]> git.proxmox.com Git - qemu.git/blob - cpus.c
target-mips: Add ASE DSP resources access check
[qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "qmp-commands.h"
34
35 #include "qemu-thread.h"
36 #include "cpus.h"
37 #include "qtest.h"
38 #include "main-loop.h"
39 #include "bitmap.h"
40
41 #ifndef _WIN32
42 #include "compatfd.h"
43 #endif
44
45 #ifdef CONFIG_LINUX
46
47 #include <sys/prctl.h>
48
49 #ifndef PR_MCE_KILL
50 #define PR_MCE_KILL 33
51 #endif
52
53 #ifndef PR_MCE_KILL_SET
54 #define PR_MCE_KILL_SET 1
55 #endif
56
57 #ifndef PR_MCE_KILL_EARLY
58 #define PR_MCE_KILL_EARLY 1
59 #endif
60
61 #endif /* CONFIG_LINUX */
62
63 static CPUArchState *next_cpu;
64
65 static bool cpu_thread_is_idle(CPUArchState *env)
66 {
67 if (env->stop || env->queued_work_first) {
68 return false;
69 }
70 if (env->stopped || !runstate_is_running()) {
71 return true;
72 }
73 if (!env->halted || qemu_cpu_has_work(env) ||
74 kvm_async_interrupts_enabled()) {
75 return false;
76 }
77 return true;
78 }
79
80 static bool all_cpu_threads_idle(void)
81 {
82 CPUArchState *env;
83
84 for (env = first_cpu; env != NULL; env = env->next_cpu) {
85 if (!cpu_thread_is_idle(env)) {
86 return false;
87 }
88 }
89 return true;
90 }
91
92 /***********************************************************/
93 /* guest cycle counter */
94
95 /* Conversion factor from emulated instructions to virtual clock ticks. */
96 static int icount_time_shift;
97 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
98 #define MAX_ICOUNT_SHIFT 10
99 /* Compensate for varying guest execution speed. */
100 static int64_t qemu_icount_bias;
101 static QEMUTimer *icount_rt_timer;
102 static QEMUTimer *icount_vm_timer;
103 static QEMUTimer *icount_warp_timer;
104 static int64_t vm_clock_warp_start;
105 static int64_t qemu_icount;
106
107 typedef struct TimersState {
108 int64_t cpu_ticks_prev;
109 int64_t cpu_ticks_offset;
110 int64_t cpu_clock_offset;
111 int32_t cpu_ticks_enabled;
112 int64_t dummy;
113 } TimersState;
114
115 TimersState timers_state;
116
117 /* Return the virtual CPU time, based on the instruction counter. */
118 int64_t cpu_get_icount(void)
119 {
120 int64_t icount;
121 CPUArchState *env = cpu_single_env;
122
123 icount = qemu_icount;
124 if (env) {
125 if (!can_do_io(env)) {
126 fprintf(stderr, "Bad clock read\n");
127 }
128 icount -= (env->icount_decr.u16.low + env->icount_extra);
129 }
130 return qemu_icount_bias + (icount << icount_time_shift);
131 }
132
133 /* return the host CPU cycle counter and handle stop/restart */
134 int64_t cpu_get_ticks(void)
135 {
136 if (use_icount) {
137 return cpu_get_icount();
138 }
139 if (!timers_state.cpu_ticks_enabled) {
140 return timers_state.cpu_ticks_offset;
141 } else {
142 int64_t ticks;
143 ticks = cpu_get_real_ticks();
144 if (timers_state.cpu_ticks_prev > ticks) {
145 /* Note: non increasing ticks may happen if the host uses
146 software suspend */
147 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
148 }
149 timers_state.cpu_ticks_prev = ticks;
150 return ticks + timers_state.cpu_ticks_offset;
151 }
152 }
153
154 /* return the host CPU monotonic timer and handle stop/restart */
155 int64_t cpu_get_clock(void)
156 {
157 int64_t ti;
158 if (!timers_state.cpu_ticks_enabled) {
159 return timers_state.cpu_clock_offset;
160 } else {
161 ti = get_clock();
162 return ti + timers_state.cpu_clock_offset;
163 }
164 }
165
166 /* enable cpu_get_ticks() */
167 void cpu_enable_ticks(void)
168 {
169 if (!timers_state.cpu_ticks_enabled) {
170 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
171 timers_state.cpu_clock_offset -= get_clock();
172 timers_state.cpu_ticks_enabled = 1;
173 }
174 }
175
176 /* disable cpu_get_ticks() : the clock is stopped. You must not call
177 cpu_get_ticks() after that. */
178 void cpu_disable_ticks(void)
179 {
180 if (timers_state.cpu_ticks_enabled) {
181 timers_state.cpu_ticks_offset = cpu_get_ticks();
182 timers_state.cpu_clock_offset = cpu_get_clock();
183 timers_state.cpu_ticks_enabled = 0;
184 }
185 }
186
187 /* Correlation between real and virtual time is always going to be
188 fairly approximate, so ignore small variation.
