]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
fixed invalid irq jump chaining
[qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #ifdef TARGET_I386
22 #include "exec-i386.h"
23 #endif
24 #ifdef TARGET_ARM
25 #include "exec-arm.h"
26 #endif
27
28 #include "disas.h"
29
30 //#define DEBUG_EXEC
31 //#define DEBUG_SIGNAL
32
33 #if defined(TARGET_ARM)
34 /* XXX: unify with i386 target */
35 void cpu_loop_exit(void)
36 {
37 longjmp(env->jmp_env, 1);
38 }
39 #endif
40
41 /* main execution loop */
42
43 int cpu_exec(CPUState *env1)
44 {
45 int saved_T0, saved_T1, saved_T2;
46 CPUState *saved_env;
47 #ifdef reg_EAX
48 int saved_EAX;
49 #endif
50 #ifdef reg_ECX
51 int saved_ECX;
52 #endif
53 #ifdef reg_EDX
54 int saved_EDX;
55 #endif
56 #ifdef reg_EBX
57 int saved_EBX;
58 #endif
59 #ifdef reg_ESP
60 int saved_ESP;
61 #endif
62 #ifdef reg_EBP
63 int saved_EBP;
64 #endif
65 #ifdef reg_ESI
66 int saved_ESI;
67 #endif
68 #ifdef reg_EDI
69 int saved_EDI;
70 #endif
71 #ifdef __sparc__
72 int saved_i7, tmp_T0;
73 #endif
74 int code_gen_size, ret, interrupt_request;
75 void (*gen_func)(void);
76 TranslationBlock *tb, **ptb;
77 uint8_t *tc_ptr, *cs_base, *pc;
78 unsigned int flags;
79
80 /* first we save global registers */
81 saved_T0 = T0;
82 saved_T1 = T1;
83 saved_T2 = T2;
84 saved_env = env;
85 env = env1;
86 #ifdef __sparc__
87 /* we also save i7 because longjmp may not restore it */
88 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
89 #endif
90
91 #if defined(TARGET_I386)
92 #ifdef reg_EAX
93 saved_EAX = EAX;
94 EAX = env->regs[R_EAX];
95 #endif
96 #ifdef reg_ECX
97 saved_ECX = ECX;
98 ECX = env->regs[R_ECX];
99 #endif
100 #ifdef reg_EDX
101 saved_EDX = EDX;
102 EDX = env->regs[R_EDX];
103 #endif
104 #ifdef reg_EBX
105 saved_EBX = EBX;
106 EBX = env->regs[R_EBX];
107 #endif
108 #ifdef reg_ESP
109 saved_ESP = ESP;
110 ESP = env->regs[R_ESP];
111 #endif
112 #ifdef reg_EBP
113 saved_EBP = EBP;
114 EBP = env->regs[R_EBP];
115 #endif
116 #ifdef reg_ESI
117 saved_ESI = ESI;
118 ESI = env->regs[R_ESI];
119 #endif
120 #ifdef reg_EDI
121 saved_EDI = EDI;
122 EDI = env->regs[R_EDI];
123 #endif
124
125 /* put eflags in CPU temporary format */
126 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
127 DF = 1 - (2 * ((env->eflags >> 10) & 1));
128 CC_OP = CC_OP_EFLAGS;
129 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
130 #elif defined(TARGET_ARM)
131 {
132 unsigned int psr;
133 psr = env->cpsr;
134 env->CF = (psr >> 29) & 1;
135 env->NZF = (psr & 0xc0000000) ^ 0x40000000;
136 env->VF = (psr << 3) & 0x80000000;
137 env->cpsr = psr & ~0xf0000000;
138 }
139 #else
140 #error unsupported target CPU
141 #endif
142 env->exception_index = -1;
143
144 /* prepare setjmp context for exception handling */
145 for(;;) {
146 if (setjmp(env->jmp_env) == 0) {
147 /* if an exception is pending, we execute it here */
148 if (env->exception_index >= 0) {
149 if (env->exception_index >= EXCP_INTERRUPT) {
150 /* exit request from the cpu execution loop */
151 ret = env->exception_index;
152 break;
153 } else if (env->user_mode_only) {
154 /* if user mode only, we simulate a fake exception
155 which will be hanlded outside the cpu execution
156 loop */
157 #if defined(TARGET_I386)
158 do_interrupt_user(env->exception_index,
159 env->exception_is_int,
160 env->error_code,
161 env->exception_next_eip);
162 #endif
163 ret = env->exception_index;
164 break;
165 } else {
166 #if defined(TARGET_I386)
167 /* simulate a real cpu exception. On i386, it can
168 trigger new exceptions, but we do not handle
169 double or triple faults yet. */
170 do_interrupt(env->exception_index,
171 env->exception_is_int,
172 env->error_code,
173 env->exception_next_eip);
174 #endif
175 }
176 env->exception_index = -1;
177 }
178 T0 = 0; /* force lookup of first TB */
179 for(;;) {
180 #ifdef __sparc__
181 /* g1 can be modified by some libc? functions */
182 tmp_T0 = T0;
183 #endif
184 interrupt_request = env->interrupt_request;
