]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
fixed warning
[qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
23
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
37
38 int tb_invalidated_flag;
39
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
42
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
46 {
47 longjmp(env->jmp_env, 1);
48 }
49 #endif
50 #ifndef TARGET_SPARC
51 #define reg_T2
52 #endif
53
54 /* exit the current TB from a signal handler. The host registers are
55 restored in a state compatible with the CPU emulator
56 */
57 void cpu_resume_from_signal(CPUState *env1, void *puc)
58 {
59 #if !defined(CONFIG_SOFTMMU)
60 struct ucontext *uc = puc;
61 #endif
62
63 env = env1;
64
65 /* XXX: restore cpu registers saved in host registers */
66
67 #if !defined(CONFIG_SOFTMMU)
68 if (puc) {
69 /* XXX: use siglongjmp ? */
70 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71 }
72 #endif
73 longjmp(env->jmp_env, 1);
74 }
75
76
77 static TranslationBlock *tb_find_slow(target_ulong pc,
78 target_ulong cs_base,
79 unsigned int flags)
80 {
81 TranslationBlock *tb, **ptb1;
82 int code_gen_size;
83 unsigned int h;
84 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85 uint8_t *tc_ptr;
86
87 spin_lock(&tb_lock);
88
89 tb_invalidated_flag = 0;
90
91 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
93 /* find translated block using physical mappings */
94 phys_pc = get_phys_addr_code(env, pc);
95 phys_page1 = phys_pc & TARGET_PAGE_MASK;
96 phys_page2 = -1;
97 h = tb_phys_hash_func(phys_pc);
98 ptb1 = &tb_phys_hash[h];
99 for(;;) {
100 tb = *ptb1;
101 if (!tb)
102 goto not_found;
103 if (tb->pc == pc &&
104 tb->page_addr[0] == phys_page1 &&
105 tb->cs_base == cs_base &&
106 tb->flags == flags) {
107 /* check next page if needed */
108 if (tb->page_addr[1] != -1) {
109 virt_page2 = (pc & TARGET_PAGE_MASK) +
110 TARGET_PAGE_SIZE;
111 phys_page2 = get_phys_addr_code(env, virt_page2);
112 if (tb->page_addr[1] == phys_page2)
113 goto found;
114 } else {
115 goto found;
116 }
117 }
118 ptb1 = &tb->phys_hash_next;
119 }
120 not_found:
121 /* if no translated code available, then translate it now */
122 tb = tb_alloc(pc);
123 if (!tb) {
124 /* flush must be done */
125 tb_flush(env);
126 /* cannot fail at this point */
127 tb = tb_alloc(pc);
128 /* don't forget to invalidate previous TB info */
129 T0 = 0;
130 }
131 tc_ptr = code_gen_ptr;
132 tb->tc_ptr = tc_ptr;
133 tb->cs_base = cs_base;
134 tb->flags = flags;
135 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
138 /* check next page if needed */
139 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140 phys_page2 = -1;
141 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142 phys_page2 = get_phys_addr_code(env, virt_page2);
143 }
144 tb_link_phys(tb, phys_pc, phys_page2);
145
146 found:
147 if (tb_invalidated_flag) {
148 /* as some TB could have been invalidated because
149 of memory exceptions while generating the code, we
150 must recompute the hash index here */
151 T0 = 0;
152 }
153 /* we add the TB in the virtual pc hash table */
154 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
155 spin_unlock(&tb_lock);
156 return tb;
157 }
158
159 static inline TranslationBlock *tb_find_fast(void)
160 {
161 TranslationBlock *tb;
162 target_ulong cs_base, pc;
163 unsigned int flags;
164
165 /* we record a subset of the CPU state. It will
166 always be the same before a given translated block
167 is executed. */
168 #if defined(TARGET_I386)
169 flags = env->hflags;
170 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
171 cs_base = env->segs[R_CS].base;
172 pc = cs_base + env->eip;
173 #elif defined(TARGET_ARM)
174 flags = env->thumb | (env->vfp.vec_len << 1)
175 | (env->vfp.vec_stride << 4);
176 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
177 flags |= (1 << 6);
178 cs_base = 0;
179 pc = env->regs[15];
180 #elif defined(TARGET_SPARC)
181 #ifdef TARGET_SPARC64
182 flags = (env->pstate << 2) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
183 #else
184 flags = env->psrs | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1);
185 #endif
186 cs_base = env->npc;
187 pc = env->pc;
188 #elif defined(TARGET_PPC)
189 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
190 (msr_se << MSR_SE) | (msr_le << MSR_LE);
191 cs_base = 0;
192 pc = env->nip;
193 #elif defined(TARGET_MIPS)
194 flags = env->hflags & MIPS_HFLAGS_TMASK;
195 cs_base = 0;
196 pc = env->PC;
197 #else
198 #error unsupported CPU
199 #endif
200 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
201 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
202 tb->flags != flags, 0)) {
203 tb = tb_find_slow(pc, cs_base, flags);
204 }
205 return tb;
206 }
