]> git.proxmox.com Git - qemu.git/blob - cpus.c
qxl: create slots on post_load in vga state
[qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "qmp-commands.h"
34
35 #include "qemu-thread.h"
36 #include "cpus.h"
37 #include "main-loop.h"
38
39 #ifndef _WIN32
40 #include "compatfd.h"
41 #endif
42
43 #ifdef CONFIG_LINUX
44
45 #include <sys/prctl.h>
46
47 #ifndef PR_MCE_KILL
48 #define PR_MCE_KILL 33
49 #endif
50
51 #ifndef PR_MCE_KILL_SET
52 #define PR_MCE_KILL_SET 1
53 #endif
54
55 #ifndef PR_MCE_KILL_EARLY
56 #define PR_MCE_KILL_EARLY 1
57 #endif
58
59 #endif /* CONFIG_LINUX */
60
61 static CPUState *next_cpu;
62
63 /***********************************************************/
64 /* guest cycle counter */
65
66 /* Conversion factor from emulated instructions to virtual clock ticks. */
67 static int icount_time_shift;
68 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
69 #define MAX_ICOUNT_SHIFT 10
70 /* Compensate for varying guest execution speed. */
71 static int64_t qemu_icount_bias;
72 static QEMUTimer *icount_rt_timer;
73 static QEMUTimer *icount_vm_timer;
74 static QEMUTimer *icount_warp_timer;
75 static int64_t vm_clock_warp_start;
76 static int64_t qemu_icount;
77
78 typedef struct TimersState {
79 int64_t cpu_ticks_prev;
80 int64_t cpu_ticks_offset;
81 int64_t cpu_clock_offset;
82 int32_t cpu_ticks_enabled;
83 int64_t dummy;
84 } TimersState;
85
86 TimersState timers_state;
87
88 /* Return the virtual CPU time, based on the instruction counter. */
89 int64_t cpu_get_icount(void)
90 {
91 int64_t icount;
92 CPUState *env = cpu_single_env;;
93
94 icount = qemu_icount;
95 if (env) {
96 if (!can_do_io(env)) {
97 fprintf(stderr, "Bad clock read\n");
98 }
99 icount -= (env->icount_decr.u16.low + env->icount_extra);
100 }
101 return qemu_icount_bias + (icount << icount_time_shift);
102 }
103
104 /* return the host CPU cycle counter and handle stop/restart */
105 int64_t cpu_get_ticks(void)
106 {
107 if (use_icount) {
108 return cpu_get_icount();
109 }
110 if (!timers_state.cpu_ticks_enabled) {
111 return timers_state.cpu_ticks_offset;
112 } else {
113 int64_t ticks;
114 ticks = cpu_get_real_ticks();
115 if (timers_state.cpu_ticks_prev > ticks) {
116 /* Note: non increasing ticks may happen if the host uses
117 software suspend */
118 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
119 }
120 timers_state.cpu_ticks_prev = ticks;
121 return ticks + timers_state.cpu_ticks_offset;
122 }
123 }
124
125 /* return the host CPU monotonic timer and handle stop/restart */
126 int64_t cpu_get_clock(void)
127 {
128 int64_t ti;
129 if (!timers_state.cpu_ticks_enabled) {
130 return timers_state.cpu_clock_offset;
131 } else {
132 ti = get_clock();
133 return ti + timers_state.cpu_clock_offset;
134 }
135 }
136
137 /* enable cpu_get_ticks() */
138 void cpu_enable_ticks(void)
139 {
140 if (!timers_state.cpu_ticks_enabled) {
141 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
142 timers_state.cpu_clock_offset -= get_clock();
143 timers_state.cpu_ticks_enabled = 1;
144 }
145 }
146
147 /* disable cpu_get_ticks() : the clock is stopped. You must not call
148 cpu_get_ticks() after that. */
149 void cpu_disable_ticks(void)
150 {
151 if (timers_state.cpu_ticks_enabled) {
152 timers_state.cpu_ticks_offset = cpu_get_ticks();
153 timers_state.cpu_clock_offset = cpu_get_clock();
154 timers_state.cpu_ticks_enabled = 0;
155 }
156 }
157
158 /* Correlation between real and virtual time is always going to be
159 fairly approximate, so ignore small variation.