185 if (interrupt_request) {
186 #if defined(TARGET_I386)
187 /* if hardware interrupt pending, we execute it */
188 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
189 (env->eflags & IF_MASK)) {
190 int intno;
191 intno = cpu_x86_get_pic_interrupt(env);
192 if (loglevel) {
193 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
194 }
195 do_interrupt(intno, 0, 0, 0);
196 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
197 /* ensure that no TB jump will be modified as
198 the program flow was changed */
199 #ifdef __sparc__
200 tmp_T0 = 0;
201 #else
202 T0 = 0;
203 #endif
204 }
205 #endif
206 if (interrupt_request & CPU_INTERRUPT_EXIT) {
207 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
208 env->exception_index = EXCP_INTERRUPT;
209 cpu_loop_exit();
210 }
211 }
212 #ifdef DEBUG_EXEC
213 if (loglevel) {
214 #if defined(TARGET_I386)
215 /* restore flags in standard format */
216 env->regs[R_EAX] = EAX;
217 env->regs[R_EBX] = EBX;
218 env->regs[R_ECX] = ECX;
219 env->regs[R_EDX] = EDX;
220 env->regs[R_ESI] = ESI;
221 env->regs[R_EDI] = EDI;
222 env->regs[R_EBP] = EBP;
223 env->regs[R_ESP] = ESP;
224 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
225 cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
226 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
227 #elif defined(TARGET_ARM)
228 cpu_arm_dump_state(env, logfile, 0);
229 #else
230 #error unsupported target CPU
231 #endif
232 }
233 #endif
234 /* we compute the CPU state. We assume it will not
235 change during the whole generated block. */
236 #if defined(TARGET_I386)
237 flags = (env->segs[R_CS].flags & DESC_B_MASK)
238 >> (DESC_B_SHIFT - GEN_FLAG_CODE32_SHIFT);
239 flags |= (env->segs[R_SS].flags & DESC_B_MASK)
240 >> (DESC_B_SHIFT - GEN_FLAG_SS32_SHIFT);
241 flags |= (((unsigned long)env->segs[R_DS].base |
242 (unsigned long)env->segs[R_ES].base |
243 (unsigned long)env->segs[R_SS].base) != 0) <<
244 GEN_FLAG_ADDSEG_SHIFT;
245 if (!(env->eflags & VM_MASK)) {
246 flags |= (env->segs[R_CS].selector & 3) << GEN_FLAG_CPL_SHIFT;
247 } else {
248 /* NOTE: a dummy CPL is kept */
249 flags |= (1 << GEN_FLAG_VM_SHIFT);
250 flags |= (3 << GEN_FLAG_CPL_SHIFT);
251 }
252 flags |= (env->eflags & (IOPL_MASK | TF_MASK));
253 cs_base = env->segs[R_CS].base;
254 pc = cs_base + env->eip;
255 #elif defined(TARGET_ARM)
256 flags = 0;
257 cs_base = 0;
258 pc = (uint8_t *)env->regs[15];
259 #else
260 #error unsupported CPU
261 #endif
262 tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
263 flags);
264 if (!tb) {
265 spin_lock(&tb_lock);
266 /* if no translated code available, then translate it now */
267 tb = tb_alloc((unsigned long)pc);
268 if (!tb) {
269 /* flush must be done */
270 tb_flush();
271 /* cannot fail at this point */
272 tb = tb_alloc((unsigned long)pc);
273 /* don't forget to invalidate previous TB info */
274 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
275 T0 = 0;
276 }
277 tc_ptr = code_gen_ptr;
278 tb->tc_ptr = tc_ptr;
279 tb->cs_base = (unsigned long)cs_base;
280 tb->flags = flags;
281 ret = cpu_gen_code(tb, CODE_GEN_MAX_SIZE, &code_gen_size);
282 #if defined(TARGET_I386)
283 /* XXX: suppress that, this is incorrect */
284 /* if invalid instruction, signal it */
285 if (ret != 0) {
286 /* NOTE: the tb is allocated but not linked, so we
287 can leave it */
288 spin_unlock(&tb_lock);
289 raise_exception(EXCP06_ILLOP);
290 }
291 #endif
292 *ptb = tb;
293 tb->hash_next = NULL;
294 tb_link(tb);
295 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
296 spin_unlock(&tb_lock);
297 }
298 #ifdef DEBUG_EXEC
299 if (loglevel) {
300 fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
301 (long)tb->tc_ptr, (long)tb->pc,
302 lookup_symbol((void *)tb->pc));
303 }
304 #endif
305 #ifdef __sparc__
306 T0 = tmp_T0;
307 #endif
308 /* see if we can patch the calling TB. XXX: remove TF test */
309 if (T0 != 0
310 #if defined(TARGET_I386)
311 && !(env->eflags & TF_MASK)