207
208
209 /* main execution loop */
210
211 int cpu_exec(CPUState *env1)
212 {
213 int saved_T0, saved_T1;
214 #if defined(reg_T2)
215 int saved_T2;
216 #endif
217 CPUState *saved_env;
218 #if defined(TARGET_I386)
219 #ifdef reg_EAX
220 int saved_EAX;
221 #endif
222 #ifdef reg_ECX
223 int saved_ECX;
224 #endif
225 #ifdef reg_EDX
226 int saved_EDX;
227 #endif
228 #ifdef reg_EBX
229 int saved_EBX;
230 #endif
231 #ifdef reg_ESP
232 int saved_ESP;
233 #endif
234 #ifdef reg_EBP
235 int saved_EBP;
236 #endif
237 #ifdef reg_ESI
238 int saved_ESI;
239 #endif
240 #ifdef reg_EDI
241 int saved_EDI;
242 #endif
243 #elif defined(TARGET_SPARC)
244 #if defined(reg_REGWPTR)
245 uint32_t *saved_regwptr;
246 #endif
247 #endif
248 #ifdef __sparc__
249 int saved_i7, tmp_T0;
250 #endif
251 int ret, interrupt_request;
252 void (*gen_func)(void);
253 TranslationBlock *tb;
254 uint8_t *tc_ptr;
255
256 #if defined(TARGET_I386)
257 /* handle exit of HALTED state */
258 if (env1->hflags & HF_HALTED_MASK) {
259 /* disable halt condition */
260 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
261 (env1->eflags & IF_MASK)) {
262 env1->hflags &= ~HF_HALTED_MASK;
263 } else {
264 return EXCP_HALTED;
265 }
266 }
267 #elif defined(TARGET_PPC)
268 if (env1->msr[MSR_POW]) {
269 if (env1->msr[MSR_EE] &&
270 (env1->interrupt_request &
271 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
272 env1->msr[MSR_POW] = 0;
273 } else {
274 return EXCP_HALTED;
275 }
276 }
277 #elif defined(TARGET_ARM)
278 if (env1->halted) {
279 /* An interrupt wakes the CPU even if the I and F CPSR bits are
280 set. */
281 if (env1->interrupt_request
282 & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
283 env1->halted = 0;
284 } else {
285 return EXCP_HALTED;
286 }
287 }
288 #endif
289
290 cpu_single_env = env1;
291
292 /* first we save global registers */
293 saved_env = env;
294 env = env1;
295 saved_T0 = T0;
296 saved_T1 = T1;
297 #if defined(reg_T2)
298 saved_T2 = T2;
299 #endif
300 #ifdef __sparc__
301 /* we also save i7 because longjmp may not restore it */
302 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
303 #endif
304
305 #if defined(TARGET_I386)
306 #ifdef reg_EAX
307 saved_EAX = EAX;
308 #endif
309 #ifdef reg_ECX
310 saved_ECX = ECX;
311 #endif
312 #ifdef reg_EDX
313 saved_EDX = EDX;
314 #endif
315 #ifdef reg_EBX
316 saved_EBX = EBX;
317 #endif
318 #ifdef reg_ESP
319 saved_ESP = ESP;
320 #endif
321 #ifdef reg_EBP
322 saved_EBP = EBP;
323 #endif
324 #ifdef reg_ESI
325 saved_ESI = ESI;
326 #endif
327 #ifdef reg_EDI
328 saved_EDI = EDI;
329 #endif
330
331 env_to_regs();
332 /* put eflags in CPU temporary format */
333 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
334 DF = 1 - (2 * ((env->eflags >> 10) & 1));
335 CC_OP = CC_OP_EFLAGS;
336 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
337 #elif defined(TARGET_ARM)
338 #elif defined(TARGET_SPARC)
339 #if defined(reg_REGWPTR)
340 saved_regwptr = REGWPTR;
341 #endif
342 #elif defined(TARGET_PPC)
343 #elif defined(TARGET_MIPS)
344 #else
345 #error unsupported target CPU
346 #endif
347 env->exception_index = -1;
348
349 /* prepare setjmp context for exception handling */
350 for(;;) {
351 if (setjmp(env->jmp_env) == 0) {
352 env->current_tb = NULL;
353 /* if an exception is pending, we execute it here */
354 if (env->exception_index >= 0) {
355 if (env->exception_index >= EXCP_INTERRUPT) {
356 /* exit request from the cpu execution loop */
357 ret = env->exception_index;
358 break;
359 } else if (env->user_mode_only) {
360 /* if user mode only, we simulate a fake exception
361 which will be hanlded outside the cpu execution
362 loop */
363 #if defined(TARGET_I386)
364 do_interrupt_user(env->exception_index,
365 env->exception_is_int,
366 env->error_code,
367 env->exception_next_eip);
368 #endif
369 ret = env->exception_index;
370 break;
371 } else {
372 #if defined(TARGET_I386)
373 /* simulate a real cpu exception. On i386, it can
374 trigger new exceptions, but we do not handle
375 double or triple faults yet. */
376 do_interrupt(env->exception_index,
377 env->exception_is_int,
378 env->error_code,
379 env->exception_next_eip, 0);
380 #elif defined(TARGET_PPC)
381 do_interrupt(env);
382 #elif defined(TARGET_MIPS)
383 do_interrupt(env);
384 #elif defined(TARGET_SPARC)
385 do_interrupt(env->exception_index);
386 #elif defined(TARGET_ARM)
387 do_interrupt(env);
388 #endif
389 }
390 env->exception_index = -1;
391 }
392 #ifdef USE_KQEMU
393 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
394 int ret;
395 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
396 ret = kqemu_cpu_exec(env);
397 /* put eflags in CPU temporary format */
398 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