189 When the guest is idle real and virtual time will be aligned in
190 the IO wait loop. */
191 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
192
193 static void icount_adjust(void)
194 {
195 int64_t cur_time;
196 int64_t cur_icount;
197 int64_t delta;
198 static int64_t last_delta;
199 /* If the VM is not running, then do nothing. */
200 if (!runstate_is_running()) {
201 return;
202 }
203 cur_time = cpu_get_clock();
204 cur_icount = qemu_get_clock_ns(vm_clock);
205 delta = cur_icount - cur_time;
206 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
207 if (delta > 0
208 && last_delta + ICOUNT_WOBBLE < delta * 2
209 && icount_time_shift > 0) {
210 /* The guest is getting too far ahead. Slow time down. */
211 icount_time_shift--;
212 }
213 if (delta < 0
214 && last_delta - ICOUNT_WOBBLE > delta * 2
215 && icount_time_shift < MAX_ICOUNT_SHIFT) {
216 /* The guest is getting too far behind. Speed time up. */
217 icount_time_shift++;
218 }
219 last_delta = delta;
220 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
221 }
222
223 static void icount_adjust_rt(void *opaque)
224 {
225 qemu_mod_timer(icount_rt_timer,
226 qemu_get_clock_ms(rt_clock) + 1000);
227 icount_adjust();
228 }
229
230 static void icount_adjust_vm(void *opaque)
231 {
232 qemu_mod_timer(icount_vm_timer,
233 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
234 icount_adjust();
235 }
236
237 static int64_t qemu_icount_round(int64_t count)
238 {
239 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
240 }
241
242 static void icount_warp_rt(void *opaque)
243 {
244 if (vm_clock_warp_start == -1) {
245 return;
246 }
247
248 if (runstate_is_running()) {
249 int64_t clock = qemu_get_clock_ns(rt_clock);
250 int64_t warp_delta = clock - vm_clock_warp_start;
251 if (use_icount == 1) {
252 qemu_icount_bias += warp_delta;
253 } else {
254 /*
255 * In adaptive mode, do not let the vm_clock run too
256 * far ahead of real time.
257 */
258 int64_t cur_time = cpu_get_clock();
259 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
260 int64_t delta = cur_time - cur_icount;
261 qemu_icount_bias += MIN(warp_delta, delta);
262 }
263 if (qemu_clock_expired(vm_clock)) {
264 qemu_notify_event();
265 }
266 }
267 vm_clock_warp_start = -1;
268 }
269
270 void qtest_clock_warp(int64_t dest)
271 {
272 int64_t clock = qemu_get_clock_ns(vm_clock);
273 assert(qtest_enabled());
274 while (clock < dest) {
275 int64_t deadline = qemu_clock_deadline(vm_clock);
276 int64_t warp = MIN(dest - clock, deadline);
277 qemu_icount_bias += warp;
278 qemu_run_timers(vm_clock);
279 clock = qemu_get_clock_ns(vm_clock);
280 }
281 qemu_notify_event();
282 }
283
284 void qemu_clock_warp(QEMUClock *clock)
285 {
286 int64_t deadline;
287
288 /*
289 * There are too many global variables to make the "warp" behavior
290 * applicable to other clocks. But a clock argument removes the
291 * need for if statements all over the place.
292 */
293 if (clock != vm_clock || !use_icount) {
294 return;
295 }
296
297 /*
298 * If the CPUs have been sleeping, advance the vm_clock timer now. This
299 * ensures that the deadline for the timer is computed correctly below.
300 * This also makes sure that the insn counter is synchronized before the
301 * CPU starts running, in case the CPU is woken by an event other than
302 * the earliest vm_clock timer.
303 */
304 icount_warp_rt(NULL);
305 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
306 qemu_del_timer(icount_warp_timer);
307 return;
308 }
309
310 if (qtest_enabled()) {
311 /* When testing, qtest commands advance icount. */
312 return;
313 }
314
315 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
316 deadline = qemu_clock_deadline(vm_clock);
317 if (deadline > 0) {
318 /*
319 * Ensure the vm_clock proceeds even when the virtual CPU goes to
320 * sleep. Otherwise, the CPU might be waiting for a future timer
321 * interrupt to wake it up, but the interrupt never comes because
322 * the vCPU isn't running any insns and thus doesn't advance the
323 * vm_clock.
