]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
Delete unused tb_invalidate_page_range
[qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
24 #include "qemu-barrier.h"
25
26 #if !defined(CONFIG_SOFTMMU)
27 #undef EAX
28 #undef ECX
29 #undef EDX
30 #undef EBX
31 #undef ESP
32 #undef EBP
33 #undef ESI
34 #undef EDI
35 #undef EIP
36 #include <signal.h>
37 #ifdef __linux__
38 #include <sys/ucontext.h>
39 #endif
40 #endif
41
42 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
43 // Work around ugly bugs in glibc that mangle global register contents
44 #undef env
45 #define env cpu_single_env
46 #endif
47
48 int tb_invalidated_flag;
49
50 //#define CONFIG_DEBUG_EXEC
51 //#define DEBUG_SIGNAL
52
53 int qemu_cpu_has_work(CPUState *env)
54 {
55 return cpu_has_work(env);
56 }
57
58 void cpu_loop_exit(void)
59 {
60 env->current_tb = NULL;
61 longjmp(env->jmp_env, 1);
62 }
63
64 /* exit the current TB from a signal handler. The host registers are
65 restored in a state compatible with the CPU emulator
66 */
67 void cpu_resume_from_signal(CPUState *env1, void *puc)
68 {
69 #if !defined(CONFIG_SOFTMMU)
70 #ifdef __linux__
71 struct ucontext *uc = puc;
72 #elif defined(__OpenBSD__)
73 struct sigcontext *uc = puc;
74 #endif
75 #endif
76
77 env = env1;
78
79 /* XXX: restore cpu registers saved in host registers */
80
81 #if !defined(CONFIG_SOFTMMU)
82 if (puc) {
83 /* XXX: use siglongjmp ? */
84 #ifdef __linux__
85 #ifdef __ia64
86 sigprocmask(SIG_SETMASK, (sigset_t *)&uc->uc_sigmask, NULL);
87 #else
88 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
89 #endif
90 #elif defined(__OpenBSD__)
91 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
92 #endif
93 }
94 #endif
95 env->exception_index = -1;
96 longjmp(env->jmp_env, 1);
97 }
98
99 /* Execute the code without caching the generated code. An interpreter
100 could be used if available. */
101 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
102 {
103 unsigned long next_tb;
104 TranslationBlock *tb;
105
106 /* Should never happen.
107 We only end up here when an existing TB is too long. */
108 if (max_cycles > CF_COUNT_MASK)
109 max_cycles = CF_COUNT_MASK;
110
111 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
112 max_cycles);
113 env->current_tb = tb;
114 /* execute the generated code */
115 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
116 env->current_tb = NULL;
117
118 if ((next_tb & 3) == 2) {
119 /* Restore PC. This may happen if async event occurs before
120 the TB starts executing. */
121 cpu_pc_from_tb(env, tb);
122 }
123 tb_phys_invalidate(tb, -1);
124 tb_free(tb);
125 }
126
127 static TranslationBlock *tb_find_slow(target_ulong pc,
128 target_ulong cs_base,
129 uint64_t flags)
130 {
131 TranslationBlock *tb, **ptb1;
132 unsigned int h;
133 tb_page_addr_t phys_pc, phys_page1, phys_page2;
134 target_ulong virt_page2;
135
136 tb_invalidated_flag = 0;
137
138 /* find translated block using physical mappings */
139 phys_pc = get_page_addr_code(env, pc);
140 phys_page1 = phys_pc & TARGET_PAGE_MASK;
141 phys_page2 = -1;
142 h = tb_phys_hash_func(phys_pc);
143 ptb1 = &tb_phys_hash[h];
144 for(;;) {
145 tb = *ptb1;
146 if (!tb)
147 goto not_found;
148 if (tb->pc == pc &&
149 tb->page_addr[0] == phys_page1 &&
150 tb->cs_base == cs_base &&
151 tb->flags == flags) {
152 /* check next page if needed */
153 if (tb->page_addr[1] != -1) {
154 virt_page2 = (pc & TARGET_PAGE_MASK) +
155 TARGET_PAGE_SIZE;
156 phys_page2 = get_page_addr_code(env, virt_page2);
157 if (tb->page_addr[1] == phys_page2)
158 goto found;
159 } else {
160 goto found;
161 }
162 }
163 ptb1 = &tb->phys_hash_next;
164 }
165 not_found:
166 /* if no translated code available, then translate it now */
167 tb = tb_gen_code(env, pc, cs_base, flags, 0);
168
169 found:
170 /* Move the last found TB to the head of the list */
171 if (likely(*ptb1)) {
172 *ptb1 = tb->phys_hash_next;
173 tb->phys_hash_next = tb_phys_hash[h];
174 tb_phys_hash[h] = tb;
175 }
176 /* we add the TB in the virtual pc hash table */
177 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
178 return tb;
179 }
180
181 static inline TranslationBlock *tb_find_fast(void)
182 {
183 TranslationBlock *tb;
184 target_ulong cs_base, pc;
185 int flags;
186
187 /* we record a subset of the CPU state. It will
188 always be the same before a given translated block
189 is executed. */
190 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
191 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
192 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
193 tb->flags != flags)) {
194 tb = tb_find_slow(pc, cs_base, flags);
195 }
196 return tb;
197 }
198
199 static CPUDebugExcpHandler *debug_excp_handler;
200
201 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