399 DF = 1 - (2 * ((env->eflags >> 10) & 1));
400 CC_OP = CC_OP_EFLAGS;
401 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
402 if (ret == 1) {
403 /* exception */
404 longjmp(env->jmp_env, 1);
405 } else if (ret == 2) {
406 /* softmmu execution needed */
407 } else {
408 if (env->interrupt_request != 0) {
409 /* hardware interrupt will be executed just after */
410 } else {
411 /* otherwise, we restart */
412 longjmp(env->jmp_env, 1);
413 }
414 }
415 }
416 #endif
417
418 T0 = 0; /* force lookup of first TB */
419 for(;;) {
420 #ifdef __sparc__
421 /* g1 can be modified by some libc? functions */
422 tmp_T0 = T0;
423 #endif
424 interrupt_request = env->interrupt_request;
425 if (__builtin_expect(interrupt_request, 0)) {
426 #if defined(TARGET_I386)
427 /* if hardware interrupt pending, we execute it */
428 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
429 (env->eflags & IF_MASK) &&
430 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
431 int intno;
432 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
433 intno = cpu_get_pic_interrupt(env);
434 if (loglevel & CPU_LOG_TB_IN_ASM) {
435 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
436 }
437 do_interrupt(intno, 0, 0, 0, 1);
438 /* ensure that no TB jump will be modified as
439 the program flow was changed */
440 #ifdef __sparc__
441 tmp_T0 = 0;
442 #else
443 T0 = 0;
444 #endif
445 }
446 #elif defined(TARGET_PPC)
447 #if 0
448 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
449 cpu_ppc_reset(env);
450 }
451 #endif
452 if (msr_ee != 0) {
453 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
454 /* Raise it */
455 env->exception_index = EXCP_EXTERNAL;
456 env->error_code = 0;
457 do_interrupt(env);
458 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
459 #ifdef __sparc__
460 tmp_T0 = 0;
461 #else
462 T0 = 0;
463 #endif
464 } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
465 /* Raise it */
466 env->exception_index = EXCP_DECR;
467 env->error_code = 0;
468 do_interrupt(env);
469 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
470 #ifdef __sparc__
471 tmp_T0 = 0;
472 #else
473 T0 = 0;
474 #endif
475 }
476 }
477 #elif defined(TARGET_MIPS)
478 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
479 (env->CP0_Status & (1 << CP0St_IE)) &&
480 (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
481 !(env->hflags & MIPS_HFLAG_EXL) &&
482 !(env->hflags & MIPS_HFLAG_ERL) &&
483 !(env->hflags & MIPS_HFLAG_DM)) {
484 /* Raise it */
485 env->exception_index = EXCP_EXT_INTERRUPT;
486 env->error_code = 0;
487 do_interrupt(env);
488 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
489 #ifdef __sparc__
490 tmp_T0 = 0;
491 #else
492 T0 = 0;
493 #endif
494 }
495 #elif defined(TARGET_SPARC)
496 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
497 (env->psret != 0)) {
498 int pil = env->interrupt_index & 15;
499 int type = env->interrupt_index & 0xf0;
500
501 if (((type == TT_EXTINT) &&
502 (pil == 15 || pil > env->psrpil)) ||
503 type != TT_EXTINT) {
504 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
505 do_interrupt(env->interrupt_index);
506 env->interrupt_index = 0;
507 #ifdef __sparc__
508 tmp_T0 = 0;
509 #else
510 T0 = 0;
511 #endif
512 }
513 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
514 //do_interrupt(0, 0, 0, 0, 0);
515 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
516 }
517 #elif defined(TARGET_ARM)
518 if (interrupt_request & CPU_INTERRUPT_FIQ
519 && !(env->uncached_cpsr & CPSR_F)) {
520 env->exception_index = EXCP_FIQ;
521 do_interrupt(env);
522 }
523 if (interrupt_request & CPU_INTERRUPT_HARD
524 && !(env->uncached_cpsr & CPSR_I)) {
525 env->exception_index = EXCP_IRQ;
526 do_interrupt(env);
527 }
528 #endif
529 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
530 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
531 /* ensure that no TB jump will be modified as
532 the program flow was changed */
533 #ifdef __sparc__
534 tmp_T0 = 0;
535 #else
536 T0 = 0;
537 #endif
538 }
539 if (interrupt_request & CPU_INTERRUPT_EXIT) {
540 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
541 env->exception_index = EXCP_INTERRUPT;
542 cpu_loop_exit();
543 }
544 }
545 #ifdef DEBUG_EXEC
546 if ((loglevel & CPU_LOG_TB_CPU)) {
547 #if defined(TARGET_I386)
548 /* restore flags in standard format */
549 #ifdef reg_EAX
550 env->regs[R_EAX] = EAX;
551 #endif
552 #ifdef reg_EBX
553 env->regs[R_EBX] = EBX;
554 #endif
555 #ifdef reg_ECX
556 env->regs[R_ECX] = ECX;
557 #endif
558 #ifdef reg_EDX
559 env->regs[R_EDX] = EDX;
560 #endif
561 #ifdef reg_ESI
562 env->regs[R_ESI] = ESI;
563 #endif
564 #ifdef reg_EDI
565 env->regs[R_EDI] = EDI;
566 #endif
567 #ifdef reg_EBP
568 env->regs[R_EBP] = EBP;
