]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
BSD user: add support for OpenBSD/i386 host
[qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
19 */
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
23 #include "tcg.h"
24 #include "kvm.h"
25
26 #if !defined(CONFIG_SOFTMMU)
27 #undef EAX
28 #undef ECX
29 #undef EDX
30 #undef EBX
31 #undef ESP
32 #undef EBP
33 #undef ESI
34 #undef EDI
35 #undef EIP
36 #include <signal.h>
37 #ifdef __linux__
38 #include <sys/ucontext.h>
39 #endif
40 #endif
41
42 #if defined(__sparc__) && !defined(HOST_SOLARIS)
43 // Work around ugly bugs in glibc that mangle global register contents
44 #undef env
45 #define env cpu_single_env
46 #endif
47
48 int tb_invalidated_flag;
49
50 //#define DEBUG_EXEC
51 //#define DEBUG_SIGNAL
52
53 void cpu_loop_exit(void)
54 {
55 /* NOTE: the register at this point must be saved by hand because
56 longjmp restore them */
57 regs_to_env();
58 longjmp(env->jmp_env, 1);
59 }
60
61 /* exit the current TB from a signal handler. The host registers are
62 restored in a state compatible with the CPU emulator
63 */
64 void cpu_resume_from_signal(CPUState *env1, void *puc)
65 {
66 #if !defined(CONFIG_SOFTMMU)
67 #ifdef __linux__
68 struct ucontext *uc = puc;
69 #elif defined(__OpenBSD__)
70 struct sigcontext *uc = puc;
71 #endif
72 #endif
73
74 env = env1;
75
76 /* XXX: restore cpu registers saved in host registers */
77
78 #if !defined(CONFIG_SOFTMMU)
79 if (puc) {
80 /* XXX: use siglongjmp ? */
81 #ifdef __linux__
82 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
83 #elif defined(__OpenBSD__)
84 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
85 #endif
86 }
87 #endif
88 env->exception_index = -1;
89 longjmp(env->jmp_env, 1);
90 }
91
92 /* Execute the code without caching the generated code. An interpreter
93 could be used if available. */
94 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
95 {
96 unsigned long next_tb;
97 TranslationBlock *tb;
98
99 /* Should never happen.
100 We only end up here when an existing TB is too long. */
101 if (max_cycles > CF_COUNT_MASK)
102 max_cycles = CF_COUNT_MASK;
103
104 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
105 max_cycles);
106 env->current_tb = tb;
107 /* execute the generated code */
108 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
109
110 if ((next_tb & 3) == 2) {
111 /* Restore PC. This may happen if async event occurs before
112 the TB starts executing. */
113 cpu_pc_from_tb(env, tb);
114 }
115 tb_phys_invalidate(tb, -1);
116 tb_free(tb);
117 }
118
119 static TranslationBlock *tb_find_slow(target_ulong pc,
120 target_ulong cs_base,
121 uint64_t flags)
122 {
123 TranslationBlock *tb, **ptb1;
124 unsigned int h;
125 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
126
127 tb_invalidated_flag = 0;
128
129 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
130
131 /* find translated block using physical mappings */
132 phys_pc = get_phys_addr_code(env, pc);
133 phys_page1 = phys_pc & TARGET_PAGE_MASK;
134 phys_page2 = -1;
135 h = tb_phys_hash_func(phys_pc);
136 ptb1 = &tb_phys_hash[h];
137 for(;;) {
138 tb = *ptb1;
139 if (!tb)
140 goto not_found;
141 if (tb->pc == pc &&
142 tb->page_addr[0] == phys_page1 &&
143 tb->cs_base == cs_base &&
144 tb->flags == flags) {
145 /* check next page if needed */
146 if (tb->page_addr[1] != -1) {
147 virt_page2 = (pc & TARGET_PAGE_MASK) +
148 TARGET_PAGE_SIZE;
149 phys_page2 = get_phys_addr_code(env, virt_page2);
150 if (tb->page_addr[1] == phys_page2)
151 goto found;
152 } else {
153 goto found;
154 }
155 }
156 ptb1 = &tb->phys_hash_next;
157 }
158 not_found:
159 /* if no translated code available, then translate it now */
160 tb = tb_gen_code(env, pc, cs_base, flags, 0);
161
162 found:
163 /* we add the TB in the virtual pc hash table */
164 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
165 return tb;
166 }
167
168 static inline TranslationBlock *tb_find_fast(void)
169 {
170 TranslationBlock *tb;
171 target_ulong cs_base, pc;
172 int flags;
173
174 /* we record a subset of the CPU state. It will
175 always be the same before a given translated block
176 is executed. */
177 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
178 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
179 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
180 tb->flags != flags)) {
181 tb = tb_find_slow(pc, cs_base, flags);
182 }
183 return tb;
184 }
185
186 static CPUDebugExcpHandler *debug_excp_handler;
187
188 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
189 {
190 CPUDebugExcpHandler *old_handler = debug_excp_handler;
191
192 debug_excp_handler = handler;
193 return old_handler;
194 }
195
196 static void cpu_handle_debug_exception(CPUState *env)
197 {
198 CPUWatchpoint *wp;
199
200 if (!env->watchpoint_hit)
201 TAILQ_FOREACH(wp, &env->watchpoints, entry)
202 wp->flags &= ~BP_WATCHPOINT_HIT;
203
204 if (debug_excp_handler)
205 debug_excp_handler(env);
206 }
207
208 /* main execution loop */
209
210 int cpu_exec(CPUState *env1)
211 {
212 #define DECLARE_HOST_REGS 1
213 #include "hostregs_helper.h"
214 int ret, interrupt_request;
215 TranslationBlock *tb;
216 uint8_t *tc_ptr;
217 unsigned long next_tb;
218
219 if (cpu_halted(env1) == EXCP_HALTED)
220 return EXCP_HALTED;
221
222 cpu_single_env = env1;
223
224 /* first we save global registers */
225 #define SAVE_HOST_REGS 1
226 #include "hostregs_helper.h"
227 env = env1;
228
229 env_to_regs();
230 #if defined(TARGET_I386)
231 /* put eflags in CPU temporary format */
232 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