324 *
325 * An extreme solution for this problem would be to never let VCPUs
326 * sleep in icount mode if there is a pending vm_clock timer; rather
327 * time could just advance to the next vm_clock event. Instead, we
328 * do stop VCPUs and only advance vm_clock after some "real" time,
329 * (related to the time left until the next event) has passed. This
330 * rt_clock timer will do this. This avoids that the warps are too
331 * visible externally---for example, you will not be sending network
332 * packets continuously instead of every 100ms.
333 */
334 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
335 } else {
336 qemu_notify_event();
337 }
338 }
339
340 static const VMStateDescription vmstate_timers = {
341 .name = "timer",
342 .version_id = 2,
343 .minimum_version_id = 1,
344 .minimum_version_id_old = 1,
345 .fields = (VMStateField[]) {
346 VMSTATE_INT64(cpu_ticks_offset, TimersState),
347 VMSTATE_INT64(dummy, TimersState),
348 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
349 VMSTATE_END_OF_LIST()
350 }
351 };
352
353 void configure_icount(const char *option)
354 {
355 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
356 if (!option) {
357 return;
358 }
359
360 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
361 if (strcmp(option, "auto") != 0) {
362 icount_time_shift = strtol(option, NULL, 0);
363 use_icount = 1;
364 return;
365 }
366
367 use_icount = 2;
368
369 /* 125MIPS seems a reasonable initial guess at the guest speed.
370 It will be corrected fairly quickly anyway. */
371 icount_time_shift = 3;
372
373 /* Have both realtime and virtual time triggers for speed adjustment.
374 The realtime trigger catches emulated time passing too slowly,
375 the virtual time trigger catches emulated time passing too fast.
376 Realtime triggers occur even when idle, so use them less frequently
377 than VM triggers. */
378 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
379 qemu_mod_timer(icount_rt_timer,
380 qemu_get_clock_ms(rt_clock) + 1000);
381 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
382 qemu_mod_timer(icount_vm_timer,
383 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
384 }
385
386 /***********************************************************/
387 void hw_error(const char *fmt, ...)
388 {
389 va_list ap;
390 CPUArchState *env;
391
392 va_start(ap, fmt);
393 fprintf(stderr, "qemu: hardware error: ");
394 vfprintf(stderr, fmt, ap);
395 fprintf(stderr, "\n");
396 for(env = first_cpu; env != NULL; env = env->next_cpu) {
397 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
398 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU);
399 }
400 va_end(ap);
401 abort();
402 }
403
404 void cpu_synchronize_all_states(void)
405 {
406 CPUArchState *cpu;
407
408 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
409 cpu_synchronize_state(cpu);
410 }
411 }
412
413 void cpu_synchronize_all_post_reset(void)
414 {
415 CPUArchState *cpu;
416
417 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
418 cpu_synchronize_post_reset(cpu);
419 }
420 }
421
422 void cpu_synchronize_all_post_init(void)
423 {
424 CPUArchState *cpu;
425
426 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
427 cpu_synchronize_post_init(cpu);
428 }
429 }
430
431 int cpu_is_stopped(CPUArchState *env)
432 {
433 return !runstate_is_running() || env->stopped;
434 }
435
436 static void do_vm_stop(RunState state)
437 {
438 if (runstate_is_running()) {
439 cpu_disable_ticks();
440 pause_all_vcpus();
441 runstate_set(state);
442 vm_state_notify(0, state);
443 bdrv_drain_all();
444 bdrv_flush_all();
445 monitor_protocol_event(QEVENT_STOP, NULL);
446 }
447 }
448
449 static int cpu_can_run(CPUArchState *env)
450 {
451 if (env->stop) {
452 return 0;
453 }
454 if (env->stopped || !runstate_is_running()) {
455 return 0;
456 }
457 return 1;
458 }
459
460 static void cpu_handle_guest_debug(CPUArchState *env)
461 {
462 gdb_set_stop_cpu(env);
463 qemu_system_debug_request();
464 env->stopped = 1;
465 }
466
467 static void cpu_signal(int sig)
468 {