569 #endif
570 #ifdef reg_ESP
571 env->regs[R_ESP] = ESP;
572 #endif
573 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
574 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
575 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
576 #elif defined(TARGET_ARM)
577 cpu_dump_state(env, logfile, fprintf, 0);
578 #elif defined(TARGET_SPARC)
579 REGWPTR = env->regbase + (env->cwp * 16);
580 env->regwptr = REGWPTR;
581 cpu_dump_state(env, logfile, fprintf, 0);
582 #elif defined(TARGET_PPC)
583 cpu_dump_state(env, logfile, fprintf, 0);
584 #elif defined(TARGET_MIPS)
585 cpu_dump_state(env, logfile, fprintf, 0);
586 #else
587 #error unsupported target CPU
588 #endif
589 }
590 #endif
591 tb = tb_find_fast();
592 #ifdef DEBUG_EXEC
593 if ((loglevel & CPU_LOG_EXEC)) {
594 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
595 (long)tb->tc_ptr, tb->pc,
596 lookup_symbol(tb->pc));
597 }
598 #endif
599 #ifdef __sparc__
600 T0 = tmp_T0;
601 #endif
602 /* see if we can patch the calling TB. When the TB
603 spans two pages, we cannot safely do a direct
604 jump. */
605 {
606 if (T0 != 0 &&
607 tb->page_addr[1] == -1
608 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
609 && (tb->cflags & CF_CODE_COPY) ==
610 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
611 #endif
612 ) {
613 spin_lock(&tb_lock);
614 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
615 #if defined(USE_CODE_COPY)
616 /* propagates the FP use info */
617 ((TranslationBlock *)(T0 & ~3))->cflags |=
618 (tb->cflags & CF_FP_USED);
619 #endif
620 spin_unlock(&tb_lock);
621 }
622 }
623 tc_ptr = tb->tc_ptr;
624 env->current_tb = tb;
625 /* execute the generated code */
626 gen_func = (void *)tc_ptr;
627 #if defined(__sparc__)
628 __asm__ __volatile__("call %0\n\t"
629 "mov %%o7,%%i0"
630 : /* no outputs */
631 : "r" (gen_func)
632 : "i0", "i1", "i2", "i3", "i4", "i5");
633 #elif defined(__arm__)
634 asm volatile ("mov pc, %0\n\t"
635 ".global exec_loop\n\t"
636 "exec_loop:\n\t"
637 : /* no outputs */
638 : "r" (gen_func)
639 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
640 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
641 {
642 if (!(tb->cflags & CF_CODE_COPY)) {
643 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
644 save_native_fp_state(env);
645 }
646 gen_func();
647 } else {
648 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
649 restore_native_fp_state(env);
650 }
651 /* we work with native eflags */
652 CC_SRC = cc_table[CC_OP].compute_all();
653 CC_OP = CC_OP_EFLAGS;
654 asm(".globl exec_loop\n"
655 "\n"
656 "debug1:\n"
657 " pushl %%ebp\n"
658 " fs movl %10, %9\n"
659 " fs movl %11, %%eax\n"
660 " andl $0x400, %%eax\n"
661 " fs orl %8, %%eax\n"
662 " pushl %%eax\n"
663 " popf\n"
664 " fs movl %%esp, %12\n"
665 " fs movl %0, %%eax\n"
666 " fs movl %1, %%ecx\n"
667 " fs movl %2, %%edx\n"
668 " fs movl %3, %%ebx\n"
669 " fs movl %4, %%esp\n"
670 " fs movl %5, %%ebp\n"
671 " fs movl %6, %%esi\n"
672 " fs movl %7, %%edi\n"
673 " fs jmp *%9\n"
674 "exec_loop:\n"
675 " fs movl %%esp, %4\n"
676 " fs movl %12, %%esp\n"
677 " fs movl %%eax, %0\n"
678 " fs movl %%ecx, %1\n"
679 " fs movl %%edx, %2\n"
680 " fs movl %%ebx, %3\n"
681 " fs movl %%ebp, %5\n"
682 " fs movl %%esi, %6\n"
683 " fs movl %%edi, %7\n"
684 " pushf\n"
685 " popl %%eax\n"
686 " movl %%eax, %%ecx\n"
687 " andl $0x400, %%ecx\n"
688 " shrl $9, %%ecx\n"
689 " andl $0x8d5, %%eax\n"
690 " fs movl %%eax, %8\n"
691 " movl $1, %%eax\n"
692 " subl %%ecx, %%eax\n"
693 " fs movl %%eax, %11\n"
694 " fs movl %9, %%ebx\n" /* get T0 value */
695 " popl %%ebp\n"
696 :
697 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
698 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
699 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
700 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
701 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
702 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
703 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
704 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
705 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
706 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
707 "a" (gen_func),
708 "m" (*(uint8_t *)offsetof(CPUState, df)),
709 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
710 : "%ecx", "%edx"
711 );
712 }
713 }
714 #elif defined(__ia64)
715 struct fptr {
716 void *ip;
717 void *gp;
718 } fp;
719
720 fp.ip = tc_ptr;
721 fp.gp = code_gen_buffer + 2 * (1 << 20);
722 (*(void (*)(void)) &fp)();
723 #else
724 gen_func();
725 #endif
726 env->current_tb = NULL;
727 /* reset soft MMU for next block (it can currently
728 only be set by a memory fault) */
729 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