160 When the guest is idle real and virtual time will be aligned in
161 the IO wait loop. */
162 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
163
164 static void icount_adjust(void)
165 {
166 int64_t cur_time;
167 int64_t cur_icount;
168 int64_t delta;
169 static int64_t last_delta;
170 /* If the VM is not running, then do nothing. */
171 if (!runstate_is_running()) {
172 return;
173 }
174 cur_time = cpu_get_clock();
175 cur_icount = qemu_get_clock_ns(vm_clock);
176 delta = cur_icount - cur_time;
177 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
178 if (delta > 0
179 && last_delta + ICOUNT_WOBBLE < delta * 2
180 && icount_time_shift > 0) {
181 /* The guest is getting too far ahead. Slow time down. */
182 icount_time_shift--;
183 }
184 if (delta < 0
185 && last_delta - ICOUNT_WOBBLE > delta * 2
186 && icount_time_shift < MAX_ICOUNT_SHIFT) {
187 /* The guest is getting too far behind. Speed time up. */
188 icount_time_shift++;
189 }
190 last_delta = delta;
191 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
192 }
193
194 static void icount_adjust_rt(void *opaque)
195 {
196 qemu_mod_timer(icount_rt_timer,
197 qemu_get_clock_ms(rt_clock) + 1000);
198 icount_adjust();
199 }
200
201 static void icount_adjust_vm(void *opaque)
202 {
203 qemu_mod_timer(icount_vm_timer,
204 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
205 icount_adjust();
206 }
207
208 static int64_t qemu_icount_round(int64_t count)
209 {
210 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
211 }
212
213 static void icount_warp_rt(void *opaque)
214 {
215 if (vm_clock_warp_start == -1) {
216 return;
217 }
218
219 if (runstate_is_running()) {
220 int64_t clock = qemu_get_clock_ns(rt_clock);
221 int64_t warp_delta = clock - vm_clock_warp_start;
222 if (use_icount == 1) {
223 qemu_icount_bias += warp_delta;
224 } else {
225 /*
226 * In adaptive mode, do not let the vm_clock run too
227 * far ahead of real time.
228 */
229 int64_t cur_time = cpu_get_clock();
230 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
231 int64_t delta = cur_time - cur_icount;
232 qemu_icount_bias += MIN(warp_delta, delta);
233 }
234 if (qemu_clock_expired(vm_clock)) {
235 qemu_notify_event();
236 }
237 }
238 vm_clock_warp_start = -1;
239 }
240
241 void qemu_clock_warp(QEMUClock *clock)
242 {
243 int64_t deadline;
244
245 /*
246 * There are too many global variables to make the "warp" behavior
247 * applicable to other clocks. But a clock argument removes the
248 * need for if statements all over the place.
249 */
250 if (clock != vm_clock || !use_icount) {
251 return;
252 }
253
254 /*
255 * If the CPUs have been sleeping, advance the vm_clock timer now. This
256 * ensures that the deadline for the timer is computed correctly below.
257 * This also makes sure that the insn counter is synchronized before the
258 * CPU starts running, in case the CPU is woken by an event other than
259 * the earliest vm_clock timer.
260 */
261 icount_warp_rt(NULL);
262 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
263 qemu_del_timer(icount_warp_timer);
264 return;
265 }
266
267 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
268 deadline = qemu_clock_deadline(vm_clock);
269 if (deadline > 0) {
270 /*
271 * Ensure the vm_clock proceeds even when the virtual CPU goes to
272 * sleep. Otherwise, the CPU might be waiting for a future timer
273 * interrupt to wake it up, but the interrupt never comes because
274 * the vCPU isn't running any insns and thus doesn't advance the
275 * vm_clock.