202 {
203 CPUDebugExcpHandler *old_handler = debug_excp_handler;
204
205 debug_excp_handler = handler;
206 return old_handler;
207 }
208
209 static void cpu_handle_debug_exception(CPUState *env)
210 {
211 CPUWatchpoint *wp;
212
213 if (!env->watchpoint_hit) {
214 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
215 wp->flags &= ~BP_WATCHPOINT_HIT;
216 }
217 }
218 if (debug_excp_handler) {
219 debug_excp_handler(env);
220 }
221 }
222
223 /* main execution loop */
224
225 volatile sig_atomic_t exit_request;
226
227 int cpu_exec(CPUState *env1)
228 {
229 volatile host_reg_t saved_env_reg;
230 int ret, interrupt_request;
231 TranslationBlock *tb;
232 uint8_t *tc_ptr;
233 unsigned long next_tb;
234
235 if (env1->halted) {
236 if (!cpu_has_work(env1)) {
237 return EXCP_HALTED;
238 }
239
240 env1->halted = 0;
241 }
242
243 cpu_single_env = env1;
244
245 /* the access to env below is actually saving the global register's
246 value, so that files not including target-xyz/exec.h are free to
247 use it. */
248 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg) != sizeof (env));
249 saved_env_reg = (host_reg_t) env;
250 barrier();
251 env = env1;
252
253 if (unlikely(exit_request)) {
254 env->exit_request = 1;
255 }
256
257 #if defined(TARGET_I386)
258 /* put eflags in CPU temporary format */
259 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
260 DF = 1 - (2 * ((env->eflags >> 10) & 1));
261 CC_OP = CC_OP_EFLAGS;
262 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
263 #elif defined(TARGET_SPARC)
264 #elif defined(TARGET_M68K)
265 env->cc_op = CC_OP_FLAGS;
266 env->cc_dest = env->sr & 0xf;
267 env->cc_x = (env->sr >> 4) & 1;
268 #elif defined(TARGET_ALPHA)
269 #elif defined(TARGET_ARM)
270 #elif defined(TARGET_UNICORE32)
271 #elif defined(TARGET_PPC)
272 #elif defined(TARGET_LM32)
273 #elif defined(TARGET_MICROBLAZE)
274 #elif defined(TARGET_MIPS)
275 #elif defined(TARGET_SH4)
276 #elif defined(TARGET_CRIS)
277 #elif defined(TARGET_S390X)
278 /* XXXXX */
279 #else
280 #error unsupported target CPU
281 #endif
282 env->exception_index = -1;
283
284 /* prepare setjmp context for exception handling */
285 for(;;) {
286 if (setjmp(env->jmp_env) == 0) {
287 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
288 #undef env
289 env = cpu_single_env;
290 #define env cpu_single_env
291 #endif
292 /* if an exception is pending, we execute it here */
293 if (env->exception_index >= 0) {
294 if (env->exception_index >= EXCP_INTERRUPT) {
295 /* exit request from the cpu execution loop */
296 ret = env->exception_index;
297 if (ret == EXCP_DEBUG) {
298 cpu_handle_debug_exception(env);
299 }
300 break;
301 } else {
302 #if defined(CONFIG_USER_ONLY)
303 /* if user mode only, we simulate a fake exception
304 which will be handled outside the cpu execution
305 loop */
306 #if defined(TARGET_I386)
307 do_interrupt_user(env->exception_index,
308 env->exception_is_int,
309 env->error_code,
310 env->exception_next_eip);
311 /* successfully delivered */
312 env->old_exception = -1;
313 #endif
314 ret = env->exception_index;
315 break;
316 #else
317 #if defined(TARGET_I386)
318 /* simulate a real cpu exception. On i386, it can
319 trigger new exceptions, but we do not handle
320 double or triple faults yet. */
321 do_interrupt(env->exception_index,
322 env->exception_is_int,
323 env->error_code,
324 env->exception_next_eip, 0);
325 /* successfully delivered */
326 env->old_exception = -1;
327 #elif defined(TARGET_PPC)
328 do_interrupt(env);
329 #elif defined(TARGET_LM32)
330 do_interrupt(env);
331 #elif defined(TARGET_MICROBLAZE)
332 do_interrupt(env);
333 #elif defined(TARGET_MIPS)
334 do_interrupt(env);
335 #elif defined(TARGET_SPARC)
336 do_interrupt(env);
337 #elif defined(TARGET_ARM)
338 do_interrupt(env);
339 #elif defined(TARGET_UNICORE32)
340 do_interrupt(env);
341 #elif defined(TARGET_SH4)
342 do_interrupt(env);
343 #elif defined(TARGET_ALPHA)
344 do_interrupt(env);
345 #elif defined(TARGET_CRIS)
346 do_interrupt(env);
347 #elif defined(TARGET_M68K)
348 do_interrupt(0);
349 #elif defined(TARGET_S390X)
350 do_interrupt(env);
351 #endif
352 env->exception_index = -1;
353 #endif
354 }
355 }
356
357 next_tb = 0; /* force lookup of first TB */
358 for(;;) {
359 interrupt_request = env->interrupt_request;
360 if (unlikely(interrupt_request)) {
361 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
362 /* Mask out external interrupts for this step. */
363 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
364 }
365 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
366 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
367 env->exception_index = EXCP_DEBUG;
368 cpu_loop_exit();
369 }
370 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