730 if (env->hflags & HF_SOFTMMU_MASK) {
731 env->hflags &= ~HF_SOFTMMU_MASK;
732 /* do not allow linking to another block */
733 T0 = 0;
734 }
735 #endif
736 }
737 } else {
738 env_to_regs();
739 }
740 } /* for(;;) */
741
742
743 #if defined(TARGET_I386)
744 #if defined(USE_CODE_COPY)
745 if (env->native_fp_regs) {
746 save_native_fp_state(env);
747 }
748 #endif
749 /* restore flags in standard format */
750 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
751
752 /* restore global registers */
753 #ifdef reg_EAX
754 EAX = saved_EAX;
755 #endif
756 #ifdef reg_ECX
757 ECX = saved_ECX;
758 #endif
759 #ifdef reg_EDX
760 EDX = saved_EDX;
761 #endif
762 #ifdef reg_EBX
763 EBX = saved_EBX;
764 #endif
765 #ifdef reg_ESP
766 ESP = saved_ESP;
767 #endif
768 #ifdef reg_EBP
769 EBP = saved_EBP;
770 #endif
771 #ifdef reg_ESI
772 ESI = saved_ESI;
773 #endif
774 #ifdef reg_EDI
775 EDI = saved_EDI;
776 #endif
777 #elif defined(TARGET_ARM)
778 /* XXX: Save/restore host fpu exception state?. */
779 #elif defined(TARGET_SPARC)
780 #if defined(reg_REGWPTR)
781 REGWPTR = saved_regwptr;
782 #endif
783 #elif defined(TARGET_PPC)
784 #elif defined(TARGET_MIPS)
785 #else
786 #error unsupported target CPU
787 #endif
788 #ifdef __sparc__
789 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
790 #endif
791 T0 = saved_T0;
792 T1 = saved_T1;
793 #if defined(reg_T2)
794 T2 = saved_T2;
795 #endif
796 env = saved_env;
797 /* fail safe : never use cpu_single_env outside cpu_exec() */
798 cpu_single_env = NULL;
799 return ret;
800 }
801
802 /* must only be called from the generated code as an exception can be
803 generated */
804 void tb_invalidate_page_range(target_ulong start, target_ulong end)
805 {
806 /* XXX: cannot enable it yet because it yields to MMU exception
807 where NIP != read address on PowerPC */
808 #if 0
809 target_ulong phys_addr;
810 phys_addr = get_phys_addr_code(env, start);
811 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
812 #endif
813 }
814
815 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
816
817 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
818 {
819 CPUX86State *saved_env;
820
821 saved_env = env;
822 env = s;
823 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
824 selector &= 0xffff;
825 cpu_x86_load_seg_cache(env, seg_reg, selector,
826 (selector << 4), 0xffff, 0);
827 } else {
828 load_seg(seg_reg, selector);
829 }
830 env = saved_env;
831 }
832
833 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
834 {
835 CPUX86State *saved_env;
836
837 saved_env = env;
838 env = s;
839
840 helper_fsave((target_ulong)ptr, data32);
841
842 env = saved_env;
843 }
844
845 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
846 {
847 CPUX86State *saved_env;
848
849 saved_env = env;
850 env = s;
851
852 helper_frstor((target_ulong)ptr, data32);
853
854 env = saved_env;
855 }
856
857 #endif /* TARGET_I386 */
858
859 #if !defined(CONFIG_SOFTMMU)
860
861 #if defined(TARGET_I386)
862
863 /* 'pc' is the host PC at which the exception was raised. 'address' is
864 the effective address of the memory exception. 'is_write' is 1 if a
865 write caused the exception and otherwise 0'. 'old_set' is the
866 signal set which should be restored */
867 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
868 int is_write, sigset_t *old_set,
869 void *puc)
870 {
871 TranslationBlock *tb;
872 int ret;
873
874 if (cpu_single_env)
875 env = cpu_single_env; /* XXX: find a correct solution for multithread */
876 #if defined(DEBUG_SIGNAL)
877 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
878 pc, address, is_write, *(unsigned long *)old_set);
879 #endif
880 /* XXX: locking issue */
881 if (is_write && page_unprotect(address, pc, puc)) {
882 return 1;
883 }
884
885 /* see if it is an MMU fault */
886 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
887 ((env->hflags & HF_CPL_MASK) == 3), 0);
888 if (ret < 0)
889 return 0; /* not an MMU fault */
890 if (ret == 0)
891 return 1; /* the MMU fault was handled without causing real CPU fault */
892 /* now we have a real cpu fault */
893 tb = tb_find_pc(pc);
894 if (tb) {
895 /* the PC is inside the translated code. It means that we have
896 a virtual CPU fault */
897 cpu_restore_state(tb, env, pc, puc);
898 }
899 if (ret == 1) {
900 #if 0
901 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
902 env->eip, env->cr[2], env->error_code);
903 #endif
904 /* we restore the process signal mask as the sigreturn should
905 do it (XXX: use sigsetjmp) */
906 sigprocmask(SIG_SETMASK, old_set, NULL);
907 raise_exception_err(EXCP0E_PAGE, env->error_code);
908 } else {
909 /* activate soft MMU for this block */
910 env->hflags |= HF_SOFTMMU_MASK;
