]> git.proxmox.com Git - qemu.git/blob - cpus.c
Merge remote-tracking branch 'kwolf/for-anthony' into staging
[qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "qmp-commands.h"
34
35 #include "qemu-thread.h"
36 #include "cpus.h"
37 #include "qtest.h"
38 #include "main-loop.h"
39
40 #ifndef _WIN32
41 #include "compatfd.h"
42 #endif
43
44 #ifdef CONFIG_LINUX
45
46 #include <sys/prctl.h>
47
48 #ifndef PR_MCE_KILL
49 #define PR_MCE_KILL 33
50 #endif
51
52 #ifndef PR_MCE_KILL_SET
53 #define PR_MCE_KILL_SET 1
54 #endif
55
56 #ifndef PR_MCE_KILL_EARLY
57 #define PR_MCE_KILL_EARLY 1
58 #endif
59
60 #endif /* CONFIG_LINUX */
61
62 static CPUArchState *next_cpu;
63
64 /***********************************************************/
65 /* guest cycle counter */
66
67 /* Conversion factor from emulated instructions to virtual clock ticks. */
68 static int icount_time_shift;
69 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
70 #define MAX_ICOUNT_SHIFT 10
71 /* Compensate for varying guest execution speed. */
72 static int64_t qemu_icount_bias;
73 static QEMUTimer *icount_rt_timer;
74 static QEMUTimer *icount_vm_timer;
75 static QEMUTimer *icount_warp_timer;
76 static int64_t vm_clock_warp_start;
77 static int64_t qemu_icount;
78
79 typedef struct TimersState {
80 int64_t cpu_ticks_prev;
81 int64_t cpu_ticks_offset;
82 int64_t cpu_clock_offset;
83 int32_t cpu_ticks_enabled;
84 int64_t dummy;
85 } TimersState;
86
87 TimersState timers_state;
88
89 /* Return the virtual CPU time, based on the instruction counter. */
90 int64_t cpu_get_icount(void)
91 {
92 int64_t icount;
93 CPUArchState *env = cpu_single_env;
94
95 icount = qemu_icount;
96 if (env) {
97 if (!can_do_io(env)) {
98 fprintf(stderr, "Bad clock read\n");
99 }
100 icount -= (env->icount_decr.u16.low + env->icount_extra);
101 }
102 return qemu_icount_bias + (icount << icount_time_shift);
103 }
104
105 /* return the host CPU cycle counter and handle stop/restart */
106 int64_t cpu_get_ticks(void)
107 {
108 if (use_icount) {
109 return cpu_get_icount();
110 }
111 if (!timers_state.cpu_ticks_enabled) {
112 return timers_state.cpu_ticks_offset;
113 } else {
114 int64_t ticks;
115 ticks = cpu_get_real_ticks();
116 if (timers_state.cpu_ticks_prev > ticks) {
117 /* Note: non increasing ticks may happen if the host uses
118 software suspend */
119 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
120 }
121 timers_state.cpu_ticks_prev = ticks;
122 return ticks + timers_state.cpu_ticks_offset;
123 }
124 }
125
126 /* return the host CPU monotonic timer and handle stop/restart */
127 int64_t cpu_get_clock(void)
128 {
129 int64_t ti;
130 if (!timers_state.cpu_ticks_enabled) {
131 return timers_state.cpu_clock_offset;
132 } else {
133 ti = get_clock();
134 return ti + timers_state.cpu_clock_offset;
135 }
136 }
137
138 /* enable cpu_get_ticks() */
139 void cpu_enable_ticks(void)
140 {
141 if (!timers_state.cpu_ticks_enabled) {
142 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
143 timers_state.cpu_clock_offset -= get_clock();
144 timers_state.cpu_ticks_enabled = 1;
145 }
146 }
147
148 /* disable cpu_get_ticks() : the clock is stopped. You must not call
149 cpu_get_ticks() after that. */
150 void cpu_disable_ticks(void)
151 {
152 if (timers_state.cpu_ticks_enabled) {
153 timers_state.cpu_ticks_offset = cpu_get_ticks();
154 timers_state.cpu_clock_offset = cpu_get_clock();
155 timers_state.cpu_ticks_enabled = 0;
156 }
157 }
158
159 /* Correlation between real and virtual time is always going to be
160 fairly approximate, so ignore small variation.