233 DF = 1 - (2 * ((env->eflags >> 10) & 1));
234 CC_OP = CC_OP_EFLAGS;
235 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
236 #elif defined(TARGET_SPARC)
237 #elif defined(TARGET_M68K)
238 env->cc_op = CC_OP_FLAGS;
239 env->cc_dest = env->sr & 0xf;
240 env->cc_x = (env->sr >> 4) & 1;
241 #elif defined(TARGET_ALPHA)
242 #elif defined(TARGET_ARM)
243 #elif defined(TARGET_PPC)
244 #elif defined(TARGET_MIPS)
245 #elif defined(TARGET_SH4)
246 #elif defined(TARGET_CRIS)
247 /* XXXXX */
248 #else
249 #error unsupported target CPU
250 #endif
251 env->exception_index = -1;
252
253 /* prepare setjmp context for exception handling */
254 for(;;) {
255 if (setjmp(env->jmp_env) == 0) {
256 #if defined(__sparc__) && !defined(HOST_SOLARIS)
257 #undef env
258 env = cpu_single_env;
259 #define env cpu_single_env
260 #endif
261 env->current_tb = NULL;
262 /* if an exception is pending, we execute it here */
263 if (env->exception_index >= 0) {
264 if (env->exception_index >= EXCP_INTERRUPT) {
265 /* exit request from the cpu execution loop */
266 ret = env->exception_index;
267 if (ret == EXCP_DEBUG)
268 cpu_handle_debug_exception(env);
269 break;
270 } else {
271 #if defined(CONFIG_USER_ONLY)
272 /* if user mode only, we simulate a fake exception
273 which will be handled outside the cpu execution
274 loop */
275 #if defined(TARGET_I386)
276 do_interrupt_user(env->exception_index,
277 env->exception_is_int,
278 env->error_code,
279 env->exception_next_eip);
280 /* successfully delivered */
281 env->old_exception = -1;
282 #endif
283 ret = env->exception_index;
284 break;
285 #else
286 #if defined(TARGET_I386)
287 /* simulate a real cpu exception. On i386, it can
288 trigger new exceptions, but we do not handle
289 double or triple faults yet. */
290 do_interrupt(env->exception_index,
291 env->exception_is_int,
292 env->error_code,
293 env->exception_next_eip, 0);
294 /* successfully delivered */
295 env->old_exception = -1;
296 #elif defined(TARGET_PPC)
297 do_interrupt(env);
298 #elif defined(TARGET_MIPS)
299 do_interrupt(env);
300 #elif defined(TARGET_SPARC)
301 do_interrupt(env);
302 #elif defined(TARGET_ARM)
303 do_interrupt(env);
304 #elif defined(TARGET_SH4)
305 do_interrupt(env);
306 #elif defined(TARGET_ALPHA)
307 do_interrupt(env);
308 #elif defined(TARGET_CRIS)
309 do_interrupt(env);
310 #elif defined(TARGET_M68K)
311 do_interrupt(0);
312 #endif
313 #endif
314 }
315 env->exception_index = -1;
316 }
317 #ifdef USE_KQEMU
318 if (kqemu_is_ok(env) && env->interrupt_request == 0 && env->exit_request == 0) {
319 int ret;
320 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
321 ret = kqemu_cpu_exec(env);
322 /* put eflags in CPU temporary format */
323 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
324 DF = 1 - (2 * ((env->eflags >> 10) & 1));
325 CC_OP = CC_OP_EFLAGS;
326 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
327 if (ret == 1) {
328 /* exception */
329 longjmp(env->jmp_env, 1);
330 } else if (ret == 2) {
331 /* softmmu execution needed */
332 } else {
333 if (env->interrupt_request != 0 || env->exit_request != 0) {
334 /* hardware interrupt will be executed just after */
335 } else {
336 /* otherwise, we restart */
337 longjmp(env->jmp_env, 1);
338 }
339 }
340 }
341 #endif
342
343 if (kvm_enabled()) {
344 kvm_cpu_exec(env);
345 longjmp(env->jmp_env, 1);
346 }
347
348 next_tb = 0; /* force lookup of first TB */
349 for(;;) {
350 interrupt_request = env->interrupt_request;
351 if (unlikely(interrupt_request)) {
352 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
353 /* Mask out external interrupts for this step. */
354 interrupt_request &= ~(CPU_INTERRUPT_HARD |
355 CPU_INTERRUPT_FIQ |
356 CPU_INTERRUPT_SMI |
357 CPU_INTERRUPT_NMI);
358 }
359 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
360 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
361 env->exception_index = EXCP_DEBUG;
362 cpu_loop_exit();
363 }
364 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
365 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
366 if (interrupt_request & CPU_INTERRUPT_HALT) {
367 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
368 env->halted = 1;
369 env->exception_index = EXCP_HLT;
370 cpu_loop_exit();
371 }
372 #endif
373 #if defined(TARGET_I386)
374 if (env->hflags2 & HF2_GIF_MASK) {
375 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
376 !(env->hflags & HF_SMM_MASK)) {
377 svm_check_intercept(SVM_EXIT_SMI);
378 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
379 do_smm_enter();
380 next_tb = 0;
381 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
382 !(env->hflags2 & HF2_NMI_MASK)) {
383 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
384 env->hflags2 |= HF2_NMI_MASK;
385 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
386 next_tb = 0;
387 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
388 (((env->hflags2 & HF2_VINTR_MASK) &&
389 (env->hflags2 & HF2_HIF_MASK)) ||
390 (!(env->hflags2 & HF2_VINTR_MASK) &&
391 (env->eflags & IF_MASK &&
392 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
393 int intno;
394 svm_check_intercept(SVM_EXIT_INTR);
395 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
396 intno = cpu_get_pic_interrupt(env);
397 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
398 #if defined(__sparc__) && !defined(HOST_SOLARIS)
399 #undef env
400 env = cpu_single_env;
401 #define env cpu_single_env
402 #endif
403 do_interrupt(intno, 0, 0, 0, 1);
404 /* ensure that no TB jump will be modified as
405 the program flow was changed */
406 next_tb = 0;