276 *
277 * An extreme solution for this problem would be to never let VCPUs
278 * sleep in icount mode if there is a pending vm_clock timer; rather
279 * time could just advance to the next vm_clock event. Instead, we
280 * do stop VCPUs and only advance vm_clock after some "real" time,
281 * (related to the time left until the next event) has passed. This
282 * rt_clock timer will do this. This avoids that the warps are too
283 * visible externally---for example, you will not be sending network
284 * packets continously instead of every 100ms.
285 */
286 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
287 } else {
288 qemu_notify_event();
289 }
290 }
291
292 static const VMStateDescription vmstate_timers = {
293 .name = "timer",
294 .version_id = 2,
295 .minimum_version_id = 1,
296 .minimum_version_id_old = 1,
297 .fields = (VMStateField[]) {
298 VMSTATE_INT64(cpu_ticks_offset, TimersState),
299 VMSTATE_INT64(dummy, TimersState),
300 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
301 VMSTATE_END_OF_LIST()
302 }
303 };
304
305 void configure_icount(const char *option)
306 {
307 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
308 if (!option) {
309 return;
310 }
311
312 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
313 if (strcmp(option, "auto") != 0) {
314 icount_time_shift = strtol(option, NULL, 0);
315 use_icount = 1;
316 return;
317 }
318
319 use_icount = 2;
320
321 /* 125MIPS seems a reasonable initial guess at the guest speed.
322 It will be corrected fairly quickly anyway. */
323 icount_time_shift = 3;
324
325 /* Have both realtime and virtual time triggers for speed adjustment.
326 The realtime trigger catches emulated time passing too slowly,
327 the virtual time trigger catches emulated time passing too fast.
328 Realtime triggers occur even when idle, so use them less frequently
329 than VM triggers. */
330 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
331 qemu_mod_timer(icount_rt_timer,
332 qemu_get_clock_ms(rt_clock) + 1000);
333 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
334 qemu_mod_timer(icount_vm_timer,
335 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
336 }
337
338 /***********************************************************/
339 void hw_error(const char *fmt, ...)
340 {
341 va_list ap;
342 CPUState *env;
343
344 va_start(ap, fmt);
345 fprintf(stderr, "qemu: hardware error: ");
346 vfprintf(stderr, fmt, ap);
347 fprintf(stderr, "\n");
348 for(env = first_cpu; env != NULL; env = env->next_cpu) {
349 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
350 #ifdef TARGET_I386
351 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
352 #else
353 cpu_dump_state(env, stderr, fprintf, 0);
354 #endif
355 }
356 va_end(ap);
357 abort();
358 }
359
360 void cpu_synchronize_all_states(void)
361 {
362 CPUState *cpu;
363
364 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
365 cpu_synchronize_state(cpu);
366 }
367 }
368
369 void cpu_synchronize_all_post_reset(void)
370 {
371 CPUState *cpu;
372
373 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
374 cpu_synchronize_post_reset(cpu);
375 }
376 }
377
378 void cpu_synchronize_all_post_init(void)
379 {
380 CPUState *cpu;
381
382 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
383 cpu_synchronize_post_init(cpu);
384 }
385 }
386
387 int cpu_is_stopped(CPUState *env)
388 {
389 return !runstate_is_running() || env->stopped;
390 }
391
392 static void do_vm_stop(RunState state)