371 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
372 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
373 if (interrupt_request & CPU_INTERRUPT_HALT) {
374 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
375 env->halted = 1;
376 env->exception_index = EXCP_HLT;
377 cpu_loop_exit();
378 }
379 #endif
380 #if defined(TARGET_I386)
381 if (interrupt_request & CPU_INTERRUPT_INIT) {
382 svm_check_intercept(SVM_EXIT_INIT);
383 do_cpu_init(env);
384 env->exception_index = EXCP_HALTED;
385 cpu_loop_exit();
386 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
387 do_cpu_sipi(env);
388 } else if (env->hflags2 & HF2_GIF_MASK) {
389 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
390 !(env->hflags & HF_SMM_MASK)) {
391 svm_check_intercept(SVM_EXIT_SMI);
392 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
393 do_smm_enter();
394 next_tb = 0;
395 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
396 !(env->hflags2 & HF2_NMI_MASK)) {
397 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
398 env->hflags2 |= HF2_NMI_MASK;
399 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
400 next_tb = 0;
401 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
402 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
403 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
404 next_tb = 0;
405 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
406 (((env->hflags2 & HF2_VINTR_MASK) &&
407 (env->hflags2 & HF2_HIF_MASK)) ||
408 (!(env->hflags2 & HF2_VINTR_MASK) &&
409 (env->eflags & IF_MASK &&
410 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
411 int intno;
412 svm_check_intercept(SVM_EXIT_INTR);
413 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
414 intno = cpu_get_pic_interrupt(env);
415 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
416 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
417 #undef env
418 env = cpu_single_env;
419 #define env cpu_single_env
420 #endif
421 do_interrupt(intno, 0, 0, 0, 1);
422 /* ensure that no TB jump will be modified as
423 the program flow was changed */
424 next_tb = 0;
425 #if !defined(CONFIG_USER_ONLY)
426 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
427 (env->eflags & IF_MASK) &&
428 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
429 int intno;
430 /* FIXME: this should respect TPR */
431 svm_check_intercept(SVM_EXIT_VINTR);
432 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
433 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
434 do_interrupt(intno, 0, 0, 0, 1);
435 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
436 next_tb = 0;
437 #endif
438 }
439 }
440 #elif defined(TARGET_PPC)
441 #if 0
442 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
443 cpu_reset(env);
444 }
445 #endif
446 if (interrupt_request & CPU_INTERRUPT_HARD) {
447 ppc_hw_interrupt(env);
448 if (env->pending_interrupts == 0)
449 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
450 next_tb = 0;
451 }
452 #elif defined(TARGET_LM32)
453 if ((interrupt_request & CPU_INTERRUPT_HARD)
454 && (env->ie & IE_IE)) {
455 env->exception_index = EXCP_IRQ;
456 do_interrupt(env);
457 next_tb = 0;
458 }
459 #elif defined(TARGET_MICROBLAZE)
460 if ((interrupt_request & CPU_INTERRUPT_HARD)
461 && (env->sregs[SR_MSR] & MSR_IE)
462 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
463 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
464 env->exception_index = EXCP_IRQ;
465 do_interrupt(env);
466 next_tb = 0;
467 }
468 #elif defined(TARGET_MIPS)
469 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
470 cpu_mips_hw_interrupts_pending(env)) {
471 /* Raise it */
472 env->exception_index = EXCP_EXT_INTERRUPT;
473 env->error_code = 0;
474 do_interrupt(env);
475 next_tb = 0;
476 }
477 #elif defined(TARGET_SPARC)
478 if (interrupt_request & CPU_INTERRUPT_HARD) {
479 if (cpu_interrupts_enabled(env) &&
480 env->interrupt_index > 0) {
481 int pil = env->interrupt_index & 0xf;
482 int type = env->interrupt_index & 0xf0;
483
484 if (((type == TT_EXTINT) &&
485 cpu_pil_allowed(env, pil)) ||
486 type != TT_EXTINT) {
487 env->exception_index = env->interrupt_index;
488 do_interrupt(env);
489 next_tb = 0;
490 }
491 }
492 }
493 #elif defined(TARGET_ARM)
494 if (interrupt_request & CPU_INTERRUPT_FIQ
495 && !(env->uncached_cpsr & CPSR_F)) {
496 env->exception_index = EXCP_FIQ;
497 do_interrupt(env);
498 next_tb = 0;
499 }
500 /* ARMv7-M interrupt return works by loading a magic value
501 into the PC. On real hardware the load causes the
502 return to occur. The qemu implementation performs the
503 jump normally, then does the exception return when the
504 CPU tries to execute code at the magic address.
505 This will cause the magic PC value to be pushed to
506 the stack if an interrupt occurred at the wrong time.
