]> git.proxmox.com Git - qemu.git/blob - cpus.c
Merge remote-tracking branch 'qmp/queue/qmp' into staging
[qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "qmp-commands.h"
34
35 #include "qemu-thread.h"
36 #include "cpus.h"
37 #include "qtest.h"
38 #include "main-loop.h"
39
40 #ifndef _WIN32
41 #include "compatfd.h"
42 #endif
43
44 #ifdef CONFIG_LINUX
45
46 #include <sys/prctl.h>
47
48 #ifndef PR_MCE_KILL
49 #define PR_MCE_KILL 33
50 #endif
51
52 #ifndef PR_MCE_KILL_SET
53 #define PR_MCE_KILL_SET 1
54 #endif
55
56 #ifndef PR_MCE_KILL_EARLY
57 #define PR_MCE_KILL_EARLY 1
58 #endif
59
60 #endif /* CONFIG_LINUX */
61
62 static CPUArchState *next_cpu;
63
64 static bool cpu_thread_is_idle(CPUArchState *env)
65 {
66 if (env->stop || env->queued_work_first) {
67 return false;
68 }
69 if (env->stopped || !runstate_is_running()) {
70 return true;
71 }
72 if (!env->halted || qemu_cpu_has_work(env) || kvm_irqchip_in_kernel()) {
73 return false;
74 }
75 return true;
76 }
77
78 static bool all_cpu_threads_idle(void)
79 {
80 CPUArchState *env;
81
82 for (env = first_cpu; env != NULL; env = env->next_cpu) {
83 if (!cpu_thread_is_idle(env)) {
84 return false;
85 }
86 }
87 return true;
88 }
89
90 /***********************************************************/
91 /* guest cycle counter */
92
93 /* Conversion factor from emulated instructions to virtual clock ticks. */
94 static int icount_time_shift;
95 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
96 #define MAX_ICOUNT_SHIFT 10
97 /* Compensate for varying guest execution speed. */
98 static int64_t qemu_icount_bias;
99 static QEMUTimer *icount_rt_timer;
100 static QEMUTimer *icount_vm_timer;
101 static QEMUTimer *icount_warp_timer;
102 static int64_t vm_clock_warp_start;
103 static int64_t qemu_icount;
104
105 typedef struct TimersState {
106 int64_t cpu_ticks_prev;
107 int64_t cpu_ticks_offset;
108 int64_t cpu_clock_offset;
109 int32_t cpu_ticks_enabled;
110 int64_t dummy;
111 } TimersState;
112
113 TimersState timers_state;
114
115 /* Return the virtual CPU time, based on the instruction counter. */
116 int64_t cpu_get_icount(void)
117 {
118 int64_t icount;
119 CPUArchState *env = cpu_single_env;
120
121 icount = qemu_icount;
122 if (env) {
123 if (!can_do_io(env)) {
124 fprintf(stderr, "Bad clock read\n");
125 }
126 icount -= (env->icount_decr.u16.low + env->icount_extra);
127 }
128 return qemu_icount_bias + (icount << icount_time_shift);
129 }
130
131 /* return the host CPU cycle counter and handle stop/restart */
132 int64_t cpu_get_ticks(void)
133 {
134 if (use_icount) {
135 return cpu_get_icount();
136 }
137 if (!timers_state.cpu_ticks_enabled) {
138 return timers_state.cpu_ticks_offset;
139 } else {
140 int64_t ticks;
141 ticks = cpu_get_real_ticks();
142 if (timers_state.cpu_ticks_prev > ticks) {
143 /* Note: non increasing ticks may happen if the host uses
144 software suspend */
145 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
146 }
147 timers_state.cpu_ticks_prev = ticks;
148 return ticks + timers_state.cpu_ticks_offset;
149 }
150 }
151
152 /* return the host CPU monotonic timer and handle stop/restart */
153 int64_t cpu_get_clock(void)
154 {
155 int64_t ti;
156 if (!timers_state.cpu_ticks_enabled) {
157 return timers_state.cpu_clock_offset;
158 } else {
159 ti = get_clock();
160 return ti + timers_state.cpu_clock_offset;
161 }
162 }
163
164 /* enable cpu_get_ticks() */
165 void cpu_enable_ticks(void)
166 {
167 if (!timers_state.cpu_ticks_enabled) {
168 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
169 timers_state.cpu_clock_offset -= get_clock();
170 timers_state.cpu_ticks_enabled = 1;
171 }
172 }
173
174 /* disable cpu_get_ticks() : the clock is stopped. You must not call
175 cpu_get_ticks() after that. */
176 void cpu_disable_ticks(void)
177 {
178 if (timers_state.cpu_ticks_enabled) {
179 timers_state.cpu_ticks_offset = cpu_get_ticks();
180 timers_state.cpu_clock_offset = cpu_get_clock();
181 timers_state.cpu_ticks_enabled = 0;
182 }
183 }
184
185 /* Correlation between real and virtual time is always going to be
186 fairly approximate, so ignore small variation.