407 #if !defined(CONFIG_USER_ONLY)
408 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
409 (env->eflags & IF_MASK) &&
410 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
411 int intno;
412 /* FIXME: this should respect TPR */
413 svm_check_intercept(SVM_EXIT_VINTR);
414 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
415 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
416 do_interrupt(intno, 0, 0, 0, 1);
417 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
418 next_tb = 0;
419 #endif
420 }
421 }
422 #elif defined(TARGET_PPC)
423 #if 0
424 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
425 cpu_ppc_reset(env);
426 }
427 #endif
428 if (interrupt_request & CPU_INTERRUPT_HARD) {
429 ppc_hw_interrupt(env);
430 if (env->pending_interrupts == 0)
431 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
432 next_tb = 0;
433 }
434 #elif defined(TARGET_MIPS)
435 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
436 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
437 (env->CP0_Status & (1 << CP0St_IE)) &&
438 !(env->CP0_Status & (1 << CP0St_EXL)) &&
439 !(env->CP0_Status & (1 << CP0St_ERL)) &&
440 !(env->hflags & MIPS_HFLAG_DM)) {
441 /* Raise it */
442 env->exception_index = EXCP_EXT_INTERRUPT;
443 env->error_code = 0;
444 do_interrupt(env);
445 next_tb = 0;
446 }
447 #elif defined(TARGET_SPARC)
448 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
449 (env->psret != 0)) {
450 int pil = env->interrupt_index & 15;
451 int type = env->interrupt_index & 0xf0;
452
453 if (((type == TT_EXTINT) &&
454 (pil == 15 || pil > env->psrpil)) ||
455 type != TT_EXTINT) {
456 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
457 env->exception_index = env->interrupt_index;
458 do_interrupt(env);
459 env->interrupt_index = 0;
460 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
461 cpu_check_irqs(env);
462 #endif
463 next_tb = 0;
464 }
465 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
466 //do_interrupt(0, 0, 0, 0, 0);
467 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
468 }
469 #elif defined(TARGET_ARM)
470 if (interrupt_request & CPU_INTERRUPT_FIQ
471 && !(env->uncached_cpsr & CPSR_F)) {
472 env->exception_index = EXCP_FIQ;
473 do_interrupt(env);
474 next_tb = 0;
475 }
476 /* ARMv7-M interrupt return works by loading a magic value
477 into the PC. On real hardware the load causes the
478 return to occur. The qemu implementation performs the
479 jump normally, then does the exception return when the
480 CPU tries to execute code at the magic address.
481 This will cause the magic PC value to be pushed to
482 the stack if an interrupt occured at the wrong time.
483 We avoid this by disabling interrupts when
484 pc contains a magic address. */
485 if (interrupt_request & CPU_INTERRUPT_HARD
486 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
487 || !(env->uncached_cpsr & CPSR_I))) {
488 env->exception_index = EXCP_IRQ;
489 do_interrupt(env);
490 next_tb = 0;
491 }
492 #elif defined(TARGET_SH4)
493 if (interrupt_request & CPU_INTERRUPT_HARD) {
494 do_interrupt(env);
495 next_tb = 0;
496 }
497 #elif defined(TARGET_ALPHA)
498 if (interrupt_request & CPU_INTERRUPT_HARD) {
499 do_interrupt(env);
500 next_tb = 0;
501 }
502 #elif defined(TARGET_CRIS)
503 if (interrupt_request & CPU_INTERRUPT_HARD
504 && (env->pregs[PR_CCS] & I_FLAG)) {
505 env->exception_index = EXCP_IRQ;
506 do_interrupt(env);
507 next_tb = 0;
508 }
509 if (interrupt_request & CPU_INTERRUPT_NMI
510 && (env->pregs[PR_CCS] & M_FLAG)) {
511 env->exception_index = EXCP_NMI;
512 do_interrupt(env);
513 next_tb = 0;
514 }
515 #elif defined(TARGET_M68K)
516 if (interrupt_request & CPU_INTERRUPT_HARD
517 && ((env->sr & SR_I) >> SR_I_SHIFT)
518 < env->pending_level) {
519 /* Real hardware gets the interrupt vector via an
520 IACK cycle at this point. Current emulated
521 hardware doesn't rely on this, so we
522 provide/save the vector when the interrupt is
523 first signalled. */
524 env->exception_index = env->pending_vector;
525 do_interrupt(1);
526 next_tb = 0;
527 }
528 #endif
529 /* Don't use the cached interupt_request value,
530 do_interrupt may have updated the EXITTB flag. */
531 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
532 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
533 /* ensure that no TB jump will be modified as
534 the program flow was changed */
535 next_tb = 0;
536 }
537 }
538 if (unlikely(env->exit_request)) {
539 env->exit_request = 0;
540 env->exception_index = EXCP_INTERRUPT;
541 cpu_loop_exit();
542 }
543 #ifdef DEBUG_EXEC
544 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
545 /* restore flags in standard format */
546 regs_to_env();
547 #if defined(TARGET_I386)
548 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
549 log_cpu_state(env, X86_DUMP_CCOP);
550 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
551 #elif defined(TARGET_ARM)
552 log_cpu_state(env, 0);
553 #elif defined(TARGET_SPARC)
554 log_cpu_state(env, 0);
555 #elif defined(TARGET_PPC)
556 log_cpu_state(env, 0);
557 #elif defined(TARGET_M68K)
558 cpu_m68k_flush_flags(env, env->cc_op);
559 env->cc_op = CC_OP_FLAGS;
560 env->sr = (env->sr & 0xffe0)
561 | env->cc_dest | (env->cc_x << 4);
562 log_cpu_state(env, 0);
563 #elif defined(TARGET_MIPS)
564 log_cpu_state(env, 0);
565 #elif defined(TARGET_SH4)
566 log_cpu_state(env, 0);
567 #elif defined(TARGET_ALPHA)
568 log_cpu_state(env, 0);
569 #elif defined(TARGET_CRIS)
570 log_cpu_state(env, 0);
571 #else
572 #error unsupported target CPU
573 #endif
574 }
575 #endif
576 spin_lock(&tb_lock);
