
1535 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1536 is_write, &uc->uc_sigmask, puc);
1537 }
1538
1539 #elif defined(__mips__)
1540
1541 int cpu_signal_handler(int host_signum, void *pinfo,
1542 void *puc)
1543 {
1544 siginfo_t *info = pinfo;
1545 struct ucontext *uc = puc;
1546 greg_t pc = uc->uc_mcontext.pc;
1547 int is_write;
1548
1549 /* XXX: compute is_write */
1550 is_write = 0;
1551 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1552 is_write, &uc->uc_sigmask, puc);
1553 }
1554
1555 #elif defined(__hppa__)
1556
1557 int cpu_signal_handler(int host_signum, void *pinfo,
1558 void *puc)
1559 {
1560 struct siginfo *info = pinfo;
1561 struct ucontext *uc = puc;
1562 unsigned long pc;
1563 int is_write;
1564
1565 pc = uc->uc_mcontext.sc_iaoq[0];
1566 /* FIXME: compute is_write */
1567 is_write = 0;
1568 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1569 is_write,
1570 &uc->uc_sigmask, puc);
1571 }
1572
1573 #else
1574
1575 #error host CPU specific signal handler needed
1576
1577 #endif
1578
1579 #endif /* !defined(CONFIG_SOFTMMU) */