187 When the guest is idle real and virtual time will be aligned in
188 the IO wait loop. */
189 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
190
191 static void icount_adjust(void)
192 {
193 int64_t cur_time;
194 int64_t cur_icount;
195 int64_t delta;
196 static int64_t last_delta;
197 /* If the VM is not running, then do nothing. */
198 if (!runstate_is_running()) {
199 return;
200 }
201 cur_time = cpu_get_clock();
202 cur_icount = qemu_get_clock_ns(vm_clock);
203 delta = cur_icount - cur_time;
204 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
205 if (delta > 0
206 && last_delta + ICOUNT_WOBBLE < delta * 2
207 && icount_time_shift > 0) {
208 /* The guest is getting too far ahead. Slow time down. */
209 icount_time_shift--;
210 }
211 if (delta < 0
212 && last_delta - ICOUNT_WOBBLE > delta * 2
213 && icount_time_shift < MAX_ICOUNT_SHIFT) {
214 /* The guest is getting too far behind. Speed time up. */
215 icount_time_shift++;
216 }
217 last_delta = delta;
218 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
219 }
220
221 static void icount_adjust_rt(void *opaque)
222 {
223 qemu_mod_timer(icount_rt_timer,
224 qemu_get_clock_ms(rt_clock) + 1000);
225 icount_adjust();
226 }
227
228 static void icount_adjust_vm(void *opaque)
229 {
230 qemu_mod_timer(icount_vm_timer,
231 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
232 icount_adjust();
233 }
234
235 static int64_t qemu_icount_round(int64_t count)
236 {
237 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
238 }
239
240 static void icount_warp_rt(void *opaque)
241 {
242 if (vm_clock_warp_start == -1) {
243 return;
244 }
245
246 if (runstate_is_running()) {
247 int64_t clock = qemu_get_clock_ns(rt_clock);
248 int64_t warp_delta = clock - vm_clock_warp_start;
249 if (use_icount == 1) {
250 qemu_icount_bias += warp_delta;
251 } else {
252 /*
253 * In adaptive mode, do not let the vm_clock run too
254 * far ahead of real time.
255 */
256 int64_t cur_time = cpu_get_clock();
257 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
258 int64_t delta = cur_time - cur_icount;
259 qemu_icount_bias += MIN(warp_delta, delta);
260 }
261 if (qemu_clock_expired(vm_clock)) {
262 qemu_notify_event();
263 }
264 }
265 vm_clock_warp_start = -1;
266 }
267
268 void qtest_clock_warp(int64_t dest)
269 {
270 int64_t clock = qemu_get_clock_ns(vm_clock);
271 assert(qtest_enabled());
272 while (clock < dest) {
273 int64_t deadline = qemu_clock_deadline(vm_clock);
274 int64_t warp = MIN(dest - clock, deadline);
275 qemu_icount_bias += warp;
276 qemu_run_timers(vm_clock);
277 clock = qemu_get_clock_ns(vm_clock);
278 }
279 qemu_notify_event();
280 }
281
282 void qemu_clock_warp(QEMUClock *clock)
283 {
284 int64_t deadline;
285
286 /*
287 * There are too many global variables to make the "warp" behavior
288 * applicable to other clocks. But a clock argument removes the
289 * need for if statements all over the place.
290 */
291 if (clock != vm_clock || !use_icount) {
292 return;
293 }
294
295 /*
296 * If the CPUs have been sleeping, advance the vm_clock timer now. This
297 * ensures that the deadline for the timer is computed correctly below.
298 * This also makes sure that the insn counter is synchronized before the
299 * CPU starts running, in case the CPU is woken by an event other than
300 * the earliest vm_clock timer.
301 */
302 icount_warp_rt(NULL);
303 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
304 qemu_del_timer(icount_warp_timer);
305 return;
306 }
307
308 if (qtest_enabled()) {
309 /* When testing, qtest commands advance icount. */
310 return;
311 }
312
313 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
314 deadline = qemu_clock_deadline(vm_clock);
315 if (deadline > 0) {
316 /*
317 * Ensure the vm_clock proceeds even when the virtual CPU goes to
318 * sleep. Otherwise, the CPU might be waiting for a future timer
319 * interrupt to wake it up, but the interrupt never comes because
320 * the vCPU isn't running any insns and thus doesn't advance the
321 * vm_clock.