577 tb = tb_find_fast();
578 /* Note: we do it here to avoid a gcc bug on Mac OS X when
579 doing it in tb_find_slow */
580 if (tb_invalidated_flag) {
581 /* as some TB could have been invalidated because
582 of memory exceptions while generating the code, we
583 must recompute the hash index here */
584 next_tb = 0;
585 tb_invalidated_flag = 0;
586 }
587 #ifdef DEBUG_EXEC
588 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
589 (long)tb->tc_ptr, tb->pc,
590 lookup_symbol(tb->pc));
591 #endif
592 /* see if we can patch the calling TB. When the TB
593 spans two pages, we cannot safely do a direct
594 jump. */
595 {
596 if (next_tb != 0 &&
597 #ifdef USE_KQEMU
598 (env->kqemu_enabled != 2) &&
599 #endif
600 tb->page_addr[1] == -1) {
601 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
602 }
603 }
604 spin_unlock(&tb_lock);
605 env->current_tb = tb;
606
607 /* cpu_interrupt might be called while translating the
608 TB, but before it is linked into a potentially
609 infinite loop and becomes env->current_tb. Avoid
610 starting execution if there is a pending interrupt. */
611 if (unlikely (env->exit_request))
612 env->current_tb = NULL;
613
614 while (env->current_tb) {
615 tc_ptr = tb->tc_ptr;
616 /* execute the generated code */
617 #if defined(__sparc__) && !defined(HOST_SOLARIS)
618 #undef env
619 env = cpu_single_env;
620 #define env cpu_single_env
621 #endif
622 next_tb = tcg_qemu_tb_exec(tc_ptr);
623 env->current_tb = NULL;
624 if ((next_tb & 3) == 2) {
625 /* Instruction counter expired. */
626 int insns_left;
627 tb = (TranslationBlock *)(long)(next_tb & ~3);
628 /* Restore PC. */
629 cpu_pc_from_tb(env, tb);
630 insns_left = env->icount_decr.u32;
631 if (env->icount_extra && insns_left >= 0) {
632 /* Refill decrementer and continue execution. */
633 env->icount_extra += insns_left;
634 if (env->icount_extra > 0xffff) {
635 insns_left = 0xffff;
636 } else {
637 insns_left = env->icount_extra;
638 }
639 env->icount_extra -= insns_left;
640 env->icount_decr.u16.low = insns_left;
641 } else {
642 if (insns_left > 0) {
643 /* Execute remaining instructions. */
644 cpu_exec_nocache(insns_left, tb);
645 }
646 env->exception_index = EXCP_INTERRUPT;
647 next_tb = 0;
648 cpu_loop_exit();
649 }
650 }
651 }
652 /* reset soft MMU for next block (it can currently
653 only be set by a memory fault) */
654 #if defined(USE_KQEMU)
655 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
656 if (kqemu_is_ok(env) &&
657 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
658 cpu_loop_exit();
659 }
660 #endif
661 } /* for(;;) */
662 } else {
663 env_to_regs();
664 }
665 } /* for(;;) */
666
667
668 #if defined(TARGET_I386)
669 /* restore flags in standard format */
670 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
671 #elif defined(TARGET_ARM)
672 /* XXX: Save/restore host fpu exception state?. */
673 #elif defined(TARGET_SPARC)
674 #elif defined(TARGET_PPC)
675 #elif defined(TARGET_M68K)
676 cpu_m68k_flush_flags(env, env->cc_op);
677 env->cc_op = CC_OP_FLAGS;
678 env->sr = (env->sr & 0xffe0)
679 | env->cc_dest | (env->cc_x << 4);
680 #elif defined(TARGET_MIPS)
681 #elif defined(TARGET_SH4)
682 #elif defined(TARGET_ALPHA)
683 #elif defined(TARGET_CRIS)
684 /* XXXXX */
685 #else
686 #error unsupported target CPU
687 #endif
688
689 /* restore global registers */
690 #include "hostregs_helper.h"
691
692 /* fail safe : never use cpu_single_env outside cpu_exec() */
693 cpu_single_env = NULL;
694 return ret;
695 }
696
697 /* must only be called from the generated code as an exception can be
698 generated */
699 void tb_invalidate_page_range(target_ulong start, target_ulong end)
700 {
701 /* XXX: cannot enable it yet because it yields to MMU exception
702 where NIP != read address on PowerPC */
703 #if 0
704 target_ulong phys_addr;
705 phys_addr = get_phys_addr_code(env, start);
706 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
707 #endif
708 }
709
710 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
711
712 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
713 {
714 CPUX86State *saved_env;
715
716 saved_env = env;
717 env = s;
718 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
719 selector &= 0xffff;
720 cpu_x86_load_seg_cache(env, seg_reg, selector,
721 (selector << 4), 0xffff, 0);
722 } else {
723 helper_load_seg(seg_reg, selector);
724 }
725 env = saved_env;
726 }
727
728 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
729 {
730 CPUX86State *saved_env;
731
732 saved_env = env;
733 env = s;
734
735 helper_fsave(ptr, data32);
736
737 env = saved_env;
738 }
739
740 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
741 {
742 CPUX86State *saved_env;
743
744 saved_env = env;
745 env = s;
746
747 helper_frstor(ptr, data32);
748
749 env = saved_env;
750 }
751
752 #endif /* TARGET_I386 */
753
754 #if !defined(CONFIG_SOFTMMU)
755
756 #if defined(TARGET_I386)
757
758 /* 'pc' is the host PC at which the exception was raised. 'address' is
759 the effective address of the memory exception. 'is_write' is 1 if a
760 write caused the exception and otherwise 0'. 'old_set' is the
761 signal set which should be restored */
762 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
763 int is_write, sigset_t *old_set,
764 void *puc)
765 {
766 TranslationBlock *tb;
767 int ret;
768
769 if (cpu_single_env)
770 env = cpu_single_env; /* XXX: find a correct solution for multithread */
771 #if defined(DEBUG_SIGNAL)
772 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
773 pc, address, is_write, *(unsigned long *)old_set);
774 #endif