161 When the guest is idle real and virtual time will be aligned in
162 the IO wait loop. */
163 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
164
165 static void icount_adjust(void)
166 {
167 int64_t cur_time;
168 int64_t cur_icount;
169 int64_t delta;
170 static int64_t last_delta;
171 /* If the VM is not running, then do nothing. */
172 if (!runstate_is_running()) {
173 return;
174 }
175 cur_time = cpu_get_clock();
176 cur_icount = qemu_get_clock_ns(vm_clock);
177 delta = cur_icount - cur_time;
178 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
179 if (delta > 0
180 && last_delta + ICOUNT_WOBBLE < delta * 2
181 && icount_time_shift > 0) {
182 /* The guest is getting too far ahead. Slow time down. */
183 icount_time_shift--;
184 }
185 if (delta < 0
186 && last_delta - ICOUNT_WOBBLE > delta * 2
187 && icount_time_shift < MAX_ICOUNT_SHIFT) {
188 /* The guest is getting too far behind. Speed time up. */
189 icount_time_shift++;
190 }
191 last_delta = delta;
192 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
193 }
194
195 static void icount_adjust_rt(void *opaque)
196 {
197 qemu_mod_timer(icount_rt_timer,
198 qemu_get_clock_ms(rt_clock) + 1000);
199 icount_adjust();
200 }
201
202 static void icount_adjust_vm(void *opaque)
203 {
204 qemu_mod_timer(icount_vm_timer,
205 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
206 icount_adjust();
207 }
208
209 static int64_t qemu_icount_round(int64_t count)
210 {
211 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
212 }
213
214 static void icount_warp_rt(void *opaque)
215 {
216 if (vm_clock_warp_start == -1) {
217 return;
218 }
219
220 if (runstate_is_running()) {
221 int64_t clock = qemu_get_clock_ns(rt_clock);
222 int64_t warp_delta = clock - vm_clock_warp_start;
223 if (use_icount == 1) {
224 qemu_icount_bias += warp_delta;
225 } else {
226 /*
227 * In adaptive mode, do not let the vm_clock run too
228 * far ahead of real time.
229 */
230 int64_t cur_time = cpu_get_clock();
231 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
232 int64_t delta = cur_time - cur_icount;
233 qemu_icount_bias += MIN(warp_delta, delta);
234 }
235 if (qemu_clock_expired(vm_clock)) {
236 qemu_notify_event();
237 }
238 }
239 vm_clock_warp_start = -1;
240 }
241
242 void qtest_clock_warp(int64_t dest)
243 {
244 int64_t clock = qemu_get_clock_ns(vm_clock);
245 assert(qtest_enabled());
246 while (clock < dest) {
247 int64_t deadline = qemu_clock_deadline(vm_clock);
248 int64_t warp = MIN(dest - clock, deadline);
249 qemu_icount_bias += warp;
250 qemu_run_timers(vm_clock);
251 clock = qemu_get_clock_ns(vm_clock);
252 }
253 qemu_notify_event();
254 }
255
256 void qemu_clock_warp(QEMUClock *clock)
257 {
258 int64_t deadline;
259
260 /*
261 * There are too many global variables to make the "warp" behavior
262 * applicable to other clocks. But a clock argument removes the
263 * need for if statements all over the place.
264 */
265 if (clock != vm_clock || !use_icount) {
266 return;
267 }
268
269 /*
270 * If the CPUs have been sleeping, advance the vm_clock timer now. This
271 * ensures that the deadline for the timer is computed correctly below.
272 * This also makes sure that the insn counter is synchronized before the
273 * CPU starts running, in case the CPU is woken by an event other than
274 * the earliest vm_clock timer.
275 */
276 icount_warp_rt(NULL);
277 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
278 qemu_del_timer(icount_warp_timer);
279 return;
280 }
281
282 if (qtest_enabled()) {
283 /* When testing, qtest commands advance icount. */
284 return;
285 }
286
287 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
288 deadline = qemu_clock_deadline(vm_clock);
289 if (deadline > 0) {
290 /*
291 * Ensure the vm_clock proceeds even when the virtual CPU goes to
292 * sleep. Otherwise, the CPU might be waiting for a future timer
293 * interrupt to wake it up, but the interrupt never comes because
294 * the vCPU isn't running any insns and thus doesn't advance the
295 * vm_clock.
296 *
297 * An extreme solution for this problem would be to never let VCPUs
298 * sleep in icount mode if there is a pending vm_clock timer; rather
299 * time could just advance to the next vm_clock event. Instead, we
300 * do stop VCPUs and only advance vm_clock after some "real" time,
301 * (related to the time left until the next event) has passed. This
302 * rt_clock timer will do this. This avoids that the warps are too
303 * visible externally---for example, you will not be sending network
304 * packets continuously instead of every 100ms.