507 We avoid this by disabling interrupts when
508 pc contains a magic address. */
509 if (interrupt_request & CPU_INTERRUPT_HARD
510 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
511 || !(env->uncached_cpsr & CPSR_I))) {
512 env->exception_index = EXCP_IRQ;
513 do_interrupt(env);
514 next_tb = 0;
515 }
516 #elif defined(TARGET_UNICORE32)
517 if (interrupt_request & CPU_INTERRUPT_HARD
518 && !(env->uncached_asr & ASR_I)) {
519 do_interrupt(env);
520 next_tb = 0;
521 }
522 #elif defined(TARGET_SH4)
523 if (interrupt_request & CPU_INTERRUPT_HARD) {
524 do_interrupt(env);
525 next_tb = 0;
526 }
527 #elif defined(TARGET_ALPHA)
528 if (interrupt_request & CPU_INTERRUPT_HARD) {
529 do_interrupt(env);
530 next_tb = 0;
531 }
532 #elif defined(TARGET_CRIS)
533 if (interrupt_request & CPU_INTERRUPT_HARD
534 && (env->pregs[PR_CCS] & I_FLAG)
535 && !env->locked_irq) {
536 env->exception_index = EXCP_IRQ;
537 do_interrupt(env);
538 next_tb = 0;
539 }
540 if (interrupt_request & CPU_INTERRUPT_NMI
541 && (env->pregs[PR_CCS] & M_FLAG)) {
542 env->exception_index = EXCP_NMI;
543 do_interrupt(env);
544 next_tb = 0;
545 }
546 #elif defined(TARGET_M68K)
547 if (interrupt_request & CPU_INTERRUPT_HARD
548 && ((env->sr & SR_I) >> SR_I_SHIFT)
549 < env->pending_level) {
550 /* Real hardware gets the interrupt vector via an
551 IACK cycle at this point. Current emulated
552 hardware doesn't rely on this, so we
553 provide/save the vector when the interrupt is
554 first signalled. */
555 env->exception_index = env->pending_vector;
556 do_interrupt(1);
557 next_tb = 0;
558 }
559 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
560 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
561 (env->psw.mask & PSW_MASK_EXT)) {
562 do_interrupt(env);
563 next_tb = 0;
564 }
565 #endif
566 /* Don't use the cached interrupt_request value,
567 do_interrupt may have updated the EXITTB flag. */
568 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
569 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
570 /* ensure that no TB jump will be modified as
571 the program flow was changed */
572 next_tb = 0;
573 }
574 }
575 if (unlikely(env->exit_request)) {
576 env->exit_request = 0;
577 env->exception_index = EXCP_INTERRUPT;
578 cpu_loop_exit();
579 }
580 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
581 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
582 /* restore flags in standard format */
583 #if defined(TARGET_I386)
584 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
585 log_cpu_state(env, X86_DUMP_CCOP);
586 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
587 #elif defined(TARGET_M68K)
588 cpu_m68k_flush_flags(env, env->cc_op);
589 env->cc_op = CC_OP_FLAGS;
590 env->sr = (env->sr & 0xffe0)
591 | env->cc_dest | (env->cc_x << 4);
592 log_cpu_state(env, 0);
593 #else
594 log_cpu_state(env, 0);
595 #endif
596 }
597 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
598 spin_lock(&tb_lock);
599 tb = tb_find_fast();
600 /* Note: we do it here to avoid a gcc bug on Mac OS X when
601 doing it in tb_find_slow */
602 if (tb_invalidated_flag) {
603 /* as some TB could have been invalidated because
604 of memory exceptions while generating the code, we
605 must recompute the hash index here */
606 next_tb = 0;
607 tb_invalidated_flag = 0;
608 }
609 #ifdef CONFIG_DEBUG_EXEC
610 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
611 (long)tb->tc_ptr, tb->pc,
612 lookup_symbol(tb->pc));
613 #endif
614 /* see if we can patch the calling TB. When the TB
615 spans two pages, we cannot safely do a direct
616 jump. */
617 if (next_tb != 0 && tb->page_addr[1] == -1) {
618 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
619 }
620 spin_unlock(&tb_lock);
621
622 /* cpu_interrupt might be called while translating the
623 TB, but before it is linked into a potentially
624 infinite loop and becomes env->current_tb. Avoid
625 starting execution if there is a pending interrupt. */
626 env->current_tb = tb;
627 barrier();
628 if (likely(!env->exit_request)) {
629 tc_ptr = tb->tc_ptr;
630 /* execute the generated code */
631 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
632 #undef env
633 env = cpu_single_env;
634 #define env cpu_single_env
635 #endif
636 next_tb = tcg_qemu_tb_exec(tc_ptr);
637 if ((next_tb & 3) == 2) {
638 /* Instruction counter expired. */
639 int insns_left;
640 tb = (TranslationBlock *)(long)(next_tb & ~3);
641 /* Restore PC. */
642 cpu_pc_from_tb(env, tb);
643 insns_left = env->icount_decr.u32;
644 if (env->icount_extra && insns_left >= 0) {
645 /* Refill decrementer and continue execution. */
646 env->icount_extra += insns_left;
647 if (env->icount_extra > 0xffff) {