775 /* XXX: locking issue */
776 if (is_write && page_unprotect(h2g(address), pc, puc)) {
777 return 1;
778 }
779
780 /* see if it is an MMU fault */
781 ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
782 if (ret < 0)
783 return 0; /* not an MMU fault */
784 if (ret == 0)
785 return 1; /* the MMU fault was handled without causing real CPU fault */
786 /* now we have a real cpu fault */
787 tb = tb_find_pc(pc);
788 if (tb) {
789 /* the PC is inside the translated code. It means that we have
790 a virtual CPU fault */
791 cpu_restore_state(tb, env, pc, puc);
792 }
793 if (ret == 1) {
794 #if 0
795 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
796 env->eip, env->cr[2], env->error_code);
797 #endif
798 /* we restore the process signal mask as the sigreturn should
799 do it (XXX: use sigsetjmp) */
800 sigprocmask(SIG_SETMASK, old_set, NULL);
801 raise_exception_err(env->exception_index, env->error_code);
802 } else {
803 /* activate soft MMU for this block */
804 env->hflags |= HF_SOFTMMU_MASK;
805 cpu_resume_from_signal(env, puc);
806 }
807 /* never comes here */
808 return 1;
809 }
810
811 #elif defined(TARGET_ARM)
812 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
813 int is_write, sigset_t *old_set,
814 void *puc)
815 {
816 TranslationBlock *tb;
817 int ret;
818
819 if (cpu_single_env)
820 env = cpu_single_env; /* XXX: find a correct solution for multithread */
821 #if defined(DEBUG_SIGNAL)
822 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
823 pc, address, is_write, *(unsigned long *)old_set);
824 #endif
825 /* XXX: locking issue */
826 if (is_write && page_unprotect(h2g(address), pc, puc)) {
827 return 1;
828 }
829 /* see if it is an MMU fault */
830 ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
831 if (ret < 0)
832 return 0; /* not an MMU fault */
833 if (ret == 0)
834 return 1; /* the MMU fault was handled without causing real CPU fault */
835 /* now we have a real cpu fault */
836 tb = tb_find_pc(pc);
837 if (tb) {
838 /* the PC is inside the translated code. It means that we have
839 a virtual CPU fault */
840 cpu_restore_state(tb, env, pc, puc);
841 }
842 /* we restore the process signal mask as the sigreturn should
843 do it (XXX: use sigsetjmp) */
844 sigprocmask(SIG_SETMASK, old_set, NULL);
845 cpu_loop_exit();
846 /* never comes here */
847 return 1;
848 }
849 #elif defined(TARGET_SPARC)
850 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
851 int is_write, sigset_t *old_set,
852 void *puc)
853 {
854 TranslationBlock *tb;
855 int ret;
856
857 if (cpu_single_env)
858 env = cpu_single_env; /* XXX: find a correct solution for multithread */
859 #if defined(DEBUG_SIGNAL)
860 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
861 pc, address, is_write, *(unsigned long *)old_set);
862 #endif
863 /* XXX: locking issue */
864 if (is_write && page_unprotect(h2g(address), pc, puc)) {
865 return 1;
866 }
867 /* see if it is an MMU fault */
868 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
869 if (ret < 0)
870 return 0; /* not an MMU fault */
871 if (ret == 0)
872 return 1; /* the MMU fault was handled without causing real CPU fault */
873 /* now we have a real cpu fault */
874 tb = tb_find_pc(pc);
875 if (tb) {
876 /* the PC is inside the translated code. It means that we have
877 a virtual CPU fault */
878 cpu_restore_state(tb, env, pc, puc);
879 }
880 /* we restore the process signal mask as the sigreturn should
881 do it (XXX: use sigsetjmp) */
882 sigprocmask(SIG_SETMASK, old_set, NULL);
883 cpu_loop_exit();
884 /* never comes here */
885 return 1;
886 }
887 #elif defined (TARGET_PPC)
888 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
889 int is_write, sigset_t *old_set,
890 void *puc)
891 {
892 TranslationBlock *tb;
893 int ret;
894
895 if (cpu_single_env)
896 env = cpu_single_env; /* XXX: find a correct solution for multithread */
897 #if defined(DEBUG_SIGNAL)
898 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
899 pc, address, is_write, *(unsigned long *)old_set);
900 #endif
901 /* XXX: locking issue */
902 if (is_write && page_unprotect(h2g(address), pc, puc)) {
903 return 1;
904 }
905
906 /* see if it is an MMU fault */
907 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
908 if (ret < 0)
909 return 0; /* not an MMU fault */
910 if (ret == 0)
911 return 1; /* the MMU fault was handled without causing real CPU fault */
912
913 /* now we have a real cpu fault */
914 tb = tb_find_pc(pc);
915 if (tb) {
916 /* the PC is inside the translated code. It means that we have
917 a virtual CPU fault */
918 cpu_restore_state(tb, env, pc, puc);
919 }
920 if (ret == 1) {
921 #if 0
922 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
923 env->nip, env->error_code, tb);
924 #endif
925 /* we restore the process signal mask as the sigreturn should
926 do it (XXX: use sigsetjmp) */
927 sigprocmask(SIG_SETMASK, old_set, NULL);
928 cpu_loop_exit();
929 } else {
930 /* activate soft MMU for this block */
931 cpu_resume_from_signal(env, puc);
932 }
933 /* never comes here */
934 return 1;
935 }
936
937 #elif defined(TARGET_M68K)
938 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
939 int is_write, sigset_t *old_set,
940 void *puc)
941 {
942 TranslationBlock *tb;
943 int ret;
944
945 if (cpu_single_env)
946 env = cpu_single_env; /* XXX: find a correct solution for multithread */
947 #if defined(DEBUG_SIGNAL)
948 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
949 pc, address, is_write, *(unsigned long *)old_set);
950 #endif
951 /* XXX: locking issue */
952 if (is_write && page_unprotect(address, pc, puc)) {