305 */
306 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
307 } else {
308 qemu_notify_event();
309 }
310 }
311
312 static const VMStateDescription vmstate_timers = {
313 .name = "timer",
314 .version_id = 2,
315 .minimum_version_id = 1,
316 .minimum_version_id_old = 1,
317 .fields = (VMStateField[]) {
318 VMSTATE_INT64(cpu_ticks_offset, TimersState),
319 VMSTATE_INT64(dummy, TimersState),
320 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
321 VMSTATE_END_OF_LIST()
322 }
323 };
324
325 void configure_icount(const char *option)
326 {
327 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
328 if (!option) {
329 return;
330 }
331
332 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
333 if (strcmp(option, "auto") != 0) {
334 icount_time_shift = strtol(option, NULL, 0);
335 use_icount = 1;
336 return;
337 }
338
339 use_icount = 2;
340
341 /* 125MIPS seems a reasonable initial guess at the guest speed.
342 It will be corrected fairly quickly anyway. */
343 icount_time_shift = 3;
344
345 /* Have both realtime and virtual time triggers for speed adjustment.
346 The realtime trigger catches emulated time passing too slowly,
347 the virtual time trigger catches emulated time passing too fast.
348 Realtime triggers occur even when idle, so use them less frequently
349 than VM triggers. */
350 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
351 qemu_mod_timer(icount_rt_timer,
352 qemu_get_clock_ms(rt_clock) + 1000);
353 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
354 qemu_mod_timer(icount_vm_timer,
355 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
356 }
357
358 /***********************************************************/
359 void hw_error(const char *fmt, ...)
360 {
361 va_list ap;
362 CPUArchState *env;
363
364 va_start(ap, fmt);
365 fprintf(stderr, "qemu: hardware error: ");
366 vfprintf(stderr, fmt, ap);
367 fprintf(stderr, "\n");
368 for(env = first_cpu; env != NULL; env = env->next_cpu) {
369 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
370 #ifdef TARGET_I386
371 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
372 #else
373 cpu_dump_state(env, stderr, fprintf, 0);
374 #endif
375 }
376 va_end(ap);
377 abort();
378 }
379
380 void cpu_synchronize_all_states(void)
381 {
382 CPUArchState *cpu;
383
384 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
385 cpu_synchronize_state(cpu);
386 }
387 }
388
389 void cpu_synchronize_all_post_reset(void)
390 {
391 CPUArchState *cpu;
392
393 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
394 cpu_synchronize_post_reset(cpu);
395 }
396 }
397
398 void cpu_synchronize_all_post_init(void)
399 {
400 CPUArchState *cpu;
401
402 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
403 cpu_synchronize_post_init(cpu);
404 }
405 }
406
407 int cpu_is_stopped(CPUArchState *env)
408 {
409 return !runstate_is_running() || env->stopped;
410 }
411
412 static void do_vm_stop(RunState state)
413 {
414 if (runstate_is_running()) {
415 cpu_disable_ticks();
416 pause_all_vcpus();
417 runstate_set(state);
418 vm_state_notify(0, state);
419 bdrv_drain_all();
420 bdrv_flush_all();
421 monitor_protocol_event(QEVENT_STOP, NULL);
422 }
423 }
424
425 static int cpu_can_run(CPUArchState *env)
426 {
427 if (env->stop) {
428 return 0;
429 }
430 if (env->stopped || !runstate_is_running()) {
431 return 0;
432 }
433 return 1;
434 }
435
436 static bool cpu_thread_is_idle(CPUArchState *env)
437 {
438 if (env->stop || env->queued_work_first) {
439 return false;
440 }
441 if (env->stopped || !runstate_is_running()) {
442 return true;
443 }
444 if (!env->halted || qemu_cpu_has_work(env) ||
445 (kvm_enabled() && kvm_irqchip_in_kernel())) {
446 return false;
447 }
448 return true;
449 }
450
451 bool all_cpu_threads_idle(void)
452 {
453 CPUArchState *env;
454
455 for (env = first_cpu; env != NULL; env = env->next_cpu) {
456 if (!cpu_thread_is_idle(env)) {
457 return false;
458 }
459 }
460 return true;
461 }
462
463 static void cpu_handle_guest_debug(CPUArchState *env)