648 insns_left = 0xffff;
649 } else {
650 insns_left = env->icount_extra;
651 }
652 env->icount_extra -= insns_left;
653 env->icount_decr.u16.low = insns_left;
654 } else {
655 if (insns_left > 0) {
656 /* Execute remaining instructions. */
657 cpu_exec_nocache(insns_left, tb);
658 }
659 env->exception_index = EXCP_INTERRUPT;
660 next_tb = 0;
661 cpu_loop_exit();
662 }
663 }
664 }
665 env->current_tb = NULL;
666 /* reset soft MMU for next block (it can currently
667 only be set by a memory fault) */
668 } /* for(;;) */
669 }
670 } /* for(;;) */
671
672
673 #if defined(TARGET_I386)
674 /* restore flags in standard format */
675 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
676 #elif defined(TARGET_ARM)
677 /* XXX: Save/restore host fpu exception state?. */
678 #elif defined(TARGET_UNICORE32)
679 #elif defined(TARGET_SPARC)
680 #elif defined(TARGET_PPC)
681 #elif defined(TARGET_LM32)
682 #elif defined(TARGET_M68K)
683 cpu_m68k_flush_flags(env, env->cc_op);
684 env->cc_op = CC_OP_FLAGS;
685 env->sr = (env->sr & 0xffe0)
686 | env->cc_dest | (env->cc_x << 4);
687 #elif defined(TARGET_MICROBLAZE)
688 #elif defined(TARGET_MIPS)
689 #elif defined(TARGET_SH4)
690 #elif defined(TARGET_ALPHA)
691 #elif defined(TARGET_CRIS)
692 #elif defined(TARGET_S390X)
693 /* XXXXX */
694 #else
695 #error unsupported target CPU
696 #endif
697
698 /* restore global registers */
699 barrier();
700 env = (void *) saved_env_reg;
701
702 /* fail safe : never use cpu_single_env outside cpu_exec() */
703 cpu_single_env = NULL;
704 return ret;
705 }
706
707 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
708
709 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
710 {
711 CPUX86State *saved_env;
712
713 saved_env = env;
714 env = s;
715 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
716 selector &= 0xffff;
717 cpu_x86_load_seg_cache(env, seg_reg, selector,
718 (selector << 4), 0xffff, 0);
719 } else {
720 helper_load_seg(seg_reg, selector);
721 }
722 env = saved_env;
723 }
724
725 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
726 {
727 CPUX86State *saved_env;
728
729 saved_env = env;
730 env = s;
731
732 helper_fsave(ptr, data32);
733
734 env = saved_env;
735 }
736
737 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
738 {
739 CPUX86State *saved_env;
740
741 saved_env = env;
742 env = s;
743
744 helper_frstor(ptr, data32);
745
746 env = saved_env;
747 }
748
749 #endif /* TARGET_I386 */
750
751 #if !defined(CONFIG_SOFTMMU)
752
753 #if defined(TARGET_I386)
754 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
755 #else
756 #define EXCEPTION_ACTION cpu_loop_exit()
757 #endif
758
759 /* 'pc' is the host PC at which the exception was raised. 'address' is
760 the effective address of the memory exception. 'is_write' is 1 if a
761 write caused the exception and otherwise 0'. 'old_set' is the
762 signal set which should be restored */
763 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
764 int is_write, sigset_t *old_set,
765 void *puc)
766 {
767 TranslationBlock *tb;
768 int ret;
769
770 if (cpu_single_env)
771 env = cpu_single_env; /* XXX: find a correct solution for multithread */
772 #if defined(DEBUG_SIGNAL)
773 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
774 pc, address, is_write, *(unsigned long *)old_set);
775 #endif
776 /* XXX: locking issue */
777 if (is_write && page_unprotect(h2g(address), pc, puc)) {
778 return 1;
779 }
780
781 /* see if it is an MMU fault */
782 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
783 if (ret < 0)
784 return 0; /* not an MMU fault */
785 if (ret == 0)
786 return 1; /* the MMU fault was handled without causing real CPU fault */
787 /* now we have a real cpu fault */
788 tb = tb_find_pc(pc);
789 if (tb) {
790 /* the PC is inside the translated code. It means that we have
791 a virtual CPU fault */
792 cpu_restore_state(tb, env, pc);
793 }
794
795 /* we restore the process signal mask as the sigreturn should
796 do it (XXX: use sigsetjmp) */
797 sigprocmask(SIG_SETMASK, old_set, NULL);
798 EXCEPTION_ACTION;
799
800 /* never comes here */
801 return 1;
802 }
803
804 #if defined(__i386__)
805
806 #if defined(__APPLE__)
807 # include <sys/ucontext.h>
808
809 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
810 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
811 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
812 # define MASK_sig(context) ((context)->uc_sigmask)
813 #elif defined (__NetBSD__)
814 # include <ucontext.h>
815
816 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
817 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
818 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