953 return 1;
954 }
955 /* see if it is an MMU fault */
956 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
957 if (ret < 0)
958 return 0; /* not an MMU fault */
959 if (ret == 0)
960 return 1; /* the MMU fault was handled without causing real CPU fault */
961 /* now we have a real cpu fault */
962 tb = tb_find_pc(pc);
963 if (tb) {
964 /* the PC is inside the translated code. It means that we have
965 a virtual CPU fault */
966 cpu_restore_state(tb, env, pc, puc);
967 }
968 /* we restore the process signal mask as the sigreturn should
969 do it (XXX: use sigsetjmp) */
970 sigprocmask(SIG_SETMASK, old_set, NULL);
971 cpu_loop_exit();
972 /* never comes here */
973 return 1;
974 }
975
976 #elif defined (TARGET_MIPS)
977 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
978 int is_write, sigset_t *old_set,
979 void *puc)
980 {
981 TranslationBlock *tb;
982 int ret;
983
984 if (cpu_single_env)
985 env = cpu_single_env; /* XXX: find a correct solution for multithread */
986 #if defined(DEBUG_SIGNAL)
987 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
988 pc, address, is_write, *(unsigned long *)old_set);
989 #endif
990 /* XXX: locking issue */
991 if (is_write && page_unprotect(h2g(address), pc, puc)) {
992 return 1;
993 }
994
995 /* see if it is an MMU fault */
996 ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
997 if (ret < 0)
998 return 0; /* not an MMU fault */
999 if (ret == 0)
1000 return 1; /* the MMU fault was handled without causing real CPU fault */
1001
1002 /* now we have a real cpu fault */
1003 tb = tb_find_pc(pc);
1004 if (tb) {
1005 /* the PC is inside the translated code. It means that we have
1006 a virtual CPU fault */
1007 cpu_restore_state(tb, env, pc, puc);
1008 }
1009 if (ret == 1) {
1010 #if 0
1011 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1012 env->PC, env->error_code, tb);
1013 #endif
1014 /* we restore the process signal mask as the sigreturn should
1015 do it (XXX: use sigsetjmp) */
1016 sigprocmask(SIG_SETMASK, old_set, NULL);
1017 cpu_loop_exit();
1018 } else {
1019 /* activate soft MMU for this block */
1020 cpu_resume_from_signal(env, puc);
1021 }
1022 /* never comes here */
1023 return 1;
1024 }
1025
1026 #elif defined (TARGET_SH4)
1027 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1028 int is_write, sigset_t *old_set,
1029 void *puc)
1030 {
1031 TranslationBlock *tb;
1032 int ret;
1033
1034 if (cpu_single_env)
1035 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1036 #if defined(DEBUG_SIGNAL)
1037 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1038 pc, address, is_write, *(unsigned long *)old_set);
1039 #endif
1040 /* XXX: locking issue */
1041 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1042 return 1;
1043 }
1044
1045 /* see if it is an MMU fault */
1046 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1047 if (ret < 0)
1048 return 0; /* not an MMU fault */
1049 if (ret == 0)
1050 return 1; /* the MMU fault was handled without causing real CPU fault */
1051
1052 /* now we have a real cpu fault */
1053 tb = tb_find_pc(pc);
1054 if (tb) {
1055 /* the PC is inside the translated code. It means that we have
1056 a virtual CPU fault */
1057 cpu_restore_state(tb, env, pc, puc);
1058 }
1059 #if 0
1060 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1061 env->nip, env->error_code, tb);
1062 #endif
1063 /* we restore the process signal mask as the sigreturn should
1064 do it (XXX: use sigsetjmp) */
1065 sigprocmask(SIG_SETMASK, old_set, NULL);
1066 cpu_loop_exit();
1067 /* never comes here */
1068 return 1;
1069 }
1070
1071 #elif defined (TARGET_ALPHA)
1072 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1073 int is_write, sigset_t *old_set,
1074 void *puc)
1075 {
1076 TranslationBlock *tb;
1077 int ret;
1078
1079 if (cpu_single_env)
1080 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1081 #if defined(DEBUG_SIGNAL)
1082 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1083 pc, address, is_write, *(unsigned long *)old_set);
1084 #endif
1085 /* XXX: locking issue */
1086 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1087 return 1;
1088 }
1089
1090 /* see if it is an MMU fault */
1091 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1092 if (ret < 0)
1093 return 0; /* not an MMU fault */
1094 if (ret == 0)
1095 return 1; /* the MMU fault was handled without causing real CPU fault */
1096
1097 /* now we have a real cpu fault */
1098 tb = tb_find_pc(pc);
1099 if (tb) {
1100 /* the PC is inside the translated code. It means that we have
1101 a virtual CPU fault */
1102 cpu_restore_state(tb, env, pc, puc);
1103 }
1104 #if 0
1105 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1106 env->nip, env->error_code, tb);
1107 #endif
1108 /* we restore the process signal mask as the sigreturn should
1109 do it (XXX: use sigsetjmp) */
1110 sigprocmask(SIG_SETMASK, old_set, NULL);
1111 cpu_loop_exit();
1112 /* never comes here */
1113 return 1;
1114 }
1115 #elif defined (TARGET_CRIS)
1116 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1117 int is_write, sigset_t *old_set,
1118 void *puc)
1119 {
1120 TranslationBlock *tb;
1121 int ret;
1122
1123 if (cpu_single_env)
1124 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1125 #if defined(DEBUG_SIGNAL)
1126 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1127 pc, address, is_write, *(unsigned long *)old_set);
1128 #endif
1129 /* XXX: locking issue */
1130 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1131 return 1;
1132 }
1133
1134 /* see if it is an MMU fault */