312 #endif
313 ) {
314 spin_lock(&tb_lock);
315 tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
316 spin_unlock(&tb_lock);
317 }
318 tc_ptr = tb->tc_ptr;
319 env->current_tb = tb;
320 /* execute the generated code */
321 gen_func = (void *)tc_ptr;
322 #if defined(__sparc__)
323 __asm__ __volatile__("call %0\n\t"
324 "mov %%o7,%%i0"
325 : /* no outputs */
326 : "r" (gen_func)
327 : "i0", "i1", "i2", "i3", "i4", "i5");
328 #elif defined(__arm__)
329 asm volatile ("mov pc, %0\n\t"
330 ".global exec_loop\n\t"
331 "exec_loop:\n\t"
332 : /* no outputs */
333 : "r" (gen_func)
334 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
335 #else
336 gen_func();
337 #endif
338 env->current_tb = NULL;
339 }
340 } else {
341 }
342 } /* for(;;) */
343
344
345 #if defined(TARGET_I386)
346 /* restore flags in standard format */
347 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
348
349 /* restore global registers */
350 #ifdef reg_EAX
351 EAX = saved_EAX;
352 #endif
353 #ifdef reg_ECX
354 ECX = saved_ECX;
355 #endif
356 #ifdef reg_EDX
357 EDX = saved_EDX;
358 #endif
359 #ifdef reg_EBX
360 EBX = saved_EBX;
361 #endif
362 #ifdef reg_ESP
363 ESP = saved_ESP;
364 #endif
365 #ifdef reg_EBP
366 EBP = saved_EBP;
367 #endif
368 #ifdef reg_ESI
369 ESI = saved_ESI;
370 #endif
371 #ifdef reg_EDI
372 EDI = saved_EDI;
373 #endif
374 #elif defined(TARGET_ARM)
375 {
376 int ZF;
377 ZF = (env->NZF == 0);
378 env->cpsr = env->cpsr | (env->NZF & 0x80000000) | (ZF << 30) |
379 (env->CF << 29) | ((env->VF & 0x80000000) >> 3);
380 }
381 #else
382 #error unsupported target CPU
383 #endif
384 #ifdef __sparc__
385 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
386 #endif
387 T0 = saved_T0;
388 T1 = saved_T1;
389 T2 = saved_T2;
390 env = saved_env;
391 return ret;
392 }
393
394 #if defined(TARGET_I386)
395
396 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
397 {
398 CPUX86State *saved_env;
399
400 saved_env = env;
401 env = s;
402 if (env->eflags & VM_MASK) {
403 SegmentCache *sc;
404 selector &= 0xffff;
405 sc = &env->segs[seg_reg];
406 /* NOTE: in VM86 mode, limit and flags are never reloaded,
407 so we must load them here */
408 sc->base = (void *)(selector << 4);
409 sc->limit = 0xffff;
410 sc->flags = 0;
411 sc->selector = selector;
412 } else {
413 load_seg(seg_reg, selector, 0);
414 }
415 env = saved_env;
416 }
417
418 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
419 {
420 CPUX86State *saved_env;
421
422 saved_env = env;
423 env = s;
424
425 helper_fsave(ptr, data32);
426
427 env = saved_env;
428 }
429
430 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
431 {
432 CPUX86State *saved_env;
433
434 saved_env = env;
435 env = s;
436
437 helper_frstor(ptr, data32);
438
439 env = saved_env;
440 }
441
442 #endif /* TARGET_I386 */
443
444 #undef EAX
445 #undef ECX
446 #undef EDX
447 #undef EBX
448 #undef ESP
449 #undef EBP
450 #undef ESI
451 #undef EDI
452 #undef EIP
453 #include <signal.h>
454 #include <sys/ucontext.h>
455
456 #if defined(TARGET_I386)
457
458 /* 'pc' is the host PC at which the exception was raised. 'address' is
459 the effective address of the memory exception. 'is_write' is 1 if a
460 write caused the exception and otherwise 0'. 'old_set' is the
461 signal set which should be restored */
462 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
463 int is_write, sigset_t *old_set)
464 {
465 TranslationBlock *tb;
466 int ret;
467
468 if (cpu_single_env)
469 env = cpu_single_env; /* XXX: find a correct solution for multithread */
470 #if defined(DEBUG_SIGNAL)
471 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
472 pc, address, is_write, *(unsigned long *)old_set);
473 #endif
474 /* XXX: locking issue */
475 if (is_write && page_unprotect(address)) {
476 return 1;
477 }
478 /* see if it is an MMU fault */
479 ret = cpu_x86_handle_mmu_fault(env, address, is_write);
480 if (ret < 0)
481 return 0; /* not an MMU fault */
482 if (ret == 0)