464 {
465 gdb_set_stop_cpu(env);
466 qemu_system_debug_request();
467 env->stopped = 1;
468 }
469
470 static void cpu_signal(int sig)
471 {
472 if (cpu_single_env) {
473 cpu_exit(cpu_single_env);
474 }
475 exit_request = 1;
476 }
477
478 #ifdef CONFIG_LINUX
479 static void sigbus_reraise(void)
480 {
481 sigset_t set;
482 struct sigaction action;
483
484 memset(&action, 0, sizeof(action));
485 action.sa_handler = SIG_DFL;
486 if (!sigaction(SIGBUS, &action, NULL)) {
487 raise(SIGBUS);
488 sigemptyset(&set);
489 sigaddset(&set, SIGBUS);
490 sigprocmask(SIG_UNBLOCK, &set, NULL);
491 }
492 perror("Failed to re-raise SIGBUS!\n");
493 abort();
494 }
495
496 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
497 void *ctx)
498 {
499 if (kvm_on_sigbus(siginfo->ssi_code,
500 (void *)(intptr_t)siginfo->ssi_addr)) {
501 sigbus_reraise();
502 }
503 }
504
505 static void qemu_init_sigbus(void)
506 {
507 struct sigaction action;
508
509 memset(&action, 0, sizeof(action));
510 action.sa_flags = SA_SIGINFO;
511 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
512 sigaction(SIGBUS, &action, NULL);
513
514 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
515 }
516
517 static void qemu_kvm_eat_signals(CPUArchState *env)
518 {
519 struct timespec ts = { 0, 0 };
520 siginfo_t siginfo;
521 sigset_t waitset;
522 sigset_t chkset;
523 int r;
524
525 sigemptyset(&waitset);
526 sigaddset(&waitset, SIG_IPI);
527 sigaddset(&waitset, SIGBUS);
528
529 do {
530 r = sigtimedwait(&waitset, &siginfo, &ts);
531 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
532 perror("sigtimedwait");
533 exit(1);
534 }
535
536 switch (r) {
537 case SIGBUS:
538 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
539 sigbus_reraise();
540 }
541 break;
542 default:
543 break;
544 }
545
546 r = sigpending(&chkset);
547 if (r == -1) {
548 perror("sigpending");
549 exit(1);
550 }
551 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
552 }
553
554 #else /* !CONFIG_LINUX */
555
556 static void qemu_init_sigbus(void)
557 {
558 }
559
560 static void qemu_kvm_eat_signals(CPUArchState *env)
561 {
562 }
563 #endif /* !CONFIG_LINUX */
564
565 #ifndef _WIN32
566 static void dummy_signal(int sig)
567 {
568 }
569
570 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
571 {
572 int r;
573 sigset_t set;
574 struct sigaction sigact;
575
576 memset(&sigact, 0, sizeof(sigact));
577 sigact.sa_handler = dummy_signal;
578 sigaction(SIG_IPI, &sigact, NULL);
579
580 pthread_sigmask(SIG_BLOCK, NULL, &set);
581 sigdelset(&set, SIG_IPI);
582 sigdelset(&set, SIGBUS);
583 r = kvm_set_signal_mask(env, &set);
584 if (r) {
585 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
586 exit(1);
587 }
588 }
589
590 static void qemu_tcg_init_cpu_signals(void)
591 {
592 sigset_t set;
593 struct sigaction sigact;
594
595 memset(&sigact, 0, sizeof(sigact));
596 sigact.sa_handler = cpu_signal;
597 sigaction(SIG_IPI, &sigact, NULL);
598
599 sigemptyset(&set);
600 sigaddset(&set, SIG_IPI);
601 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
602 }
603
604 #else /* _WIN32 */
605 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
606 {
607 abort();
608 }
609
610 static void qemu_tcg_init_cpu_signals(void)
611 {
612 }
613 #endif /* _WIN32 */
614
615 QemuMutex qemu_global_mutex;
616 static QemuCond qemu_io_proceeded_cond;
617 static bool iothread_requesting_mutex;
618
619 static QemuThread io_thread;
620
621 static QemuThread *tcg_cpu_thread;
622 static QemuCond *tcg_halt_cond;
623
624 /* cpu creation */
625 static QemuCond qemu_cpu_cond;
626 /* system init */
627 static QemuCond qemu_pause_cond;
628 static QemuCond qemu_work_cond;
629
630 void qemu_init_cpu_loop(void)
631 {
632 qemu_init_sigbus();
633 qemu_cond_init(&qemu_cpu_cond);
634 qemu_cond_init(&qemu_pause_cond);
635 qemu_cond_init(&qemu_work_cond);
636 qemu_cond_init(&qemu_io_proceeded_cond);
637 qemu_mutex_init(&qemu_global_mutex);
638
639 qemu_thread_get_self(&io_thread);
640 }