469 if (cpu_single_env) {
470 cpu_exit(cpu_single_env);
471 }
472 exit_request = 1;
473 }
474
475 #ifdef CONFIG_LINUX
476 static void sigbus_reraise(void)
477 {
478 sigset_t set;
479 struct sigaction action;
480
481 memset(&action, 0, sizeof(action));
482 action.sa_handler = SIG_DFL;
483 if (!sigaction(SIGBUS, &action, NULL)) {
484 raise(SIGBUS);
485 sigemptyset(&set);
486 sigaddset(&set, SIGBUS);
487 sigprocmask(SIG_UNBLOCK, &set, NULL);
488 }
489 perror("Failed to re-raise SIGBUS!\n");
490 abort();
491 }
492
493 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
494 void *ctx)
495 {
496 if (kvm_on_sigbus(siginfo->ssi_code,
497 (void *)(intptr_t)siginfo->ssi_addr)) {
498 sigbus_reraise();
499 }
500 }
501
502 static void qemu_init_sigbus(void)
503 {
504 struct sigaction action;
505
506 memset(&action, 0, sizeof(action));
507 action.sa_flags = SA_SIGINFO;
508 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
509 sigaction(SIGBUS, &action, NULL);
510
511 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
512 }
513
514 static void qemu_kvm_eat_signals(CPUArchState *env)
515 {
516 struct timespec ts = { 0, 0 };
517 siginfo_t siginfo;
518 sigset_t waitset;
519 sigset_t chkset;
520 int r;
521
522 sigemptyset(&waitset);
523 sigaddset(&waitset, SIG_IPI);
524 sigaddset(&waitset, SIGBUS);
525
526 do {
527 r = sigtimedwait(&waitset, &siginfo, &ts);
528 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
529 perror("sigtimedwait");
530 exit(1);
531 }
532
533 switch (r) {
534 case SIGBUS:
535 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
536 sigbus_reraise();
537 }
538 break;
539 default:
540 break;
541 }
542
543 r = sigpending(&chkset);
544 if (r == -1) {
545 perror("sigpending");
546 exit(1);
547 }
548 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
549 }
550
551 #else /* !CONFIG_LINUX */
552
553 static void qemu_init_sigbus(void)
554 {
555 }
556
557 static void qemu_kvm_eat_signals(CPUArchState *env)
558 {
559 }
560 #endif /* !CONFIG_LINUX */
561
562 #ifndef _WIN32
563 static void dummy_signal(int sig)
564 {
565 }
566
567 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
568 {
569 int r;
570 sigset_t set;
571 struct sigaction sigact;
572
573 memset(&sigact, 0, sizeof(sigact));
574 sigact.sa_handler = dummy_signal;
575 sigaction(SIG_IPI, &sigact, NULL);
576
577 pthread_sigmask(SIG_BLOCK, NULL, &set);
578 sigdelset(&set, SIG_IPI);
579 sigdelset(&set, SIGBUS);
580 r = kvm_set_signal_mask(env, &set);
581 if (r) {
582 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
583 exit(1);
584 }
585 }
586
587 static void qemu_tcg_init_cpu_signals(void)
588 {
589 sigset_t set;
590 struct sigaction sigact;
591
592 memset(&sigact, 0, sizeof(sigact));
593 sigact.sa_handler = cpu_signal;
594 sigaction(SIG_IPI, &sigact, NULL);
595
596 sigemptyset(&set);
597 sigaddset(&set, SIG_IPI);
598 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
599 }
600
601 #else /* _WIN32 */
602 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
603 {
604 abort();
605 }
606
607 static void qemu_tcg_init_cpu_signals(void)
608 {
609 }
610 #endif /* _WIN32 */
611
612 static QemuMutex qemu_global_mutex;
613 static QemuCond qemu_io_proceeded_cond;
614 static bool iothread_requesting_mutex;
615
616 static QemuThread io_thread;
617
618 static QemuThread *tcg_cpu_thread;
619 static QemuCond *tcg_halt_cond;
620
621 /* cpu creation */
622 static QemuCond qemu_cpu_cond;
623 /* system init */
624 static QemuCond qemu_pause_cond;
625 static QemuCond qemu_work_cond;
626
627 void qemu_init_cpu_loop(void)
628 {
629 qemu_init_sigbus();
630 qemu_cond_init(&qemu_cpu_cond);
631 qemu_cond_init(&qemu_pause_cond);
632 qemu_cond_init(&qemu_work_cond);
633 qemu_cond_init(&qemu_io_proceeded_cond);
634 qemu_mutex_init(&qemu_global_mutex);
635
636 qemu_thread_get_self(&io_thread);
637 }
638
639 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data)
640 {
641 struct qemu_work_item wi;
642
643 if (qemu_cpu_is_self(env)) {
644 func(data);
645 return;
646 }
647
648 wi.func = func;
649 wi.data = data;