911 cpu_resume_from_signal(env, puc);
912 }
913 /* never comes here */
914 return 1;
915 }
916
917 #elif defined(TARGET_ARM)
918 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
919 int is_write, sigset_t *old_set,
920 void *puc)
921 {
922 TranslationBlock *tb;
923 int ret;
924
925 if (cpu_single_env)
926 env = cpu_single_env; /* XXX: find a correct solution for multithread */
927 #if defined(DEBUG_SIGNAL)
928 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
929 pc, address, is_write, *(unsigned long *)old_set);
930 #endif
931 /* XXX: locking issue */
932 if (is_write && page_unprotect(address, pc, puc)) {
933 return 1;
934 }
935 /* see if it is an MMU fault */
936 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
937 if (ret < 0)
938 return 0; /* not an MMU fault */
939 if (ret == 0)
940 return 1; /* the MMU fault was handled without causing real CPU fault */
941 /* now we have a real cpu fault */
942 tb = tb_find_pc(pc);
943 if (tb) {
944 /* the PC is inside the translated code. It means that we have
945 a virtual CPU fault */
946 cpu_restore_state(tb, env, pc, puc);
947 }
948 /* we restore the process signal mask as the sigreturn should
949 do it (XXX: use sigsetjmp) */
950 sigprocmask(SIG_SETMASK, old_set, NULL);
951 cpu_loop_exit();
952 }
953 #elif defined(TARGET_SPARC)
954 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
955 int is_write, sigset_t *old_set,
956 void *puc)
957 {
958 TranslationBlock *tb;
959 int ret;
960
961 if (cpu_single_env)
962 env = cpu_single_env; /* XXX: find a correct solution for multithread */
963 #if defined(DEBUG_SIGNAL)
964 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
965 pc, address, is_write, *(unsigned long *)old_set);
966 #endif
967 /* XXX: locking issue */
968 if (is_write && page_unprotect(address, pc, puc)) {
969 return 1;
970 }
971 /* see if it is an MMU fault */
972 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
973 if (ret < 0)
974 return 0; /* not an MMU fault */
975 if (ret == 0)
976 return 1; /* the MMU fault was handled without causing real CPU fault */
977 /* now we have a real cpu fault */
978 tb = tb_find_pc(pc);
979 if (tb) {
980 /* the PC is inside the translated code. It means that we have
981 a virtual CPU fault */
982 cpu_restore_state(tb, env, pc, puc);
983 }
984 /* we restore the process signal mask as the sigreturn should
985 do it (XXX: use sigsetjmp) */
986 sigprocmask(SIG_SETMASK, old_set, NULL);
987 cpu_loop_exit();
988 }
989 #elif defined (TARGET_PPC)
990 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
991 int is_write, sigset_t *old_set,
992 void *puc)
993 {
994 TranslationBlock *tb;
995 int ret;
996
997 if (cpu_single_env)
998 env = cpu_single_env; /* XXX: find a correct solution for multithread */
999 #if defined(DEBUG_SIGNAL)
1000 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1001 pc, address, is_write, *(unsigned long *)old_set);
1002 #endif
1003 /* XXX: locking issue */
1004 if (is_write && page_unprotect(address, pc, puc)) {
1005 return 1;
1006 }
1007
1008 /* see if it is an MMU fault */
1009 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1010 if (ret < 0)
1011 return 0; /* not an MMU fault */
1012 if (ret == 0)
1013 return 1; /* the MMU fault was handled without causing real CPU fault */
1014
1015 /* now we have a real cpu fault */
1016 tb = tb_find_pc(pc);
1017 if (tb) {
1018 /* the PC is inside the translated code. It means that we have
1019 a virtual CPU fault */
1020 cpu_restore_state(tb, env, pc, puc);
1021 }
1022 if (ret == 1) {
1023 #if 0
1024 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1025 env->nip, env->error_code, tb);
1026 #endif
1027 /* we restore the process signal mask as the sigreturn should
1028 do it (XXX: use sigsetjmp) */
1029 sigprocmask(SIG_SETMASK, old_set, NULL);
1030 do_raise_exception_err(env->exception_index, env->error_code);
1031 } else {
1032 /* activate soft MMU for this block */
1033 cpu_resume_from_signal(env, puc);
1034 }
1035 /* never comes here */
1036 return 1;
1037 }
1038
1039 #elif defined (TARGET_MIPS)
1040 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1041 int is_write, sigset_t *old_set,
1042 void *puc)
1043 {
1044 TranslationBlock *tb;
1045 int ret;
1046
1047 if (cpu_single_env)
1048 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1049 #if defined(DEBUG_SIGNAL)
1050 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1051 pc, address, is_write, *(unsigned long *)old_set);
1052 #endif
1053 /* XXX: locking issue */
1054 if (is_write && page_unprotect(address, pc, puc)) {
1055 return 1;
1056 }
1057
1058 /* see if it is an MMU fault */
1059 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1060 if (ret < 0)