1135 ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1136 if (ret < 0)
1137 return 0; /* not an MMU fault */
1138 if (ret == 0)
1139 return 1; /* the MMU fault was handled without causing real CPU fault */
1140
1141 /* now we have a real cpu fault */
1142 tb = tb_find_pc(pc);
1143 if (tb) {
1144 /* the PC is inside the translated code. It means that we have
1145 a virtual CPU fault */
1146 cpu_restore_state(tb, env, pc, puc);
1147 }
1148 /* we restore the process signal mask as the sigreturn should
1149 do it (XXX: use sigsetjmp) */
1150 sigprocmask(SIG_SETMASK, old_set, NULL);
1151 cpu_loop_exit();
1152 /* never comes here */
1153 return 1;
1154 }
1155
1156 #else
1157 #error unsupported target CPU
1158 #endif
1159
1160 #if defined(__i386__)
1161
1162 #if defined(__APPLE__)
1163 # include <sys/ucontext.h>
1164
1165 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1166 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1167 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1168 # define MASK_sig(context) ((context)->uc_sigmask)
1169 #elif defined(__OpenBSD__)
1170 # define EIP_sig(context) ((context)->sc_eip)
1171 # define TRAP_sig(context) ((context)->sc_trapno)
1172 # define ERROR_sig(context) ((context)->sc_err)
1173 # define MASK_sig(context) ((context)->sc_mask)
1174 #else
1175 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1176 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1177 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1178 # define MASK_sig(context) ((context)->uc_sigmask)
1179 #endif
1180
1181 int cpu_signal_handler(int host_signum, void *pinfo,
1182 void *puc)
1183 {
1184 siginfo_t *info = pinfo;
1185 #if defined(__OpenBSD__)
1186 struct sigcontext *uc = puc;
1187 #else
1188 struct ucontext *uc = puc;
1189 #endif
1190 unsigned long pc;
1191 int trapno;
1192
1193 #ifndef REG_EIP
1194 /* for glibc 2.1 */
1195 #define REG_EIP EIP
1196 #define REG_ERR ERR
1197 #define REG_TRAPNO TRAPNO
1198 #endif
1199 pc = EIP_sig(uc);
1200 trapno = TRAP_sig(uc);
1201 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1202 trapno == 0xe ?
1203 (ERROR_sig(uc) >> 1) & 1 : 0,
1204 &MASK_sig(uc), puc);
1205 }
1206
1207 #elif defined(__x86_64__)
1208
1209 #ifdef __NetBSD__
1210 #define REG_ERR _REG_ERR
1211 #define REG_TRAPNO _REG_TRAPNO
1212
1213 #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.__gregs[(reg)]
1214 #define QEMU_UC_MACHINE_PC(uc) _UC_MACHINE_PC(uc)
1215 #else
1216 #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.gregs[(reg)]
1217 #define QEMU_UC_MACHINE_PC(uc) QEMU_UC_MCONTEXT_GREGS(uc, REG_RIP)
1218 #endif
1219
1220 int cpu_signal_handler(int host_signum, void *pinfo,
1221 void *puc)
1222 {
1223 siginfo_t *info = pinfo;
1224 unsigned long pc;
1225 #ifdef __NetBSD__
1226 ucontext_t *uc = puc;
1227 #else
1228 struct ucontext *uc = puc;
1229 #endif
1230
1231 pc = QEMU_UC_MACHINE_PC(uc);
1232 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1233 QEMU_UC_MCONTEXT_GREGS(uc, REG_TRAPNO) == 0xe ?
1234 (QEMU_UC_MCONTEXT_GREGS(uc, REG_ERR) >> 1) & 1 : 0,
1235 &uc->uc_sigmask, puc);
1236 }
1237
1238 #elif defined(_ARCH_PPC)
1239
1240 /***********************************************************************
1241 * signal context platform-specific definitions
1242 * From Wine
1243 */
1244 #ifdef linux
1245 /* All Registers access - only for local access */
1246 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1247 /* Gpr Registers access */
1248 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1249 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1250 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1251 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1252 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1253 # define LR_sig(context) REG_sig(link, context) /* Link register */
1254 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1255 /* Float Registers access */
1256 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1257 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1258 /* Exception Registers access */
1259 # define DAR_sig(context) REG_sig(dar, context)
1260 # define DSISR_sig(context) REG_sig(dsisr, context)
1261 # define TRAP_sig(context) REG_sig(trap, context)
1262 #endif /* linux */
1263
1264 #ifdef __APPLE__
1265 # include <sys/ucontext.h>
1266 typedef struct ucontext SIGCONTEXT;
1267 /* All Registers access - only for local access */
1268 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1269 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1270 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1271 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1272 /* Gpr Registers access */
1273 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1274 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1275 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1276 # define CTR_sig(context) REG_sig(ctr, context)
1277 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1278 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1279 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1280 /* Float Registers access */
1281 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1282 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1283 /* Exception Registers access */
1284 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1285 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1286 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1287 #endif /* __APPLE__ */
1288
1289 int cpu_signal_handler(int host_signum, void *pinfo,
1290 void *puc)
1291 {