393 {
394 if (runstate_is_running()) {
395 cpu_disable_ticks();
396 pause_all_vcpus();
397 runstate_set(state);
398 vm_state_notify(0, state);
399 qemu_aio_flush();
400 bdrv_flush_all();
401 monitor_protocol_event(QEVENT_STOP, NULL);
402 }
403 }
404
405 static int cpu_can_run(CPUState *env)
406 {
407 if (env->stop) {
408 return 0;
409 }
410 if (env->stopped || !runstate_is_running()) {
411 return 0;
412 }
413 return 1;
414 }
415
416 static bool cpu_thread_is_idle(CPUState *env)
417 {
418 if (env->stop || env->queued_work_first) {
419 return false;
420 }
421 if (env->stopped || !runstate_is_running()) {
422 return true;
423 }
424 if (!env->halted || qemu_cpu_has_work(env) ||
425 (kvm_enabled() && kvm_irqchip_in_kernel())) {
426 return false;
427 }
428 return true;
429 }
430
431 bool all_cpu_threads_idle(void)
432 {
433 CPUState *env;
434
435 for (env = first_cpu; env != NULL; env = env->next_cpu) {
436 if (!cpu_thread_is_idle(env)) {
437 return false;
438 }
439 }
440 return true;
441 }
442
443 static void cpu_handle_guest_debug(CPUState *env)
444 {
445 gdb_set_stop_cpu(env);
446 qemu_system_debug_request();
447 env->stopped = 1;
448 }
449
450 static void cpu_signal(int sig)
451 {
452 if (cpu_single_env) {
453 cpu_exit(cpu_single_env);
454 }
455 exit_request = 1;
456 }
457
458 #ifdef CONFIG_LINUX
459 static void sigbus_reraise(void)
460 {
461 sigset_t set;
462 struct sigaction action;
463
464 memset(&action, 0, sizeof(action));
465 action.sa_handler = SIG_DFL;
466 if (!sigaction(SIGBUS, &action, NULL)) {
467 raise(SIGBUS);
468 sigemptyset(&set);
469 sigaddset(&set, SIGBUS);
470 sigprocmask(SIG_UNBLOCK, &set, NULL);
471 }
472 perror("Failed to re-raise SIGBUS!\n");
473 abort();
474 }
475
476 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
477 void *ctx)
478 {
479 if (kvm_on_sigbus(siginfo->ssi_code,
480 (void *)(intptr_t)siginfo->ssi_addr)) {
481 sigbus_reraise();
482 }
483 }
484
485 static void qemu_init_sigbus(void)
486 {
487 struct sigaction action;
488
489 memset(&action, 0, sizeof(action));
490 action.sa_flags = SA_SIGINFO;
491 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
492 sigaction(SIGBUS, &action, NULL);
493
494 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
495 }
496
497 static void qemu_kvm_eat_signals(CPUState *env)
498 {
499 struct timespec ts = { 0, 0 };
500 siginfo_t siginfo;
501 sigset_t waitset;
502 sigset_t chkset;
503 int r;
504
505 sigemptyset(&waitset);
506 sigaddset(&waitset, SIG_IPI);
507 sigaddset(&waitset, SIGBUS);
508
509 do {
510 r = sigtimedwait(&waitset, &siginfo, &ts);
511 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
512 perror("sigtimedwait");
513 exit(1);
514 }
515
516 switch (r) {
517 case SIGBUS:
518 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
519 sigbus_reraise();
520 }
521 break;
522 default:
523 break;
524 }
525
526 r = sigpending(&chkset);
527 if (r == -1) {
528 perror("sigpending");
529 exit(1);
530 }
531 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
532 }
533
534 #else /* !CONFIG_LINUX */
535
536 static void qemu_init_sigbus(void)
537 {
538 }
539
540 static void qemu_kvm_eat_signals(CPUState *env)
541 {
542 }
543 #endif /* !CONFIG_LINUX */
544
545 #ifndef _WIN32
546 static void dummy_signal(int sig)
547 {
548 }
549
550 static void qemu_kvm_init_cpu_signals(CPUState *env)
551 {
552 int r;
553 sigset_t set;
554 struct sigaction sigact;
555
556 memset(&sigact, 0, sizeof(sigact));