650 if (!env->queued_work_first) {
651 env->queued_work_first = &wi;
652 } else {
653 env->queued_work_last->next = &wi;
654 }
655 env->queued_work_last = &wi;
656 wi.next = NULL;
657 wi.done = false;
658
659 qemu_cpu_kick(env);
660 while (!wi.done) {
661 CPUArchState *self_env = cpu_single_env;
662
663 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
664 cpu_single_env = self_env;
665 }
666 }
667
668 static void flush_queued_work(CPUArchState *env)
669 {
670 struct qemu_work_item *wi;
671
672 if (!env->queued_work_first) {
673 return;
674 }
675
676 while ((wi = env->queued_work_first)) {
677 env->queued_work_first = wi->next;
678 wi->func(wi->data);
679 wi->done = true;
680 }
681 env->queued_work_last = NULL;
682 qemu_cond_broadcast(&qemu_work_cond);
683 }
684
685 static void qemu_wait_io_event_common(CPUArchState *env)
686 {
687 CPUState *cpu = ENV_GET_CPU(env);
688
689 if (env->stop) {
690 env->stop = 0;
691 env->stopped = 1;
692 qemu_cond_signal(&qemu_pause_cond);
693 }
694 flush_queued_work(env);
695 cpu->thread_kicked = false;
696 }
697
698 static void qemu_tcg_wait_io_event(void)
699 {
700 CPUArchState *env;
701
702 while (all_cpu_threads_idle()) {
703 /* Start accounting real time to the virtual clock if the CPUs
704 are idle. */
705 qemu_clock_warp(vm_clock);
706 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
707 }
708
709 while (iothread_requesting_mutex) {
710 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
711 }
712
713 for (env = first_cpu; env != NULL; env = env->next_cpu) {
714 qemu_wait_io_event_common(env);
715 }
716 }
717
718 static void qemu_kvm_wait_io_event(CPUArchState *env)
719 {
720 while (cpu_thread_is_idle(env)) {
721 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
722 }
723
724 qemu_kvm_eat_signals(env);
725 qemu_wait_io_event_common(env);
726 }
727
728 static void *qemu_kvm_cpu_thread_fn(void *arg)
729 {
730 CPUArchState *env = arg;
731 CPUState *cpu = ENV_GET_CPU(env);
732 int r;
733
734 qemu_mutex_lock(&qemu_global_mutex);
735 qemu_thread_get_self(cpu->thread);
736 env->thread_id = qemu_get_thread_id();
737 cpu_single_env = env;
738
739 r = kvm_init_vcpu(env);
740 if (r < 0) {
741 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
742 exit(1);
743 }
744
745 qemu_kvm_init_cpu_signals(env);
746
747 /* signal CPU creation */
748 env->created = 1;
749 qemu_cond_signal(&qemu_cpu_cond);
750
751 while (1) {
752 if (cpu_can_run(env)) {
753 r = kvm_cpu_exec(env);
754 if (r == EXCP_DEBUG) {
755 cpu_handle_guest_debug(env);
756 }
757 }
758 qemu_kvm_wait_io_event(env);
759 }
760
761 return NULL;
762 }
763
764 static void *qemu_dummy_cpu_thread_fn(void *arg)
765 {
766 #ifdef _WIN32
767 fprintf(stderr, "qtest is not supported under Windows\n");
768 exit(1);
769 #else
770 CPUArchState *env = arg;
771 CPUState *cpu = ENV_GET_CPU(env);
772 sigset_t waitset;
773 int r;
774
775 qemu_mutex_lock_iothread();
776 qemu_thread_get_self(cpu->thread);
777 env->thread_id = qemu_get_thread_id();
778
779 sigemptyset(&waitset);
780 sigaddset(&waitset, SIG_IPI);
781
782 /* signal CPU creation */
783 env->created = 1;
784 qemu_cond_signal(&qemu_cpu_cond);
785
786 cpu_single_env = env;
787 while (1) {
788 cpu_single_env = NULL;
789 qemu_mutex_unlock_iothread();
790 do {
791 int sig;
792 r = sigwait(&waitset, &sig);
793 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
794 if (r == -1) {
795 perror("sigwait");
796 exit(1);
797 }
798 qemu_mutex_lock_iothread();
799 cpu_single_env = env;
800 qemu_wait_io_event_common(env);
801 }
802
803 return NULL;
804 #endif
805 }
806
807 static void tcg_exec_all(void);
808
809 static void *qemu_tcg_cpu_thread_fn(void *arg)
810 {
811 CPUArchState *env = arg;
812 CPUState *cpu = ENV_GET_CPU(env);
813
814 qemu_tcg_init_cpu_signals();
815 qemu_thread_get_self(cpu->thread);
816
817 /* signal CPU creation */
818 qemu_mutex_lock(&qemu_global_mutex);
819 for (env = first_cpu; env != NULL; env = env->next_cpu) {
820 env->thread_id = qemu_get_thread_id();
821 env->created = 1;
822 }
823 qemu_cond_signal(&qemu_cpu_cond);
824