1292 siginfo_t *info = pinfo;
1293 struct ucontext *uc = puc;
1294 unsigned long pc;
1295 int is_write;
1296
1297 pc = IAR_sig(uc);
1298 is_write = 0;
1299 #if 0
1300 /* ppc 4xx case */
1301 if (DSISR_sig(uc) & 0x00800000)
1302 is_write = 1;
1303 #else
1304 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1305 is_write = 1;
1306 #endif
1307 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1308 is_write, &uc->uc_sigmask, puc);
1309 }
1310
1311 #elif defined(__alpha__)
1312
1313 int cpu_signal_handler(int host_signum, void *pinfo,
1314 void *puc)
1315 {
1316 siginfo_t *info = pinfo;
1317 struct ucontext *uc = puc;
1318 uint32_t *pc = uc->uc_mcontext.sc_pc;
1319 uint32_t insn = *pc;
1320 int is_write = 0;
1321
1322 /* XXX: need kernel patch to get write flag faster */
1323 switch (insn >> 26) {
1324 case 0x0d: // stw
1325 case 0x0e: // stb
1326 case 0x0f: // stq_u
1327 case 0x24: // stf
1328 case 0x25: // stg
1329 case 0x26: // sts
1330 case 0x27: // stt
1331 case 0x2c: // stl
1332 case 0x2d: // stq
1333 case 0x2e: // stl_c
1334 case 0x2f: // stq_c
1335 is_write = 1;
1336 }
1337
1338 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1339 is_write, &uc->uc_sigmask, puc);
1340 }
1341 #elif defined(__sparc__)
1342
1343 int cpu_signal_handler(int host_signum, void *pinfo,
1344 void *puc)
1345 {
1346 siginfo_t *info = pinfo;
1347 int is_write;
1348 uint32_t insn;
1349 #if !defined(__arch64__) || defined(HOST_SOLARIS)
1350 uint32_t *regs = (uint32_t *)(info + 1);
1351 void *sigmask = (regs + 20);
1352 /* XXX: is there a standard glibc define ? */
1353 unsigned long pc = regs[1];
1354 #else
1355 #ifdef __linux__
1356 struct sigcontext *sc = puc;
1357 unsigned long pc = sc->sigc_regs.tpc;
1358 void *sigmask = (void *)sc->sigc_mask;
1359 #elif defined(__OpenBSD__)
1360 struct sigcontext *uc = puc;
1361 unsigned long pc = uc->sc_pc;
1362 void *sigmask = (void *)(long)uc->sc_mask;
1363 #endif
1364 #endif
1365
1366 /* XXX: need kernel patch to get write flag faster */
1367 is_write = 0;
1368 insn = *(uint32_t *)pc;
1369 if ((insn >> 30) == 3) {
1370 switch((insn >> 19) & 0x3f) {
1371 case 0x05: // stb
1372 case 0x06: // sth
1373 case 0x04: // st
1374 case 0x07: // std
1375 case 0x24: // stf
1376 case 0x27: // stdf
1377 case 0x25: // stfsr
1378 is_write = 1;
1379 break;
1380 }
1381 }
1382 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1383 is_write, sigmask, NULL);
1384 }
1385
1386 #elif defined(__arm__)
1387
1388 int cpu_signal_handler(int host_signum, void *pinfo,
1389 void *puc)
1390 {
1391 siginfo_t *info = pinfo;
1392 struct ucontext *uc = puc;
1393 unsigned long pc;
1394 int is_write;
1395
1396 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1397 pc = uc->uc_mcontext.gregs[R15];
1398 #else
1399 pc = uc->uc_mcontext.arm_pc;
1400 #endif
1401 /* XXX: compute is_write */
1402 is_write = 0;
1403 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1404 is_write,
1405 &uc->uc_sigmask, puc);
1406 }
1407
1408 #elif defined(__mc68000)
1409
1410 int cpu_signal_handler(int host_signum, void *pinfo,
1411 void *puc)
1412 {
1413 siginfo_t *info = pinfo;
1414 struct ucontext *uc = puc;
1415 unsigned long pc;
1416 int is_write;
1417
1418 pc = uc->uc_mcontext.gregs[16];
1419 /* XXX: compute is_write */
1420 is_write = 0;
1421 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1422 is_write,
1423 &uc->uc_sigmask, puc);
1424 }
1425
1426 #elif defined(__ia64)
1427
1428 #ifndef __ISR_VALID
1429 /* This ought to be in <bits/siginfo.h>... */
1430 # define __ISR_VALID 1
1431 #endif
1432
1433 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1434 {
1435 siginfo_t *info = pinfo;
1436 struct ucontext *uc = puc;
1437 unsigned long ip;
1438 int is_write = 0;
1439
1440 ip = uc->uc_mcontext.sc_ip;
1441 switch (host_signum) {
1442 case SIGILL:
1443 case SIGFPE:
1444 case SIGSEGV:
1445 case SIGBUS:
1446 case SIGTRAP:
1447 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1448 /* ISR.W (write-access) is bit 33: */
1449 is_write = (info->si_isr >> 33) & 1;
1450 break;
1451
1452 default:
1453 break;
1454 }
1455 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1456 is_write,
1457 &uc->uc_sigmask, puc);
1458 }
1459
1460 #elif defined(__s390__)
1461
1462 int cpu_signal_handler(int host_signum, void *pinfo,
1463 void *puc)
1464 {
1465 siginfo_t *info = pinfo;
1466 struct ucontext *uc = puc;
1467 unsigned long pc;
1468 int is_write;
1469
1470 pc = uc->uc_mcontext.psw.addr;
1471 /* XXX: compute is_write */
1472 is_write = 0;
1473 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1474 is_write, &uc->uc_sigmask, puc);
1475 }
1476
1477 #elif defined(__mips__)
1478
1479 int cpu_signal_handler(int host_signum, void *pinfo,
1480 void *puc)
1481 {
1482 siginfo_t *info = pinfo;
1483 struct ucontext *uc = puc;
1484 greg_t pc = uc->uc_mcontext.pc;
1485 int is_write;
1486
1487 /* XXX: compute is_write */
1488 is_write = 0;
1489 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1490 is_write, &uc->uc_sigmask, puc);
1491 }
1492
1493 #elif defined(__hppa__)
1494
1495 int cpu_signal_handler(int host_signum, void *pinfo,
1496 void *puc)
1497 {
1498 struct siginfo *info = pinfo;
1499 struct ucontext *uc = puc;
1500 unsigned long pc;
1501 int is_write;
1502
1503 pc = uc->uc_mcontext.sc_iaoq[0];
1504 /* FIXME: compute is_write */
1505 is_write = 0;
1506 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1507 is_write,
1508 &uc->uc_sigmask, puc);
1509 }
1510
1511 #else
1512
1513 #error host CPU specific signal handler needed
1514
1515 #endif
1516
1517 #endif /* !defined(CONFIG_SOFTMMU) */