557 sigact.sa_handler = dummy_signal;
558 sigaction(SIG_IPI, &sigact, NULL);
559
560 pthread_sigmask(SIG_BLOCK, NULL, &set);
561 sigdelset(&set, SIG_IPI);
562 sigdelset(&set, SIGBUS);
563 r = kvm_set_signal_mask(env, &set);
564 if (r) {
565 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
566 exit(1);
567 }
568
569 sigdelset(&set, SIG_IPI);
570 sigdelset(&set, SIGBUS);
571 r = kvm_set_signal_mask(env, &set);
572 if (r) {
573 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
574 exit(1);
575 }
576 }
577
578 static void qemu_tcg_init_cpu_signals(void)
579 {
580 sigset_t set;
581 struct sigaction sigact;
582
583 memset(&sigact, 0, sizeof(sigact));
584 sigact.sa_handler = cpu_signal;
585 sigaction(SIG_IPI, &sigact, NULL);
586
587 sigemptyset(&set);
588 sigaddset(&set, SIG_IPI);
589 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
590 }
591
592 #else /* _WIN32 */
593 static void qemu_kvm_init_cpu_signals(CPUState *env)
594 {
595 abort();
596 }
597
598 static void qemu_tcg_init_cpu_signals(void)
599 {
600 }
601 #endif /* _WIN32 */
602
603 QemuMutex qemu_global_mutex;
604 static QemuCond qemu_io_proceeded_cond;
605 static bool iothread_requesting_mutex;
606
607 static QemuThread io_thread;
608
609 static QemuThread *tcg_cpu_thread;
610 static QemuCond *tcg_halt_cond;
611
612 /* cpu creation */
613 static QemuCond qemu_cpu_cond;
614 /* system init */
615 static QemuCond qemu_pause_cond;
616 static QemuCond qemu_work_cond;
617
618 void qemu_init_cpu_loop(void)
619 {
620 qemu_init_sigbus();
621 qemu_cond_init(&qemu_cpu_cond);
622 qemu_cond_init(&qemu_pause_cond);
623 qemu_cond_init(&qemu_work_cond);
624 qemu_cond_init(&qemu_io_proceeded_cond);
625 qemu_mutex_init(&qemu_global_mutex);
626
627 qemu_thread_get_self(&io_thread);
628 }
629
630 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
631 {
632 struct qemu_work_item wi;
633
634 if (qemu_cpu_is_self(env)) {
635 func(data);
636 return;
637 }
638
639 wi.func = func;
640 wi.data = data;
641 if (!env->queued_work_first) {
642 env->queued_work_first = &wi;
643 } else {
644 env->queued_work_last->next = &wi;
645 }
646 env->queued_work_last = &wi;
647 wi.next = NULL;
648 wi.done = false;
649
650 qemu_cpu_kick(env);
651 while (!wi.done) {
652 CPUState *self_env = cpu_single_env;
653
654 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
655 cpu_single_env = self_env;
656 }
657 }
658
659 static void flush_queued_work(CPUState *env)
660 {
661 struct qemu_work_item *wi;
662
663 if (!env->queued_work_first) {
664 return;
665 }
666
667 while ((wi = env->queued_work_first)) {
668 env->queued_work_first = wi->next;
669 wi->func(wi->data);
670 wi->done = true;
671 }
672 env->queued_work_last = NULL;
673 qemu_cond_broadcast(&qemu_work_cond);
674 }
675
676 static void qemu_wait_io_event_common(CPUState *env)
677 {
678 if (env->stop) {
679 env->stop = 0;
680 env->stopped = 1;
681 qemu_cond_signal(&qemu_pause_cond);
682 }
683 flush_queued_work(env);
684 env->thread_kicked = false;
685 }
686
687 static void qemu_tcg_wait_io_event(void)
688 {
689 CPUState *env;
690
691 while (all_cpu_threads_idle()) {
692 /* Start accounting real time to the virtual clock if the CPUs
693 are idle. */
694 qemu_clock_warp(vm_clock);
695 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
696 }
697
698 while (iothread_requesting_mutex) {
699 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
700 }
701
702 for (env = first_cpu; env != NULL; env = env->next_cpu) {