641
642 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data)
643 {
644 struct qemu_work_item wi;
645
646 if (qemu_cpu_is_self(env)) {
647 func(data);
648 return;
649 }
650
651 wi.func = func;
652 wi.data = data;
653 if (!env->queued_work_first) {
654 env->queued_work_first = &wi;
655 } else {
656 env->queued_work_last->next = &wi;
657 }
658 env->queued_work_last = &wi;
659 wi.next = NULL;
660 wi.done = false;
661
662 qemu_cpu_kick(env);
663 while (!wi.done) {
664 CPUArchState *self_env = cpu_single_env;
665
666 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
667 cpu_single_env = self_env;
668 }
669 }
670
671 static void flush_queued_work(CPUArchState *env)
672 {
673 struct qemu_work_item *wi;
674
675 if (!env->queued_work_first) {
676 return;
677 }
678
679 while ((wi = env->queued_work_first)) {
680 env->queued_work_first = wi->next;
681 wi->func(wi->data);
682 wi->done = true;
683 }
684 env->queued_work_last = NULL;
685 qemu_cond_broadcast(&qemu_work_cond);
686 }
687
688 static void qemu_wait_io_event_common(CPUArchState *env)
689 {
690 if (env->stop) {
691 env->stop = 0;
692 env->stopped = 1;
693 qemu_cond_signal(&qemu_pause_cond);
694 }
695 flush_queued_work(env);
696 env->thread_kicked = false;
697 }
698
699 static void qemu_tcg_wait_io_event(void)
700 {
701 CPUArchState *env;
702
703 while (all_cpu_threads_idle()) {
704 /* Start accounting real time to the virtual clock if the CPUs
705 are idle. */
706 qemu_clock_warp(vm_clock);
707 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
708 }
709
710 while (iothread_requesting_mutex) {
711 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
712 }
713
714 for (env = first_cpu; env != NULL; env = env->next_cpu) {
715 qemu_wait_io_event_common(env);
716 }
717 }
718
719 static void qemu_kvm_wait_io_event(CPUArchState *env)
720 {
721 while (cpu_thread_is_idle(env)) {
722 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
723 }
724
725 qemu_kvm_eat_signals(env);
726 qemu_wait_io_event_common(env);
727 }
728
729 static void *qemu_kvm_cpu_thread_fn(void *arg)
730 {
731 CPUArchState *env = arg;
732 int r;
733
734 qemu_mutex_lock(&qemu_global_mutex);
735 qemu_thread_get_self(env->thread);
736 env->thread_id = qemu_get_thread_id();
737 cpu_single_env = env;
738
739 r = kvm_init_vcpu(env);
740 if (r < 0) {
741 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
742 exit(1);
743 }
744
745 qemu_kvm_init_cpu_signals(env);
746
747 /* signal CPU creation */
748 env->created = 1;
749 qemu_cond_signal(&qemu_cpu_cond);
750
751 while (1) {
752 if (cpu_can_run(env)) {
753 r = kvm_cpu_exec(env);
754 if (r == EXCP_DEBUG) {
755 cpu_handle_guest_debug(env);
756 }
757 }
758 qemu_kvm_wait_io_event(env);
759 }
760
761 return NULL;
762 }
763
764 static void *qemu_dummy_cpu_thread_fn(void *arg)
765 {
766 #ifdef _WIN32
767 fprintf(stderr, "qtest is not supported under Windows\n");
768 exit(1);
769 #else
770 CPUArchState *env = arg;
771 sigset_t waitset;
772 int r;
773
774 qemu_mutex_lock_iothread();
775 qemu_thread_get_self(env->thread);
776 env->thread_id = qemu_get_thread_id();
777
778 sigemptyset(&waitset);
779 sigaddset(&waitset, SIG_IPI);
780
781 /* signal CPU creation */
782 env->created = 1;
783 qemu_cond_signal(&qemu_cpu_cond);
784
785 cpu_single_env = env;
786 while (1) {
787 cpu_single_env = NULL;
788 qemu_mutex_unlock_iothread();
789 do {
790 int sig;
791 r = sigwait(&waitset, &sig);
792 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
793 if (r == -1) {
794 perror("sigwait");
795 exit(1);
796 }
797 qemu_mutex_lock_iothread();
798 cpu_single_env = env;
799 qemu_wait_io_event_common(env);
800 }
801
802 return NULL;
803 #endif
804 }
805
806 static void tcg_exec_all(void);
807
808 static void *qemu_tcg_cpu_thread_fn(void *arg)
809 {
810 CPUArchState *env = arg;
811
812 qemu_tcg_init_cpu_signals();
813 qemu_thread_get_self(env->thread);
814
815 /* signal CPU creation */
816 qemu_mutex_lock(&qemu_global_mutex);
817 for (env = first_cpu; env != NULL; env = env->next_cpu) {