1061 return 0; /* not an MMU fault */
1062 if (ret == 0)
1063 return 1; /* the MMU fault was handled without causing real CPU fault */
1064
1065 /* now we have a real cpu fault */
1066 tb = tb_find_pc(pc);
1067 if (tb) {
1068 /* the PC is inside the translated code. It means that we have
1069 a virtual CPU fault */
1070 cpu_restore_state(tb, env, pc, puc);
1071 }
1072 if (ret == 1) {
1073 #if 0
1074 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1075 env->nip, env->error_code, tb);
1076 #endif
1077 /* we restore the process signal mask as the sigreturn should
1078 do it (XXX: use sigsetjmp) */
1079 sigprocmask(SIG_SETMASK, old_set, NULL);
1080 do_raise_exception_err(env->exception_index, env->error_code);
1081 } else {
1082 /* activate soft MMU for this block */
1083 cpu_resume_from_signal(env, puc);
1084 }
1085 /* never comes here */
1086 return 1;
1087 }
1088
1089 #else
1090 #error unsupported target CPU
1091 #endif
1092
1093 #if defined(__i386__)
1094
1095 #if defined(USE_CODE_COPY)
1096 static void cpu_send_trap(unsigned long pc, int trap,
1097 struct ucontext *uc)
1098 {
1099 TranslationBlock *tb;
1100
1101 if (cpu_single_env)
1102 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1103 /* now we have a real cpu fault */
1104 tb = tb_find_pc(pc);
1105 if (tb) {
1106 /* the PC is inside the translated code. It means that we have
1107 a virtual CPU fault */
1108 cpu_restore_state(tb, env, pc, uc);
1109 }
1110 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1111 raise_exception_err(trap, env->error_code);
1112 }
1113 #endif
1114
1115 int cpu_signal_handler(int host_signum, struct siginfo *info,
1116 void *puc)
1117 {
1118 struct ucontext *uc = puc;
1119 unsigned long pc;
1120 int trapno;
1121
1122 #ifndef REG_EIP
1123 /* for glibc 2.1 */
1124 #define REG_EIP EIP
1125 #define REG_ERR ERR
1126 #define REG_TRAPNO TRAPNO
1127 #endif
1128 pc = uc->uc_mcontext.gregs[REG_EIP];
1129 trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
1130 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1131 if (trapno == 0x00 || trapno == 0x05) {
1132 /* send division by zero or bound exception */
1133 cpu_send_trap(pc, trapno, uc);
1134 return 1;
1135 } else
1136 #endif
1137 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1138 trapno == 0xe ?
1139 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1140 &uc->uc_sigmask, puc);
1141 }
1142
1143 #elif defined(__x86_64__)
1144
1145 int cpu_signal_handler(int host_signum, struct siginfo *info,
1146 void *puc)
1147 {
1148 struct ucontext *uc = puc;
1149 unsigned long pc;
1150
1151 pc = uc->uc_mcontext.gregs[REG_RIP];
1152 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1153 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1154 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1155 &uc->uc_sigmask, puc);
1156 }
1157
1158 #elif defined(__powerpc__)
1159
1160 /***********************************************************************
1161 * signal context platform-specific definitions
1162 * From Wine
1163 */
1164 #ifdef linux
1165 /* All Registers access - only for local access */
1166 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1167 /* Gpr Registers access */
1168 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1169 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1170 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1171 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1172 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1173 # define LR_sig(context) REG_sig(link, context) /* Link register */
1174 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1175 /* Float Registers access */
1176 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1177 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1178 /* Exception Registers access */
1179 # define DAR_sig(context) REG_sig(dar, context)
1180 # define DSISR_sig(context) REG_sig(dsisr, context)
1181 # define TRAP_sig(context) REG_sig(trap, context)
1182 #endif /* linux */
1183
1184 #ifdef __APPLE__
1185 # include <sys/ucontext.h>
1186 typedef struct ucontext SIGCONTEXT;
1187 /* All Registers access - only for local access */
1188 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1189 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1190 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1191 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1192 /* Gpr Registers access */
1193 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1194 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1195 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1196 # define CTR_sig(context) REG_sig(ctr, context)