322 *
323 * An extreme solution for this problem would be to never let VCPUs
324 * sleep in icount mode if there is a pending vm_clock timer; rather
325 * time could just advance to the next vm_clock event. Instead, we
326 * do stop VCPUs and only advance vm_clock after some "real" time,
327 * (related to the time left until the next event) has passed. This
328 * rt_clock timer will do this. This avoids that the warps are too
329 * visible externally---for example, you will not be sending network
330 * packets continuously instead of every 100ms.
331 */
332 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
333 } else {
334 qemu_notify_event();
335 }
336 }
337
338 static const VMStateDescription vmstate_timers = {
339 .name = "timer",
340 .version_id = 2,
341 .minimum_version_id = 1,
342 .minimum_version_id_old = 1,
343 .fields = (VMStateField[]) {
344 VMSTATE_INT64(cpu_ticks_offset, TimersState),
345 VMSTATE_INT64(dummy, TimersState),
346 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
347 VMSTATE_END_OF_LIST()
348 }
349 };
350
351 void configure_icount(const char *option)
352 {
353 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
354 if (!option) {
355 return;
356 }
357
358 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
359 if (strcmp(option, "auto") != 0) {
360 icount_time_shift = strtol(option, NULL, 0);
361 use_icount = 1;
362 return;
363 }
364
365 use_icount = 2;
366
367 /* 125MIPS seems a reasonable initial guess at the guest speed.
368 It will be corrected fairly quickly anyway. */
369 icount_time_shift = 3;
370
371 /* Have both realtime and virtual time triggers for speed adjustment.
372 The realtime trigger catches emulated time passing too slowly,
373 the virtual time trigger catches emulated time passing too fast.
374 Realtime triggers occur even when idle, so use them less frequently
375 than VM triggers. */
376 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
377 qemu_mod_timer(icount_rt_timer,
378 qemu_get_clock_ms(rt_clock) + 1000);
379 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
380 qemu_mod_timer(icount_vm_timer,
381 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
382 }
383
384 /***********************************************************/
385 void hw_error(const char *fmt, ...)
386 {
387 va_list ap;
388 CPUArchState *env;
389
390 va_start(ap, fmt);
391 fprintf(stderr, "qemu: hardware error: ");
392 vfprintf(stderr, fmt, ap);
393 fprintf(stderr, "\n");
394 for(env = first_cpu; env != NULL; env = env->next_cpu) {
395 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
396 #ifdef TARGET_I386
397 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
398 #else
399 cpu_dump_state(env, stderr, fprintf, 0);
400 #endif
401 }
402 va_end(ap);
403 abort();
404 }
405
406 void cpu_synchronize_all_states(void)
407 {
408 CPUArchState *cpu;
409
410 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
411 cpu_synchronize_state(cpu);
412 }
413 }
414
415 void cpu_synchronize_all_post_reset(void)
416 {
417 CPUArchState *cpu;
418
419 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
420 cpu_synchronize_post_reset(cpu);
421 }
422 }
423
424 void cpu_synchronize_all_post_init(void)
425 {
426 CPUArchState *cpu;
427
428 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
429 cpu_synchronize_post_init(cpu);
430 }
431 }
432
433 int cpu_is_stopped(CPUArchState *env)
434 {
435 return !runstate_is_running() || env->stopped;
436 }
437
438 static void do_vm_stop(RunState state)
439 {
440 if (runstate_is_running()) {
441 cpu_disable_ticks();
442 pause_all_vcpus();
443 runstate_set(state);
444 vm_state_notify(0, state);
445 bdrv_drain_all();
446 bdrv_flush_all();
447 monitor_protocol_event(QEVENT_STOP, NULL);
448 }
449 }
450
451 static int cpu_can_run(CPUArchState *env)
452 {
453 if (env->stop) {
454 return 0;
455 }
456 if (env->stopped || !runstate_is_running()) {