818 env->thread_id = qemu_get_thread_id();
819 env->created = 1;
820 }
821 qemu_cond_signal(&qemu_cpu_cond);
822
823 /* wait for initial kick-off after machine start */
824 while (first_cpu->stopped) {
825 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
826
827 /* process any pending work */
828 for (env = first_cpu; env != NULL; env = env->next_cpu) {
829 qemu_wait_io_event_common(env);
830 }
831 }
832
833 while (1) {
834 tcg_exec_all();
835 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
836 qemu_notify_event();
837 }
838 qemu_tcg_wait_io_event();
839 }
840
841 return NULL;
842 }
843
844 static void qemu_cpu_kick_thread(CPUArchState *env)
845 {
846 #ifndef _WIN32
847 int err;
848
849 err = pthread_kill(env->thread->thread, SIG_IPI);
850 if (err) {
851 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
852 exit(1);
853 }
854 #else /* _WIN32 */
855 if (!qemu_cpu_is_self(env)) {
856 SuspendThread(env->hThread);
857 cpu_signal(0);
858 ResumeThread(env->hThread);
859 }
860 #endif
861 }
862
863 void qemu_cpu_kick(void *_env)
864 {
865 CPUArchState *env = _env;
866
867 qemu_cond_broadcast(env->halt_cond);
868 if (!tcg_enabled() && !env->thread_kicked) {
869 qemu_cpu_kick_thread(env);
870 env->thread_kicked = true;
871 }
872 }
873
874 void qemu_cpu_kick_self(void)
875 {
876 #ifndef _WIN32
877 assert(cpu_single_env);
878
879 if (!cpu_single_env->thread_kicked) {
880 qemu_cpu_kick_thread(cpu_single_env);
881 cpu_single_env->thread_kicked = true;
882 }
883 #else
884 abort();
885 #endif
886 }
887
888 int qemu_cpu_is_self(void *_env)
889 {
890 CPUArchState *env = _env;
891
892 return qemu_thread_is_self(env->thread);
893 }
894
895 void qemu_mutex_lock_iothread(void)
896 {
897 if (!tcg_enabled()) {
898 qemu_mutex_lock(&qemu_global_mutex);
899 } else {
900 iothread_requesting_mutex = true;
901 if (qemu_mutex_trylock(&qemu_global_mutex)) {
902 qemu_cpu_kick_thread(first_cpu);
903 qemu_mutex_lock(&qemu_global_mutex);
904 }
905 iothread_requesting_mutex = false;
906 qemu_cond_broadcast(&qemu_io_proceeded_cond);
907 }
908 }
909
910 void qemu_mutex_unlock_iothread(void)
911 {
912 qemu_mutex_unlock(&qemu_global_mutex);
913 }
914
915 static int all_vcpus_paused(void)
916 {
917 CPUArchState *penv = first_cpu;
918
919 while (penv) {
920 if (!penv->stopped) {
921 return 0;
922 }
923 penv = penv->next_cpu;
924 }
925
926 return 1;
927 }
928
929 void pause_all_vcpus(void)
930 {
931 CPUArchState *penv = first_cpu;
932
933 qemu_clock_enable(vm_clock, false);
934 while (penv) {
935 penv->stop = 1;
936 qemu_cpu_kick(penv);
937 penv = penv->next_cpu;
938 }
939
940 if (!qemu_thread_is_self(&io_thread)) {
941 cpu_stop_current();
942 if (!kvm_enabled()) {
943 while (penv) {
944 penv->stop = 0;
945 penv->stopped = 1;
946 penv = penv->next_cpu;
947 }
948 return;
949 }
950 }
951
952 while (!all_vcpus_paused()) {
953 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
954 penv = first_cpu;
955 while (penv) {
956 qemu_cpu_kick(penv);
957 penv = penv->next_cpu;
958 }
959 }
960 }
961
962 void resume_all_vcpus(void)
963 {
964 CPUArchState *penv = first_cpu;
965
966 qemu_clock_enable(vm_clock, true);
967 while (penv) {
968 penv->stop = 0;
969 penv->stopped = 0;
970 qemu_cpu_kick(penv);
971 penv = penv->next_cpu;
972 }
973 }
974
975 static void qemu_tcg_init_vcpu(void *_env)
976 {
977 CPUArchState *env = _env;
978
979 /* share a single thread for all cpus with TCG */
980 if (!tcg_cpu_thread) {
981 env->thread = g_malloc0(sizeof(QemuThread));
982 env->halt_cond = g_malloc0(sizeof(QemuCond));
983 qemu_cond_init(env->halt_cond);
984 tcg_halt_cond = env->halt_cond;
985 qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env,
986 QEMU_THREAD_JOINABLE);
987 #ifdef _WIN32
988 env->hThread = qemu_thread_get_handle(env->thread);
989 #endif
990 while (env->created == 0) {
991 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
992 }
993 tcg_cpu_thread = env->thread;
994 } else {
995 env->thread = tcg_cpu_thread;