1197 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1198 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1199 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1200 /* Float Registers access */
1201 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1202 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1203 /* Exception Registers access */
1204 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1205 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1206 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1207 #endif /* __APPLE__ */
1208
1209 int cpu_signal_handler(int host_signum, struct siginfo *info,
1210 void *puc)
1211 {
1212 struct ucontext *uc = puc;
1213 unsigned long pc;
1214 int is_write;
1215
1216 pc = IAR_sig(uc);
1217 is_write = 0;
1218 #if 0
1219 /* ppc 4xx case */
1220 if (DSISR_sig(uc) & 0x00800000)
1221 is_write = 1;
1222 #else
1223 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1224 is_write = 1;
1225 #endif
1226 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1227 is_write, &uc->uc_sigmask, puc);
1228 }
1229
1230 #elif defined(__alpha__)
1231
1232 int cpu_signal_handler(int host_signum, struct siginfo *info,
1233 void *puc)
1234 {
1235 struct ucontext *uc = puc;
1236 uint32_t *pc = uc->uc_mcontext.sc_pc;
1237 uint32_t insn = *pc;
1238 int is_write = 0;
1239
1240 /* XXX: need kernel patch to get write flag faster */
1241 switch (insn >> 26) {
1242 case 0x0d: // stw
1243 case 0x0e: // stb
1244 case 0x0f: // stq_u
1245 case 0x24: // stf
1246 case 0x25: // stg
1247 case 0x26: // sts
1248 case 0x27: // stt
1249 case 0x2c: // stl
1250 case 0x2d: // stq
1251 case 0x2e: // stl_c
1252 case 0x2f: // stq_c
1253 is_write = 1;
1254 }
1255
1256 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1257 is_write, &uc->uc_sigmask, puc);
1258 }
1259 #elif defined(__sparc__)
1260
1261 int cpu_signal_handler(int host_signum, struct siginfo *info,
1262 void *puc)
1263 {
1264 uint32_t *regs = (uint32_t *)(info + 1);
1265 void *sigmask = (regs + 20);
1266 unsigned long pc;
1267 int is_write;
1268 uint32_t insn;
1269
1270 /* XXX: is there a standard glibc define ? */
1271 pc = regs[1];
1272 /* XXX: need kernel patch to get write flag faster */
1273 is_write = 0;
1274 insn = *(uint32_t *)pc;
1275 if ((insn >> 30) == 3) {
1276 switch((insn >> 19) & 0x3f) {
1277 case 0x05: // stb
1278 case 0x06: // sth
1279 case 0x04: // st
1280 case 0x07: // std
1281 case 0x24: // stf
1282 case 0x27: // stdf
1283 case 0x25: // stfsr
1284 is_write = 1;
1285 break;
1286 }
1287 }
1288 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1289 is_write, sigmask, NULL);
1290 }
1291
1292 #elif defined(__arm__)
1293
1294 int cpu_signal_handler(int host_signum, struct siginfo *info,
1295 void *puc)
1296 {
1297 struct ucontext *uc = puc;
1298 unsigned long pc;
1299 int is_write;
1300
1301 pc = uc->uc_mcontext.gregs[R15];
1302 /* XXX: compute is_write */
1303 is_write = 0;
1304 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1305 is_write,
1306 &uc->uc_sigmask);
1307 }
1308
1309 #elif defined(__mc68000)
1310
1311 int cpu_signal_handler(int host_signum, struct siginfo *info,
1312 void *puc)
1313 {
1314 struct ucontext *uc = puc;
1315 unsigned long pc;
1316 int is_write;
1317
1318 pc = uc->uc_mcontext.gregs[16];
1319 /* XXX: compute is_write */
1320 is_write = 0;
1321 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1322 is_write,
1323 &uc->uc_sigmask, puc);
1324 }
1325
1326 #elif defined(__ia64)
1327
1328 #ifndef __ISR_VALID
1329 /* This ought to be in <bits/siginfo.h>... */
1330 # define __ISR_VALID 1
1331 # define si_flags _sifields._sigfault._si_pad0
1332 #endif
1333
1334 int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
1335 {
1336 struct ucontext *uc = puc;
1337 unsigned long ip;
1338 int is_write = 0;
1339
1340 ip = uc->uc_mcontext.sc_ip;
1341 switch (host_signum) {
1342 case SIGILL:
1343 case SIGFPE:
1344 case SIGSEGV:
1345 case SIGBUS:
1346 case SIGTRAP:
1347 if (info->si_code && (info->si_flags & __ISR_VALID))
1348 /* ISR.W (write-access) is bit 33: */
1349 is_write = (info->si_isr >> 33) & 1;
1350 break;
1351
1352 default:
1353 break;
1354 }
1355 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1356 is_write,
1357 &uc->uc_sigmask, puc);
1358 }
1359
1360 #elif defined(__s390__)
1361
1362 int cpu_signal_handler(int host_signum, struct siginfo *info,
1363 void *puc)
1364 {
1365 struct ucontext *uc = puc;
1366 unsigned long pc;
1367 int is_write;
1368
1369 pc = uc->uc_mcontext.psw.addr;
1370 /* XXX: compute is_write */
1371 is_write = 0;
1372 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1373 is_write,
1374 &uc->uc_sigmask, puc);
1375 }
1376
1377 #else
1378
1379 #error host CPU specific signal handler needed
1380
1381 #endif
1382
1383 #endif /* !defined(CONFIG_SOFTMMU) */