703 qemu_wait_io_event_common(env);
704 }
705 }
706
707 static void qemu_kvm_wait_io_event(CPUState *env)
708 {
709 while (cpu_thread_is_idle(env)) {
710 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
711 }
712
713 qemu_kvm_eat_signals(env);
714 qemu_wait_io_event_common(env);
715 }
716
717 static void *qemu_kvm_cpu_thread_fn(void *arg)
718 {
719 CPUState *env = arg;
720 int r;
721
722 qemu_mutex_lock(&qemu_global_mutex);
723 qemu_thread_get_self(env->thread);
724 env->thread_id = qemu_get_thread_id();
725
726 r = kvm_init_vcpu(env);
727 if (r < 0) {
728 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
729 exit(1);
730 }
731
732 qemu_kvm_init_cpu_signals(env);
733
734 /* signal CPU creation */
735 env->created = 1;
736 qemu_cond_signal(&qemu_cpu_cond);
737
738 while (1) {
739 if (cpu_can_run(env)) {
740 r = kvm_cpu_exec(env);
741 if (r == EXCP_DEBUG) {
742 cpu_handle_guest_debug(env);
743 }
744 }
745 qemu_kvm_wait_io_event(env);
746 }
747
748 return NULL;
749 }
750
751 static void *qemu_tcg_cpu_thread_fn(void *arg)
752 {
753 CPUState *env = arg;
754
755 qemu_tcg_init_cpu_signals();
756 qemu_thread_get_self(env->thread);
757
758 /* signal CPU creation */
759 qemu_mutex_lock(&qemu_global_mutex);
760 for (env = first_cpu; env != NULL; env = env->next_cpu) {
761 env->thread_id = qemu_get_thread_id();
762 env->created = 1;
763 }
764 qemu_cond_signal(&qemu_cpu_cond);
765
766 /* wait for initial kick-off after machine start */
767 while (first_cpu->stopped) {
768 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
769 }
770
771 while (1) {
772 cpu_exec_all();
773 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
774 qemu_notify_event();
775 }
776 qemu_tcg_wait_io_event();
777 }
778
779 return NULL;
780 }
781
782 static void qemu_cpu_kick_thread(CPUState *env)
783 {
784 #ifndef _WIN32
785 int err;
786
787 err = pthread_kill(env->thread->thread, SIG_IPI);
788 if (err) {
789 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
790 exit(1);
791 }
792 #else /* _WIN32 */
793 if (!qemu_cpu_is_self(env)) {
794 SuspendThread(env->thread->thread);
795 cpu_signal(0);
796 ResumeThread(env->thread->thread);
797 }
798 #endif
799 }
800
801 void qemu_cpu_kick(void *_env)
802 {
803 CPUState *env = _env;
804
805 qemu_cond_broadcast(env->halt_cond);
806 if (kvm_enabled() && !env->thread_kicked) {
807 qemu_cpu_kick_thread(env);
808 env->thread_kicked = true;
809 }
810 }
811
812 void qemu_cpu_kick_self(void)
813 {
814 #ifndef _WIN32
815 assert(cpu_single_env);
816
817 if (!cpu_single_env->thread_kicked) {
818 qemu_cpu_kick_thread(cpu_single_env);
819 cpu_single_env->thread_kicked = true;
820 }
821 #else
822 abort();
823 #endif
824 }
825
826 int qemu_cpu_is_self(void *_env)
827 {
828 CPUState *env = _env;
829
830 return qemu_thread_is_self(env->thread);
831 }
832
833 void qemu_mutex_lock_iothread(void)
834 {
835 if (kvm_enabled()) {
836 qemu_mutex_lock(&qemu_global_mutex);
837 } else {
838 iothread_requesting_mutex = true;
839 if (qemu_mutex_trylock(&qemu_global_mutex)) {
840 qemu_cpu_kick_thread(first_cpu);
841 qemu_mutex_lock(&qemu_global_mutex);
842 }
843 iothread_requesting_mutex = false;
844 qemu_cond_broadcast(&qemu_io_proceeded_cond);
845 }
846 }
847
848 void qemu_mutex_unlock_iothread(void)
849 {
850 qemu_mutex_unlock(&qemu_global_mutex);
851 }
852
853 static int all_vcpus_paused(void)
854 {
855 CPUState *penv = first_cpu;
856
857 while (penv) {
858 if (!penv->stopped) {