996 env->halt_cond = tcg_halt_cond;
997 }
998 }
999
1000 static void qemu_kvm_start_vcpu(CPUArchState *env)
1001 {
1002 env->thread = g_malloc0(sizeof(QemuThread));
1003 env->halt_cond = g_malloc0(sizeof(QemuCond));
1004 qemu_cond_init(env->halt_cond);
1005 qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env,
1006 QEMU_THREAD_JOINABLE);
1007 while (env->created == 0) {
1008 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1009 }
1010 }
1011
1012 static void qemu_dummy_start_vcpu(CPUArchState *env)
1013 {
1014 env->thread = g_malloc0(sizeof(QemuThread));
1015 env->halt_cond = g_malloc0(sizeof(QemuCond));
1016 qemu_cond_init(env->halt_cond);
1017 qemu_thread_create(env->thread, qemu_dummy_cpu_thread_fn, env,
1018 QEMU_THREAD_JOINABLE);
1019 while (env->created == 0) {
1020 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1021 }
1022 }
1023
1024 void qemu_init_vcpu(void *_env)
1025 {
1026 CPUArchState *env = _env;
1027
1028 env->nr_cores = smp_cores;
1029 env->nr_threads = smp_threads;
1030 env->stopped = 1;
1031 if (kvm_enabled()) {
1032 qemu_kvm_start_vcpu(env);
1033 } else if (tcg_enabled()) {
1034 qemu_tcg_init_vcpu(env);
1035 } else {
1036 qemu_dummy_start_vcpu(env);
1037 }
1038 }
1039
1040 void cpu_stop_current(void)
1041 {
1042 if (cpu_single_env) {
1043 cpu_single_env->stop = 0;
1044 cpu_single_env->stopped = 1;
1045 cpu_exit(cpu_single_env);
1046 qemu_cond_signal(&qemu_pause_cond);
1047 }
1048 }
1049
1050 void vm_stop(RunState state)
1051 {
1052 if (!qemu_thread_is_self(&io_thread)) {
1053 qemu_system_vmstop_request(state);
1054 /*
1055 * FIXME: should not return to device code in case
1056 * vm_stop() has been requested.
1057 */
1058 cpu_stop_current();
1059 return;
1060 }
1061 do_vm_stop(state);
1062 }
1063
1064 /* does a state transition even if the VM is already stopped,
1065 current state is forgotten forever */
1066 void vm_stop_force_state(RunState state)
1067 {
1068 if (runstate_is_running()) {
1069 vm_stop(state);
1070 } else {
1071 runstate_set(state);
1072 }
1073 }
1074
1075 static int tcg_cpu_exec(CPUArchState *env)
1076 {
1077 int ret;
1078 #ifdef CONFIG_PROFILER
1079 int64_t ti;
1080 #endif
1081
1082 #ifdef CONFIG_PROFILER
1083 ti = profile_getclock();
1084 #endif
1085 if (use_icount) {
1086 int64_t count;
1087 int decr;
1088 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1089 env->icount_decr.u16.low = 0;
1090 env->icount_extra = 0;
1091 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1092 qemu_icount += count;
1093 decr = (count > 0xffff) ? 0xffff : count;
1094 count -= decr;
1095 env->icount_decr.u16.low = decr;
1096 env->icount_extra = count;
1097 }
1098 ret = cpu_exec(env);
1099 #ifdef CONFIG_PROFILER
1100 qemu_time += profile_getclock() - ti;
1101 #endif
1102 if (use_icount) {
1103 /* Fold pending instructions back into the
1104 instruction counter, and clear the interrupt flag. */
1105 qemu_icount -= (env->icount_decr.u16.low
1106 + env->icount_extra);
1107 env->icount_decr.u32 = 0;
1108 env->icount_extra = 0;
1109 }
1110 return ret;
1111 }
1112
1113 static void tcg_exec_all(void)
1114 {
1115 int r;
1116
1117 /* Account partial waits to the vm_clock. */
1118 qemu_clock_warp(vm_clock);
1119
1120 if (next_cpu == NULL) {
1121 next_cpu = first_cpu;
1122 }
1123 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1124 CPUArchState *env = next_cpu;
1125
1126 qemu_clock_enable(vm_clock,
1127 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1128
1129 if (cpu_can_run(env)) {
1130 r = tcg_cpu_exec(env);
1131 if (r == EXCP_DEBUG) {
1132 cpu_handle_guest_debug(env);
1133 break;
1134 }
1135 } else if (env->stop || env->stopped) {
1136 break;
1137 }
1138 }
1139 exit_request = 0;
1140 }
1141
1142 void set_numa_modes(void)
1143 {
1144 CPUArchState *env;
1145 int i;
1146
1147 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1148 for (i = 0; i < nb_numa_nodes; i++) {
1149 if (node_cpumask[i] & (1 << env->cpu_index)) {
1150 env->numa_node = i;
1151 }
1152 }