825 /* wait for initial kick-off after machine start */
826 while (first_cpu->stopped) {
827 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
828
829 /* process any pending work */
830 for (env = first_cpu; env != NULL; env = env->next_cpu) {
831 qemu_wait_io_event_common(env);
832 }
833 }
834
835 while (1) {
836 tcg_exec_all();
837 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
838 qemu_notify_event();
839 }
840 qemu_tcg_wait_io_event();
841 }
842
843 return NULL;
844 }
845
846 static void qemu_cpu_kick_thread(CPUArchState *env)
847 {
848 CPUState *cpu = ENV_GET_CPU(env);
849 #ifndef _WIN32
850 int err;
851
852 err = pthread_kill(cpu->thread->thread, SIG_IPI);
853 if (err) {
854 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
855 exit(1);
856 }
857 #else /* _WIN32 */
858 if (!qemu_cpu_is_self(env)) {
859 SuspendThread(cpu->hThread);
860 cpu_signal(0);
861 ResumeThread(cpu->hThread);
862 }
863 #endif
864 }
865
866 void qemu_cpu_kick(void *_env)
867 {
868 CPUArchState *env = _env;
869 CPUState *cpu = ENV_GET_CPU(env);
870
871 qemu_cond_broadcast(env->halt_cond);
872 if (!tcg_enabled() && !cpu->thread_kicked) {
873 qemu_cpu_kick_thread(env);
874 cpu->thread_kicked = true;
875 }
876 }
877
878 void qemu_cpu_kick_self(void)
879 {
880 #ifndef _WIN32
881 assert(cpu_single_env);
882 CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
883
884 if (!cpu_single_cpu->thread_kicked) {
885 qemu_cpu_kick_thread(cpu_single_env);
886 cpu_single_cpu->thread_kicked = true;
887 }
888 #else
889 abort();
890 #endif
891 }
892
893 int qemu_cpu_is_self(void *_env)
894 {
895 CPUArchState *env = _env;
896 CPUState *cpu = ENV_GET_CPU(env);
897
898 return qemu_thread_is_self(cpu->thread);
899 }
900
901 static bool qemu_in_vcpu_thread(void)
902 {
903 return cpu_single_env && qemu_cpu_is_self(cpu_single_env);
904 }
905
906 void qemu_mutex_lock_iothread(void)
907 {
908 if (!tcg_enabled()) {
909 qemu_mutex_lock(&qemu_global_mutex);
910 } else {
911 iothread_requesting_mutex = true;
912 if (qemu_mutex_trylock(&qemu_global_mutex)) {
913 qemu_cpu_kick_thread(first_cpu);
914 qemu_mutex_lock(&qemu_global_mutex);
915 }
916 iothread_requesting_mutex = false;
917 qemu_cond_broadcast(&qemu_io_proceeded_cond);
918 }
919 }
920
921 void qemu_mutex_unlock_iothread(void)
922 {
923 qemu_mutex_unlock(&qemu_global_mutex);
924 }
925
926 static int all_vcpus_paused(void)
927 {
928 CPUArchState *penv = first_cpu;
929
930 while (penv) {
931 if (!penv->stopped) {
932 return 0;
933 }
934 penv = penv->next_cpu;
935 }
936
937 return 1;
938 }
939
940 void pause_all_vcpus(void)
941 {
942 CPUArchState *penv = first_cpu;
943
944 qemu_clock_enable(vm_clock, false);
945 while (penv) {
946 penv->stop = 1;
947 qemu_cpu_kick(penv);
948 penv = penv->next_cpu;
949 }
950
951 if (qemu_in_vcpu_thread()) {
952 cpu_stop_current();
953 if (!kvm_enabled()) {
954 while (penv) {
955 penv->stop = 0;
956 penv->stopped = 1;
957 penv = penv->next_cpu;
958 }
959 return;
960 }
961 }
962
963 while (!all_vcpus_paused()) {
964 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
965 penv = first_cpu;
966 while (penv) {
967 qemu_cpu_kick(penv);
968 penv = penv->next_cpu;
969 }
970 }
971 }
972
973 void resume_all_vcpus(void)
974 {
975 CPUArchState *penv = first_cpu;
976
977 qemu_clock_enable(vm_clock, true);
978 while (penv) {
979 penv->stop = 0;
980 penv->stopped = 0;
981 qemu_cpu_kick(penv);
982 penv = penv->next_cpu;
983 }
984 }
985
986 static void qemu_tcg_init_vcpu(void *_env)
987 {
988 CPUArchState *env = _env;
989 CPUState *cpu = ENV_GET_CPU(env);
990
991 /* share a single thread for all cpus with TCG */
992 if (!tcg_cpu_thread) {
993 cpu->thread = g_malloc0(sizeof(QemuThread));
994 env->halt_cond = g_malloc0(sizeof(QemuCond));
995 qemu_cond_init(env->halt_cond);
996 tcg_halt_cond = env->halt_cond;
997 qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, env,
998 QEMU_THREAD_JOINABLE);
999 #ifdef _WIN32
1000 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1001 #endif
1002 while (env->created == 0) {