483 return 1; /* the MMU fault was handled without causing real CPU fault */
484 /* now we have a real cpu fault */
485 tb = tb_find_pc(pc);
486 if (tb) {
487 /* the PC is inside the translated code. It means that we have
488 a virtual CPU fault */
489 cpu_restore_state(tb, env, pc);
490 }
491 #if 0
492 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
493 env->eip, env->cr[2], env->error_code);
494 #endif
495 /* we restore the process signal mask as the sigreturn should
496 do it (XXX: use sigsetjmp) */
497 sigprocmask(SIG_SETMASK, old_set, NULL);
498 raise_exception_err(EXCP0E_PAGE, env->error_code);
499 /* never comes here */
500 return 1;
501 }
502
503 #elif defined(TARGET_ARM)
504 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
505 int is_write, sigset_t *old_set)
506 {
507 /* XXX: do more */
508 return 0;
509 }
510 #else
511 #error unsupported target CPU
512 #endif
513
514 #if defined(__i386__)
515
516 int cpu_signal_handler(int host_signum, struct siginfo *info,
517 void *puc)
518 {
519 struct ucontext *uc = puc;
520 unsigned long pc;
521
522 #ifndef REG_EIP
523 /* for glibc 2.1 */
524 #define REG_EIP EIP
525 #define REG_ERR ERR
526 #define REG_TRAPNO TRAPNO
527 #endif
528 pc = uc->uc_mcontext.gregs[REG_EIP];
529 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
530 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
531 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
532 &uc->uc_sigmask);
533 }
534
535 #elif defined(__powerpc)
536
537 int cpu_signal_handler(int host_signum, struct siginfo *info,
538 void *puc)
539 {
540 struct ucontext *uc = puc;
541 struct pt_regs *regs = uc->uc_mcontext.regs;
542 unsigned long pc;
543 int is_write;
544
545 pc = regs->nip;
546 is_write = 0;
547 #if 0
548 /* ppc 4xx case */
549 if (regs->dsisr & 0x00800000)
550 is_write = 1;
551 #else
552 if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
553 is_write = 1;
554 #endif
555 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
556 is_write, &uc->uc_sigmask);
557 }
558
559 #elif defined(__alpha__)
560
561 int cpu_signal_handler(int host_signum, struct siginfo *info,
562 void *puc)
563 {
564 struct ucontext *uc = puc;
565 uint32_t *pc = uc->uc_mcontext.sc_pc;
566 uint32_t insn = *pc;
567 int is_write = 0;
568
569 /* XXX: need kernel patch to get write flag faster */
570 switch (insn >> 26) {
571 case 0x0d: // stw
572 case 0x0e: // stb
573 case 0x0f: // stq_u
574 case 0x24: // stf
575 case 0x25: // stg
576 case 0x26: // sts
577 case 0x27: // stt
578 case 0x2c: // stl
579 case 0x2d: // stq
580 case 0x2e: // stl_c
581 case 0x2f: // stq_c
582 is_write = 1;
583 }
584
585 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
586 is_write, &uc->uc_sigmask);
587 }
588 #elif defined(__sparc__)
589
590 int cpu_signal_handler(int host_signum, struct siginfo *info,
591 void *puc)
592 {
593 uint32_t *regs = (uint32_t *)(info + 1);
594 void *sigmask = (regs + 20);
595 unsigned long pc;
596 int is_write;
597 uint32_t insn;
598
599 /* XXX: is there a standard glibc define ? */
600 pc = regs[1];
601 /* XXX: need kernel patch to get write flag faster */
602 is_write = 0;
603 insn = *(uint32_t *)pc;
604 if ((insn >> 30) == 3) {
605 switch((insn >> 19) & 0x3f) {
606 case 0x05: // stb
607 case 0x06: // sth
608 case 0x04: // st
609 case 0x07: // std
610 case 0x24: // stf
611 case 0x27: // stdf
612 case 0x25: // stfsr
613 is_write = 1;
614 break;
615 }
616 }
617 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
618 is_write, sigmask);
619 }
620
621 #elif defined(__arm__)
622
623 int cpu_signal_handler(int host_signum, struct siginfo *info,
624 void *puc)
625 {
626 struct ucontext *uc = puc;
627 unsigned long pc;
628 int is_write;
629
630 pc = uc->uc_mcontext.gregs[R15];
631 /* XXX: compute is_write */
632 is_write = 0;
633 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
634 is_write,
635 &uc->uc_sigmask);
636 }
637
638 #else
639
640 #error host CPU specific signal handler needed
641
642 #endif