819 # define MASK_sig(context) ((context)->uc_sigmask)
820 #elif defined (__FreeBSD__) || defined(__DragonFly__)
821 # include <ucontext.h>
822
823 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
824 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
825 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
826 # define MASK_sig(context) ((context)->uc_sigmask)
827 #elif defined(__OpenBSD__)
828 # define EIP_sig(context) ((context)->sc_eip)
829 # define TRAP_sig(context) ((context)->sc_trapno)
830 # define ERROR_sig(context) ((context)->sc_err)
831 # define MASK_sig(context) ((context)->sc_mask)
832 #else
833 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
834 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
835 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
836 # define MASK_sig(context) ((context)->uc_sigmask)
837 #endif
838
839 int cpu_signal_handler(int host_signum, void *pinfo,
840 void *puc)
841 {
842 siginfo_t *info = pinfo;
843 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
844 ucontext_t *uc = puc;
845 #elif defined(__OpenBSD__)
846 struct sigcontext *uc = puc;
847 #else
848 struct ucontext *uc = puc;
849 #endif
850 unsigned long pc;
851 int trapno;
852
853 #ifndef REG_EIP
854 /* for glibc 2.1 */
855 #define REG_EIP EIP
856 #define REG_ERR ERR
857 #define REG_TRAPNO TRAPNO
858 #endif
859 pc = EIP_sig(uc);
860 trapno = TRAP_sig(uc);
861 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
862 trapno == 0xe ?
863 (ERROR_sig(uc) >> 1) & 1 : 0,
864 &MASK_sig(uc), puc);
865 }
866
867 #elif defined(__x86_64__)
868
869 #ifdef __NetBSD__
870 #define PC_sig(context) _UC_MACHINE_PC(context)
871 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
872 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
873 #define MASK_sig(context) ((context)->uc_sigmask)
874 #elif defined(__OpenBSD__)
875 #define PC_sig(context) ((context)->sc_rip)
876 #define TRAP_sig(context) ((context)->sc_trapno)
877 #define ERROR_sig(context) ((context)->sc_err)
878 #define MASK_sig(context) ((context)->sc_mask)
879 #elif defined (__FreeBSD__) || defined(__DragonFly__)
880 #include <ucontext.h>
881
882 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
883 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
884 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
885 #define MASK_sig(context) ((context)->uc_sigmask)
886 #else
887 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
888 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
889 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
890 #define MASK_sig(context) ((context)->uc_sigmask)
891 #endif
892
893 int cpu_signal_handler(int host_signum, void *pinfo,
894 void *puc)
895 {
896 siginfo_t *info = pinfo;
897 unsigned long pc;
898 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
899 ucontext_t *uc = puc;
900 #elif defined(__OpenBSD__)
901 struct sigcontext *uc = puc;
902 #else
903 struct ucontext *uc = puc;
904 #endif
905
906 pc = PC_sig(uc);
907 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
908 TRAP_sig(uc) == 0xe ?
909 (ERROR_sig(uc) >> 1) & 1 : 0,
910 &MASK_sig(uc), puc);
911 }
912
913 #elif defined(_ARCH_PPC)
914
915 /***********************************************************************
916 * signal context platform-specific definitions
917 * From Wine
918 */
919 #ifdef linux
920 /* All Registers access - only for local access */
921 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
922 /* Gpr Registers access */
923 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
924 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
925 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
926 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
927 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
928 # define LR_sig(context) REG_sig(link, context) /* Link register */
929 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
930 /* Float Registers access */
931 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
932 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
933 /* Exception Registers access */
934 # define DAR_sig(context) REG_sig(dar, context)
935 # define DSISR_sig(context) REG_sig(dsisr, context)
936 # define TRAP_sig(context) REG_sig(trap, context)
937 #endif /* linux */
938
939 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
940 #include <ucontext.h>
941 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
942 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
943 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
944 # define XER_sig(context) ((context)->uc_mcontext.mc_xer)
945 # define LR_sig(context) ((context)->uc_mcontext.mc_lr)