1003 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1004 }
1005 tcg_cpu_thread = cpu->thread;
1006 } else {
1007 cpu->thread = tcg_cpu_thread;
1008 env->halt_cond = tcg_halt_cond;
1009 }
1010 }
1011
1012 static void qemu_kvm_start_vcpu(CPUArchState *env)
1013 {
1014 CPUState *cpu = ENV_GET_CPU(env);
1015
1016 cpu->thread = g_malloc0(sizeof(QemuThread));
1017 env->halt_cond = g_malloc0(sizeof(QemuCond));
1018 qemu_cond_init(env->halt_cond);
1019 qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, env,
1020 QEMU_THREAD_JOINABLE);
1021 while (env->created == 0) {
1022 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1023 }
1024 }
1025
1026 static void qemu_dummy_start_vcpu(CPUArchState *env)
1027 {
1028 CPUState *cpu = ENV_GET_CPU(env);
1029
1030 cpu->thread = g_malloc0(sizeof(QemuThread));
1031 env->halt_cond = g_malloc0(sizeof(QemuCond));
1032 qemu_cond_init(env->halt_cond);
1033 qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, env,
1034 QEMU_THREAD_JOINABLE);
1035 while (env->created == 0) {
1036 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1037 }
1038 }
1039
1040 void qemu_init_vcpu(void *_env)
1041 {
1042 CPUArchState *env = _env;
1043
1044 env->nr_cores = smp_cores;
1045 env->nr_threads = smp_threads;
1046 env->stopped = 1;
1047 if (kvm_enabled()) {
1048 qemu_kvm_start_vcpu(env);
1049 } else if (tcg_enabled()) {
1050 qemu_tcg_init_vcpu(env);
1051 } else {
1052 qemu_dummy_start_vcpu(env);
1053 }
1054 }
1055
1056 void cpu_stop_current(void)
1057 {
1058 if (cpu_single_env) {
1059 cpu_single_env->stop = 0;
1060 cpu_single_env->stopped = 1;
1061 cpu_exit(cpu_single_env);
1062 qemu_cond_signal(&qemu_pause_cond);
1063 }
1064 }
1065
1066 void vm_stop(RunState state)
1067 {
1068 if (qemu_in_vcpu_thread()) {
1069 qemu_system_vmstop_request(state);
1070 /*
1071 * FIXME: should not return to device code in case
1072 * vm_stop() has been requested.
1073 */
1074 cpu_stop_current();
1075 return;
1076 }
1077 do_vm_stop(state);
1078 }
1079
1080 /* does a state transition even if the VM is already stopped,
1081 current state is forgotten forever */
1082 void vm_stop_force_state(RunState state)
1083 {
1084 if (runstate_is_running()) {
1085 vm_stop(state);
1086 } else {
1087 runstate_set(state);
1088 }
1089 }
1090
1091 static int tcg_cpu_exec(CPUArchState *env)
1092 {
1093 int ret;
1094 #ifdef CONFIG_PROFILER
1095 int64_t ti;
1096 #endif
1097
1098 #ifdef CONFIG_PROFILER
1099 ti = profile_getclock();
1100 #endif
1101 if (use_icount) {
1102 int64_t count;
1103 int decr;
1104 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1105 env->icount_decr.u16.low = 0;
1106 env->icount_extra = 0;
1107 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1108 qemu_icount += count;
1109 decr = (count > 0xffff) ? 0xffff : count;
1110 count -= decr;
1111 env->icount_decr.u16.low = decr;
1112 env->icount_extra = count;
1113 }
1114 ret = cpu_exec(env);
1115 #ifdef CONFIG_PROFILER
1116 qemu_time += profile_getclock() - ti;
1117 #endif
1118 if (use_icount) {
1119 /* Fold pending instructions back into the
1120 instruction counter, and clear the interrupt flag. */
1121 qemu_icount -= (env->icount_decr.u16.low
1122 + env->icount_extra);
1123 env->icount_decr.u32 = 0;
1124 env->icount_extra = 0;
1125 }
1126 return ret;
1127 }
1128
1129 static void tcg_exec_all(void)
1130 {
1131 int r;
1132
1133 /* Account partial waits to the vm_clock. */
1134 qemu_clock_warp(vm_clock);
1135
1136 if (next_cpu == NULL) {
1137 next_cpu = first_cpu;
1138 }
1139 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1140 CPUArchState *env = next_cpu;
1141
1142 qemu_clock_enable(vm_clock,
1143 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1144
1145 if (cpu_can_run(env)) {
1146 r = tcg_cpu_exec(env);
1147 if (r == EXCP_DEBUG) {
1148 cpu_handle_guest_debug(env);
1149 break;
1150 }
1151 } else if (env->stop || env->stopped) {
1152 break;
1153 }
1154 }
1155 exit_request = 0;
1156 }
1157
1158 void set_numa_modes(void)
1159 {
1160 CPUArchState *env;
1161 int i;
1162