1153 }
1154 }
1155
1156 void set_cpu_log(const char *optarg)
1157 {
1158 int mask;
1159 const CPULogItem *item;
1160
1161 mask = cpu_str_to_log_mask(optarg);
1162 if (!mask) {
1163 printf("Log items (comma separated):\n");
1164 for (item = cpu_log_items; item->mask != 0; item++) {
1165 printf("%-10s %s\n", item->name, item->help);
1166 }
1167 exit(1);
1168 }
1169 cpu_set_log(mask);
1170 }
1171
1172 void set_cpu_log_filename(const char *optarg)
1173 {
1174 cpu_set_log_filename(optarg);
1175 }
1176
1177 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1178 {
1179 /* XXX: implement xxx_cpu_list for targets that still miss it */
1180 #if defined(cpu_list_id)
1181 cpu_list_id(f, cpu_fprintf, optarg);
1182 #elif defined(cpu_list)
1183 cpu_list(f, cpu_fprintf); /* deprecated */
1184 #endif
1185 }
1186
1187 CpuInfoList *qmp_query_cpus(Error **errp)
1188 {
1189 CpuInfoList *head = NULL, *cur_item = NULL;
1190 CPUArchState *env;
1191
1192 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1193 CpuInfoList *info;
1194
1195 cpu_synchronize_state(env);
1196
1197 info = g_malloc0(sizeof(*info));
1198 info->value = g_malloc0(sizeof(*info->value));
1199 info->value->CPU = env->cpu_index;
1200 info->value->current = (env == first_cpu);
1201 info->value->halted = env->halted;
1202 info->value->thread_id = env->thread_id;
1203 #if defined(TARGET_I386)
1204 info->value->has_pc = true;
1205 info->value->pc = env->eip + env->segs[R_CS].base;
1206 #elif defined(TARGET_PPC)
1207 info->value->has_nip = true;
1208 info->value->nip = env->nip;
1209 #elif defined(TARGET_SPARC)
1210 info->value->has_pc = true;
1211 info->value->pc = env->pc;
1212 info->value->has_npc = true;
1213 info->value->npc = env->npc;
1214 #elif defined(TARGET_MIPS)
1215 info->value->has_PC = true;
1216 info->value->PC = env->active_tc.PC;
1217 #endif
1218
1219 /* XXX: waiting for the qapi to support GSList */
1220 if (!cur_item) {
1221 head = cur_item = info;
1222 } else {
1223 cur_item->next = info;
1224 cur_item = info;
1225 }
1226 }
1227
1228 return head;
1229 }
1230
1231 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1232 bool has_cpu, int64_t cpu_index, Error **errp)
1233 {
1234 FILE *f;
1235 uint32_t l;
1236 CPUArchState *env;
1237 uint8_t buf[1024];
1238
1239 if (!has_cpu) {
1240 cpu_index = 0;
1241 }
1242
1243 for (env = first_cpu; env; env = env->next_cpu) {
1244 if (cpu_index == env->cpu_index) {
1245 break;
1246 }
1247 }
1248
1249 if (env == NULL) {
1250 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1251 "a CPU number");
1252 return;
1253 }
1254
1255 f = fopen(filename, "wb");
1256 if (!f) {
1257 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1258 return;
1259 }
1260
1261 while (size != 0) {
1262 l = sizeof(buf);
1263 if (l > size)
1264 l = size;
1265 cpu_memory_rw_debug(env, addr, buf, l, 0);
1266 if (fwrite(buf, 1, l, f) != l) {
1267 error_set(errp, QERR_IO_ERROR);
1268 goto exit;
1269 }
1270 addr += l;
1271 size -= l;
1272 }
1273
1274 exit:
1275 fclose(f);
1276 }
1277
1278 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1279 Error **errp)
1280 {
1281 FILE *f;
1282 uint32_t l;
1283 uint8_t buf[1024];
1284
1285 f = fopen(filename, "wb");
1286 if (!f) {
1287 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1288 return;
1289 }
1290
1291 while (size != 0) {
1292 l = sizeof(buf);
1293 if (l > size)
1294 l = size;
1295 cpu_physical_memory_rw(addr, buf, l, 0);
1296 if (fwrite(buf, 1, l, f) != l) {
1297 error_set(errp, QERR_IO_ERROR);
1298 goto exit;
1299 }
1300 addr += l;
1301 size -= l;
1302 }
1303
1304 exit:
1305 fclose(f);
1306 }
1307
1308 void qmp_inject_nmi(Error **errp)
1309 {
1310 #if defined(TARGET_I386)
1311 CPUArchState *env;
1312
1313 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1314 if (!env->apic_state) {
1315 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1316 } else {
1317 apic_deliver_nmi(env->apic_state);
1318 }
1319 }
1320 #else
1321 error_set(errp, QERR_UNSUPPORTED);
1322 #endif
1323 }