946 # define CR_sig(context) ((context)->uc_mcontext.mc_cr)
947 /* Exception Registers access */
948 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
949 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
950 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
951 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
952
953 #ifdef __APPLE__
954 # include <sys/ucontext.h>
955 typedef struct ucontext SIGCONTEXT;
956 /* All Registers access - only for local access */
957 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
958 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
959 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
960 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
961 /* Gpr Registers access */
962 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
963 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
964 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
965 # define CTR_sig(context) REG_sig(ctr, context)
966 # define XER_sig(context) REG_sig(xer, context) /* Link register */
967 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
968 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
969 /* Float Registers access */
970 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
971 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
972 /* Exception Registers access */
973 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
974 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
975 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
976 #endif /* __APPLE__ */
977
978 int cpu_signal_handler(int host_signum, void *pinfo,
979 void *puc)
980 {
981 siginfo_t *info = pinfo;
982 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
983 ucontext_t *uc = puc;
984 #else
985 struct ucontext *uc = puc;
986 #endif
987 unsigned long pc;
988 int is_write;
989
990 pc = IAR_sig(uc);
991 is_write = 0;
992 #if 0
993 /* ppc 4xx case */
994 if (DSISR_sig(uc) & 0x00800000)
995 is_write = 1;
996 #else
997 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
998 is_write = 1;
999 #endif
1000 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1001 is_write, &uc->uc_sigmask, puc);
1002 }
1003
1004 #elif defined(__alpha__)
1005
1006 int cpu_signal_handler(int host_signum, void *pinfo,
1007 void *puc)
1008 {
1009 siginfo_t *info = pinfo;
1010 struct ucontext *uc = puc;
1011 uint32_t *pc = uc->uc_mcontext.sc_pc;
1012 uint32_t insn = *pc;
1013 int is_write = 0;
1014
1015 /* XXX: need kernel patch to get write flag faster */
1016 switch (insn >> 26) {
1017 case 0x0d: // stw
1018 case 0x0e: // stb
1019 case 0x0f: // stq_u
1020 case 0x24: // stf
1021 case 0x25: // stg
1022 case 0x26: // sts
1023 case 0x27: // stt
1024 case 0x2c: // stl
1025 case 0x2d: // stq
1026 case 0x2e: // stl_c
1027 case 0x2f: // stq_c
1028 is_write = 1;
1029 }
1030
1031 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1032 is_write, &uc->uc_sigmask, puc);
1033 }
1034 #elif defined(__sparc__)
1035
1036 int cpu_signal_handler(int host_signum, void *pinfo,
1037 void *puc)
1038 {
1039 siginfo_t *info = pinfo;
1040 int is_write;
1041 uint32_t insn;
1042 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1043 uint32_t *regs = (uint32_t *)(info + 1);
1044 void *sigmask = (regs + 20);
1045 /* XXX: is there a standard glibc define ? */
1046 unsigned long pc = regs[1];
1047 #else
1048 #ifdef __linux__
1049 struct sigcontext *sc = puc;
1050 unsigned long pc = sc->sigc_regs.tpc;
1051 void *sigmask = (void *)sc->sigc_mask;
1052 #elif defined(__OpenBSD__)
1053 struct sigcontext *uc = puc;
1054 unsigned long pc = uc->sc_pc;
1055 void *sigmask = (void *)(long)uc->sc_mask;
1056 #endif
1057 #endif
1058
1059 /* XXX: need kernel patch to get write flag faster */
1060 is_write = 0;
1061 insn = *(uint32_t *)pc;
1062 if ((insn >> 30) == 3) {
1063 switch((insn >> 19) & 0x3f) {
1064 case 0x05: // stb
1065 case 0x15: // stba
1066 case 0x06: // sth
1067 case 0x16: // stha
1068 case 0x04: // st
1069 case 0x14: // sta
1070 case 0x07: // std
1071 case 0x17: // stda
1072 case 0x0e: // stx
1073 case 0x1e: // stxa
1074 case 0x24: // stf
1075 case 0x34: // stfa
1076 case 0x27: // stdf
1077 case 0x37: // stdfa
1078 case 0x26: // stqf
1079 case 0x36: // stqfa
1080 case 0x25: // stfsr
1081 case 0x3c: // casa
1082 case 0x3e: // casxa
1083 is_write = 1;
1084 break;
1085 }
1086 }
1087 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1088 is_write, sigmask, NULL);
1089 }
1090
1091 #elif defined(__arm__)
1092
1093 int cpu_signal_handler(int host_signum, void *pinfo,
1094 void *puc)
1095 {
1096 siginfo_t *info = pinfo;
1097 struct ucontext *uc = puc;
1098 unsigned long pc;
1099 int is_write;
1100