1163 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1164 for (i = 0; i < nb_numa_nodes; i++) {
1165 if (test_bit(env->cpu_index, node_cpumask[i])) {
1166 env->numa_node = i;
1167 }
1168 }
1169 }
1170 }
1171
1172 void set_cpu_log(const char *optarg)
1173 {
1174 int mask;
1175 const CPULogItem *item;
1176
1177 mask = cpu_str_to_log_mask(optarg);
1178 if (!mask) {
1179 printf("Log items (comma separated):\n");
1180 for (item = cpu_log_items; item->mask != 0; item++) {
1181 printf("%-10s %s\n", item->name, item->help);
1182 }
1183 exit(1);
1184 }
1185 cpu_set_log(mask);
1186 }
1187
1188 void set_cpu_log_filename(const char *optarg)
1189 {
1190 cpu_set_log_filename(optarg);
1191 }
1192
1193 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1194 {
1195 /* XXX: implement xxx_cpu_list for targets that still miss it */
1196 #if defined(cpu_list)
1197 cpu_list(f, cpu_fprintf);
1198 #endif
1199 }
1200
1201 CpuInfoList *qmp_query_cpus(Error **errp)
1202 {
1203 CpuInfoList *head = NULL, *cur_item = NULL;
1204 CPUArchState *env;
1205
1206 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1207 CpuInfoList *info;
1208
1209 cpu_synchronize_state(env);
1210
1211 info = g_malloc0(sizeof(*info));
1212 info->value = g_malloc0(sizeof(*info->value));
1213 info->value->CPU = env->cpu_index;
1214 info->value->current = (env == first_cpu);
1215 info->value->halted = env->halted;
1216 info->value->thread_id = env->thread_id;
1217 #if defined(TARGET_I386)
1218 info->value->has_pc = true;
1219 info->value->pc = env->eip + env->segs[R_CS].base;
1220 #elif defined(TARGET_PPC)
1221 info->value->has_nip = true;
1222 info->value->nip = env->nip;
1223 #elif defined(TARGET_SPARC)
1224 info->value->has_pc = true;
1225 info->value->pc = env->pc;
1226 info->value->has_npc = true;
1227 info->value->npc = env->npc;
1228 #elif defined(TARGET_MIPS)
1229 info->value->has_PC = true;
1230 info->value->PC = env->active_tc.PC;
1231 #endif
1232
1233 /* XXX: waiting for the qapi to support GSList */
1234 if (!cur_item) {
1235 head = cur_item = info;
1236 } else {
1237 cur_item->next = info;
1238 cur_item = info;
1239 }
1240 }
1241
1242 return head;
1243 }
1244
1245 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1246 bool has_cpu, int64_t cpu_index, Error **errp)
1247 {
1248 FILE *f;
1249 uint32_t l;
1250 CPUArchState *env;
1251 uint8_t buf[1024];
1252
1253 if (!has_cpu) {
1254 cpu_index = 0;
1255 }
1256
1257 for (env = first_cpu; env; env = env->next_cpu) {
1258 if (cpu_index == env->cpu_index) {
1259 break;
1260 }
1261 }
1262
1263 if (env == NULL) {
1264 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1265 "a CPU number");
1266 return;
1267 }
1268
1269 f = fopen(filename, "wb");
1270 if (!f) {
1271 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1272 return;
1273 }
1274
1275 while (size != 0) {
1276 l = sizeof(buf);
1277 if (l > size)
1278 l = size;
1279 cpu_memory_rw_debug(env, addr, buf, l, 0);
1280 if (fwrite(buf, 1, l, f) != l) {
1281 error_set(errp, QERR_IO_ERROR);
1282 goto exit;
1283 }
1284 addr += l;
1285 size -= l;
1286 }
1287
1288 exit:
1289 fclose(f);
1290 }
1291
1292 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1293 Error **errp)
1294 {
1295 FILE *f;
1296 uint32_t l;
1297 uint8_t buf[1024];
1298
1299 f = fopen(filename, "wb");
1300 if (!f) {
1301 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1302 return;
1303 }
1304
1305 while (size != 0) {
1306 l = sizeof(buf);
1307 if (l > size)
1308 l = size;
1309 cpu_physical_memory_rw(addr, buf, l, 0);
1310 if (fwrite(buf, 1, l, f) != l) {
1311 error_set(errp, QERR_IO_ERROR);
1312 goto exit;
1313 }
1314 addr += l;
1315 size -= l;
1316 }
1317
1318 exit:
1319 fclose(f);
1320 }
1321
1322 void qmp_inject_nmi(Error **errp)
1323 {
1324 #if defined(TARGET_I386)
1325 CPUArchState *env;
1326
1327 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1328 if (!env->apic_state) {
1329 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1330 } else {
1331 apic_deliver_nmi(env->apic_state);
1332 }
1333 }
1334 #else
1335 error_set(errp, QERR_UNSUPPORTED);
1336 #endif
1337 }