859 return 0;
860 }
861 penv = (CPUState *)penv->next_cpu;
862 }
863
864 return 1;
865 }
866
867 void pause_all_vcpus(void)
868 {
869 CPUState *penv = first_cpu;
870
871 qemu_clock_enable(vm_clock, false);
872 while (penv) {
873 penv->stop = 1;
874 qemu_cpu_kick(penv);
875 penv = (CPUState *)penv->next_cpu;
876 }
877
878 while (!all_vcpus_paused()) {
879 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
880 penv = first_cpu;
881 while (penv) {
882 qemu_cpu_kick(penv);
883 penv = (CPUState *)penv->next_cpu;
884 }
885 }
886 }
887
888 void resume_all_vcpus(void)
889 {
890 CPUState *penv = first_cpu;
891
892 while (penv) {
893 penv->stop = 0;
894 penv->stopped = 0;
895 qemu_cpu_kick(penv);
896 penv = (CPUState *)penv->next_cpu;
897 }
898 }
899
900 static void qemu_tcg_init_vcpu(void *_env)
901 {
902 CPUState *env = _env;
903
904 /* share a single thread for all cpus with TCG */
905 if (!tcg_cpu_thread) {
906 env->thread = g_malloc0(sizeof(QemuThread));
907 env->halt_cond = g_malloc0(sizeof(QemuCond));
908 qemu_cond_init(env->halt_cond);
909 tcg_halt_cond = env->halt_cond;
910 qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env);
911 while (env->created == 0) {
912 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
913 }
914 tcg_cpu_thread = env->thread;
915 } else {
916 env->thread = tcg_cpu_thread;
917 env->halt_cond = tcg_halt_cond;
918 }
919 }
920
921 static void qemu_kvm_start_vcpu(CPUState *env)
922 {
923 env->thread = g_malloc0(sizeof(QemuThread));
924 env->halt_cond = g_malloc0(sizeof(QemuCond));
925 qemu_cond_init(env->halt_cond);
926 qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env);
927 while (env->created == 0) {
928 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
929 }
930 }
931
932 void qemu_init_vcpu(void *_env)
933 {
934 CPUState *env = _env;
935
936 env->nr_cores = smp_cores;
937 env->nr_threads = smp_threads;
938 env->stopped = 1;
939 if (kvm_enabled()) {
940 qemu_kvm_start_vcpu(env);
941 } else {
942 qemu_tcg_init_vcpu(env);
943 }
944 }
945
946 void cpu_stop_current(void)
947 {
948 if (cpu_single_env) {
949 cpu_single_env->stop = 0;
950 cpu_single_env->stopped = 1;
951 cpu_exit(cpu_single_env);
952 qemu_cond_signal(&qemu_pause_cond);
953 }
954 }
955
956 void vm_stop(RunState state)
957 {
958 if (!qemu_thread_is_self(&io_thread)) {
959 qemu_system_vmstop_request(state);
960 /*
961 * FIXME: should not return to device code in case
962 * vm_stop() has been requested.
963 */
964 cpu_stop_current();
965 return;
966 }
967 do_vm_stop(state);
968 }
969
970 /* does a state transition even if the VM is already stopped,
971 current state is forgotten forever */
972 void vm_stop_force_state(RunState state)
973 {
974 if (runstate_is_running()) {
975 vm_stop(state);
976 } else {
977 runstate_set(state);
978 }
979 }
980
981 static int tcg_cpu_exec(CPUState *env)
982 {
983 int ret;
984 #ifdef CONFIG_PROFILER
985 int64_t ti;
986 #endif
987
988 #ifdef CONFIG_PROFILER
989 ti = profile_getclock();
990 #endif
991 if (use_icount) {
992 int64_t count;
993 int decr;
994 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
995 env->icount_decr.u16.low = 0;
996 env->icount_extra = 0;
997 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
998 qemu_icount += count;
999 decr = (count > 0xffff) ? 0xffff : count;
1000 count -= decr;
1001 env->icount_decr.u16.low = decr;
1002 env->icount_extra = count;
1003 }
1004 ret = cpu_exec(env);
1005 #ifdef CONFIG_PROFILER