457 return 0;
458 }
459 return 1;
460 }
461
462 static void cpu_handle_guest_debug(CPUArchState *env)
463 {
464 gdb_set_stop_cpu(env);
465 qemu_system_debug_request();
466 env->stopped = 1;
467 }
468
469 static void cpu_signal(int sig)
470 {
471 if (cpu_single_env) {
472 cpu_exit(cpu_single_env);
473 }
474 exit_request = 1;
475 }
476
477 #ifdef CONFIG_LINUX
478 static void sigbus_reraise(void)
479 {
480 sigset_t set;
481 struct sigaction action;
482
483 memset(&action, 0, sizeof(action));
484 action.sa_handler = SIG_DFL;
485 if (!sigaction(SIGBUS, &action, NULL)) {
486 raise(SIGBUS);
487 sigemptyset(&set);
488 sigaddset(&set, SIGBUS);
489 sigprocmask(SIG_UNBLOCK, &set, NULL);
490 }
491 perror("Failed to re-raise SIGBUS!\n");
492 abort();
493 }
494
495 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
496 void *ctx)
497 {
498 if (kvm_on_sigbus(siginfo->ssi_code,
499 (void *)(intptr_t)siginfo->ssi_addr)) {
500 sigbus_reraise();
501 }
502 }
503
504 static void qemu_init_sigbus(void)
505 {
506 struct sigaction action;
507
508 memset(&action, 0, sizeof(action));
509 action.sa_flags = SA_SIGINFO;
510 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
511 sigaction(SIGBUS, &action, NULL);
512
513 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
514 }
515
516 static void qemu_kvm_eat_signals(CPUArchState *env)
517 {
518 struct timespec ts = { 0, 0 };
519 siginfo_t siginfo;
520 sigset_t waitset;
521 sigset_t chkset;
522 int r;
523
524 sigemptyset(&waitset);
525 sigaddset(&waitset, SIG_IPI);
526 sigaddset(&waitset, SIGBUS);
527
528 do {
529 r = sigtimedwait(&waitset, &siginfo, &ts);
530 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
531 perror("sigtimedwait");
532 exit(1);
533 }
534
535 switch (r) {
536 case SIGBUS:
537 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
538 sigbus_reraise();
539 }
540 break;
541 default:
542 break;
543 }
544
545 r = sigpending(&chkset);
546 if (r == -1) {
547 perror("sigpending");
548 exit(1);
549 }
550 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
551 }
552
553 #else /* !CONFIG_LINUX */
554
555 static void qemu_init_sigbus(void)
556 {
557 }
558
559 static void qemu_kvm_eat_signals(CPUArchState *env)
560 {
561 }
562 #endif /* !CONFIG_LINUX */
563
564 #ifndef _WIN32
565 static void dummy_signal(int sig)
566 {
567 }
568
569 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
570 {
571 int r;
572 sigset_t set;
573 struct sigaction sigact;
574
575 memset(&sigact, 0, sizeof(sigact));
576 sigact.sa_handler = dummy_signal;
577 sigaction(SIG_IPI, &sigact, NULL);
578
579 pthread_sigmask(SIG_BLOCK, NULL, &set);
580 sigdelset(&set, SIG_IPI);
581 sigdelset(&set, SIGBUS);
582 r = kvm_set_signal_mask(env, &set);
583 if (r) {
584 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
585 exit(1);
586 }
587 }
588
589 static void qemu_tcg_init_cpu_signals(void)
590 {
591 sigset_t set;
592 struct sigaction sigact;
593
594 memset(&sigact, 0, sizeof(sigact));
595 sigact.sa_handler = cpu_signal;
596 sigaction(SIG_IPI, &sigact, NULL);
597
598 sigemptyset(&set);
599 sigaddset(&set, SIG_IPI);
600 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
601 }
602
603 #else /* _WIN32 */
604 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
605 {
606 abort();
607 }
608
609 static void qemu_tcg_init_cpu_signals(void)
610 {
611 }
612 #endif /* _WIN32 */
613
614 QemuMutex qemu_global_mutex;
615 static QemuCond qemu_io_proceeded_cond;
616 static bool iothread_requesting_mutex;
617
618 static QemuThread io_thread;
619
620 static QemuThread *tcg_cpu_thread;
621 static QemuCond *tcg_halt_cond;
622
623 /* cpu creation */
624 static QemuCond qemu_cpu_cond;
625 /* system init */
626 static QemuCond qemu_pause_cond;
627 static QemuCond qemu_work_cond;
628
629 void qemu_init_cpu_loop(void)
630 {
631 qemu_init_sigbus();
632 qemu_cond_init(&qemu_cpu_cond);
633 qemu_cond_init(&qemu_pause_cond);