1101 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1102 pc = uc->uc_mcontext.gregs[R15];
1103 #else
1104 pc = uc->uc_mcontext.arm_pc;
1105 #endif
1106 /* XXX: compute is_write */
1107 is_write = 0;
1108 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1109 is_write,
1110 &uc->uc_sigmask, puc);
1111 }
1112
1113 #elif defined(__mc68000)
1114
1115 int cpu_signal_handler(int host_signum, void *pinfo,
1116 void *puc)
1117 {
1118 siginfo_t *info = pinfo;
1119 struct ucontext *uc = puc;
1120 unsigned long pc;
1121 int is_write;
1122
1123 pc = uc->uc_mcontext.gregs[16];
1124 /* XXX: compute is_write */
1125 is_write = 0;
1126 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1127 is_write,
1128 &uc->uc_sigmask, puc);
1129 }
1130
1131 #elif defined(__ia64)
1132
1133 #ifndef __ISR_VALID
1134 /* This ought to be in <bits/siginfo.h>... */
1135 # define __ISR_VALID 1
1136 #endif
1137
1138 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1139 {
1140 siginfo_t *info = pinfo;
1141 struct ucontext *uc = puc;
1142 unsigned long ip;
1143 int is_write = 0;
1144
1145 ip = uc->uc_mcontext.sc_ip;
1146 switch (host_signum) {
1147 case SIGILL:
1148 case SIGFPE:
1149 case SIGSEGV:
1150 case SIGBUS:
1151 case SIGTRAP:
1152 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1153 /* ISR.W (write-access) is bit 33: */
1154 is_write = (info->si_isr >> 33) & 1;
1155 break;
1156
1157 default:
1158 break;
1159 }
1160 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1161 is_write,
1162 (sigset_t *)&uc->uc_sigmask, puc);
1163 }
1164
1165 #elif defined(__s390__)
1166
1167 int cpu_signal_handler(int host_signum, void *pinfo,
1168 void *puc)
1169 {
1170 siginfo_t *info = pinfo;
1171 struct ucontext *uc = puc;
1172 unsigned long pc;
1173 uint16_t *pinsn;
1174 int is_write = 0;
1175
1176 pc = uc->uc_mcontext.psw.addr;
1177
1178 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
1179 of the normal 2 arguments. The 3rd argument contains the "int_code"
1180 from the hardware which does in fact contain the is_write value.
1181 The rt signal handler, as far as I can tell, does not give this value
1182 at all. Not that we could get to it from here even if it were. */
1183 /* ??? This is not even close to complete, since it ignores all
1184 of the read-modify-write instructions. */
1185 pinsn = (uint16_t *)pc;
1186 switch (pinsn[0] >> 8) {
1187 case 0x50: /* ST */
1188 case 0x42: /* STC */
1189 case 0x40: /* STH */
1190 is_write = 1;
1191 break;
1192 case 0xc4: /* RIL format insns */
1193 switch (pinsn[0] & 0xf) {
1194 case 0xf: /* STRL */
1195 case 0xb: /* STGRL */
1196 case 0x7: /* STHRL */
1197 is_write = 1;
1198 }
1199 break;
1200 case 0xe3: /* RXY format insns */
1201 switch (pinsn[2] & 0xff) {
1202 case 0x50: /* STY */
1203 case 0x24: /* STG */
1204 case 0x72: /* STCY */
1205 case 0x70: /* STHY */
1206 case 0x8e: /* STPQ */
1207 case 0x3f: /* STRVH */
1208 case 0x3e: /* STRV */
1209 case 0x2f: /* STRVG */
1210 is_write = 1;
1211 }
1212 break;
1213 }
1214 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1215 is_write, &uc->uc_sigmask, puc);
1216 }
1217
1218 #elif defined(__mips__)
1219
1220 int cpu_signal_handler(int host_signum, void *pinfo,
1221 void *puc)
1222 {
1223 siginfo_t *info = pinfo;
1224 struct ucontext *uc = puc;
1225 greg_t pc = uc->uc_mcontext.pc;
1226 int is_write;
1227
1228 /* XXX: compute is_write */
1229 is_write = 0;
1230 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1231 is_write, &uc->uc_sigmask, puc);
1232 }
1233
1234 #elif defined(__hppa__)
1235
1236 int cpu_signal_handler(int host_signum, void *pinfo,
1237 void *puc)
1238 {
1239 struct siginfo *info = pinfo;
1240 struct ucontext *uc = puc;
1241 unsigned long pc = uc->uc_mcontext.sc_iaoq[0];
1242 uint32_t insn = *(uint32_t *)pc;
1243 int is_write = 0;
1244
1245 /* XXX: need kernel patch to get write flag faster. */
1246 switch (insn >> 26) {
1247 case 0x1a: /* STW */
1248 case 0x19: /* STH */
1249 case 0x18: /* STB */
1250 case 0x1b: /* STWM */
1251 is_write = 1;
1252 break;
1253
1254 case 0x09: /* CSTWX, FSTWX, FSTWS */
1255 case 0x0b: /* CSTDX, FSTDX, FSTDS */
1256 /* Distinguish from coprocessor load ... */
1257 is_write = (insn >> 9) & 1;
1258 break;
1259
1260 case 0x03:
1261 switch ((insn >> 6) & 15) {
1262 case 0xa: /* STWS */
1263 case 0x9: /* STHS */
1264 case 0x8: /* STBS */
1265 case 0xe: /* STWAS */
1266 case 0xc: /* STBYS */
1267 is_write = 1;
1268 }
1269 break;
1270 }
1271
1272 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1273 is_write, &uc->uc_sigmask, puc);
1274 }
1275
1276 #else
1277
1278 #error host CPU specific signal handler needed
1279
1280 #endif
1281
1282 #endif /* !defined(CONFIG_SOFTMMU) */