1006 qemu_time += profile_getclock() - ti;
1007 #endif
1008 if (use_icount) {
1009 /* Fold pending instructions back into the
1010 instruction counter, and clear the interrupt flag. */
1011 qemu_icount -= (env->icount_decr.u16.low
1012 + env->icount_extra);
1013 env->icount_decr.u32 = 0;
1014 env->icount_extra = 0;
1015 }
1016 return ret;
1017 }
1018
1019 bool cpu_exec_all(void)
1020 {
1021 int r;
1022
1023 /* Account partial waits to the vm_clock. */
1024 qemu_clock_warp(vm_clock);
1025
1026 if (next_cpu == NULL) {
1027 next_cpu = first_cpu;
1028 }
1029 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1030 CPUState *env = next_cpu;
1031
1032 qemu_clock_enable(vm_clock,
1033 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1034
1035 if (cpu_can_run(env)) {
1036 if (kvm_enabled()) {
1037 r = kvm_cpu_exec(env);
1038 qemu_kvm_eat_signals(env);
1039 } else {
1040 r = tcg_cpu_exec(env);
1041 }
1042 if (r == EXCP_DEBUG) {
1043 cpu_handle_guest_debug(env);
1044 break;
1045 }
1046 } else if (env->stop || env->stopped) {
1047 break;
1048 }
1049 }
1050 exit_request = 0;
1051 return !all_cpu_threads_idle();
1052 }
1053
1054 void set_numa_modes(void)
1055 {
1056 CPUState *env;
1057 int i;
1058
1059 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1060 for (i = 0; i < nb_numa_nodes; i++) {
1061 if (node_cpumask[i] & (1 << env->cpu_index)) {
1062 env->numa_node = i;
1063 }
1064 }
1065 }
1066 }
1067
1068 void set_cpu_log(const char *optarg)
1069 {
1070 int mask;
1071 const CPULogItem *item;
1072
1073 mask = cpu_str_to_log_mask(optarg);
1074 if (!mask) {
1075 printf("Log items (comma separated):\n");
1076 for (item = cpu_log_items; item->mask != 0; item++) {
1077 printf("%-10s %s\n", item->name, item->help);
1078 }
1079 exit(1);
1080 }
1081 cpu_set_log(mask);
1082 }
1083
1084 void set_cpu_log_filename(const char *optarg)
1085 {
1086 cpu_set_log_filename(optarg);
1087 }
1088
1089 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1090 {
1091 /* XXX: implement xxx_cpu_list for targets that still miss it */
1092 #if defined(cpu_list_id)
1093 cpu_list_id(f, cpu_fprintf, optarg);
1094 #elif defined(cpu_list)
1095 cpu_list(f, cpu_fprintf); /* deprecated */
1096 #endif
1097 }
1098
1099 CpuInfoList *qmp_query_cpus(Error **errp)
1100 {
1101 CpuInfoList *head = NULL, *cur_item = NULL;
1102 CPUState *env;
1103
1104 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1105 CpuInfoList *info;
1106
1107 cpu_synchronize_state(env);
1108
1109 info = g_malloc0(sizeof(*info));
1110 info->value = g_malloc0(sizeof(*info->value));
1111 info->value->CPU = env->cpu_index;
1112 info->value->current = (env == first_cpu);
1113 info->value->halted = env->halted;
1114 info->value->thread_id = env->thread_id;
1115 #if defined(TARGET_I386)
1116 info->value->has_pc = true;
1117 info->value->pc = env->eip + env->segs[R_CS].base;
1118 #elif defined(TARGET_PPC)
1119 info->value->has_nip = true;
1120 info->value->nip = env->nip;
1121 #elif defined(TARGET_SPARC)
1122 info->value->has_pc = true;
1123 info->value->pc = env->pc;
1124 info->value->has_npc = true;
1125 info->value->npc = env->npc;
1126 #elif defined(TARGET_MIPS)
1127 info->value->has_PC = true;
1128 info->value->PC = env->active_tc.PC;
1129 #endif
1130
1131 /* XXX: waiting for the qapi to support GSList */
1132 if (!cur_item) {
1133 head = cur_item = info;
1134 } else {
1135 cur_item->next = info;
1136 cur_item = info;
1137 }
1138 }
1139
1140 return head;
1141 }