634 qemu_cond_init(&qemu_work_cond);
635 qemu_cond_init(&qemu_io_proceeded_cond);
636 qemu_mutex_init(&qemu_global_mutex);
637
638 qemu_thread_get_self(&io_thread);
639 }
640
641 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data)
642 {
643 struct qemu_work_item wi;
644
645 if (qemu_cpu_is_self(env)) {
646 func(data);
647 return;
648 }
649
650 wi.func = func;
651 wi.data = data;
652 if (!env->queued_work_first) {
653 env->queued_work_first = &wi;
654 } else {
655 env->queued_work_last->next = &wi;
656 }
657 env->queued_work_last = &wi;
658 wi.next = NULL;
659 wi.done = false;
660
661 qemu_cpu_kick(env);
662 while (!wi.done) {
663 CPUArchState *self_env = cpu_single_env;
664
665 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
666 cpu_single_env = self_env;
667 }
668 }
669
670 static void flush_queued_work(CPUArchState *env)
671 {
672 struct qemu_work_item *wi;
673
674 if (!env->queued_work_first) {
675 return;
676 }
677
678 while ((wi = env->queued_work_first)) {
679 env->queued_work_first = wi->next;
680 wi->func(wi->data);
681 wi->done = true;
682 }
683 env->queued_work_last = NULL;
684 qemu_cond_broadcast(&qemu_work_cond);
685 }
686
687 static void qemu_wait_io_event_common(CPUArchState *env)
688 {
689 CPUState *cpu = ENV_GET_CPU(env);
690
691 if (env->stop) {
692 env->stop = 0;
693 env->stopped = 1;
694 qemu_cond_signal(&qemu_pause_cond);
695 }
696 flush_queued_work(env);
697 cpu->thread_kicked = false;
698 }
699
700 static void qemu_tcg_wait_io_event(void)
701 {
702 CPUArchState *env;
703
704 while (all_cpu_threads_idle()) {
705 /* Start accounting real time to the virtual clock if the CPUs
706 are idle. */
707 qemu_clock_warp(vm_clock);
708 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
709 }
710
711 while (iothread_requesting_mutex) {
712 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
713 }
714
715 for (env = first_cpu; env != NULL; env = env->next_cpu) {
716 qemu_wait_io_event_common(env);
717 }
718 }
719
720 static void qemu_kvm_wait_io_event(CPUArchState *env)
721 {
722 while (cpu_thread_is_idle(env)) {
723 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
724 }
725
726 qemu_kvm_eat_signals(env);
727 qemu_wait_io_event_common(env);
728 }
729
730 static void *qemu_kvm_cpu_thread_fn(void *arg)
731 {
732 CPUArchState *env = arg;
733 CPUState *cpu = ENV_GET_CPU(env);
734 int r;
735
736 qemu_mutex_lock(&qemu_global_mutex);
737 qemu_thread_get_self(cpu->thread);
738 env->thread_id = qemu_get_thread_id();
739 cpu_single_env = env;
740
741 r = kvm_init_vcpu(env);
742 if (r < 0) {
743 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
744 exit(1);
745 }
746
747 qemu_kvm_init_cpu_signals(env);
748
749 /* signal CPU creation */
750 env->created = 1;
751 qemu_cond_signal(&qemu_cpu_cond);
752
753 while (1) {
754 if (cpu_can_run(env)) {
755 r = kvm_cpu_exec(env);
756 if (r == EXCP_DEBUG) {
757 cpu_handle_guest_debug(env);
758 }
759 }
760 qemu_kvm_wait_io_event(env);
761 }
762
763 return NULL;
764 }
765
766 static void *qemu_dummy_cpu_thread_fn(void *arg)
767 {
768 #ifdef _WIN32
769 fprintf(stderr, "qtest is not supported under Windows\n");
770 exit(1);
771 #else
772 CPUArchState *env = arg;
773 CPUState *cpu = ENV_GET_CPU(env);
774 sigset_t waitset;
775 int r;
776
777 qemu_mutex_lock_iothread();
778 qemu_thread_get_self(cpu->thread);
779 env->thread_id = qemu_get_thread_id();
780
781 sigemptyset(&waitset);
782 sigaddset(&waitset, SIG_IPI);
783
784 /* signal CPU creation */
785 env->created = 1;
786 qemu_cond_signal(&qemu_cpu_cond);
787
788 cpu_single_env = env;
789 while (1) {
790 cpu_single_env = NULL;
791 qemu_mutex_unlock_iothread();
792 do {
793 int sig;
794 r = sigwait(&waitset, &sig);
795 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
796 if (r == -1) {
797 perror("sigwait");
798 exit(1);
799 }
800 qemu_mutex_lock_iothread();
801 cpu_single_env = env;
802 qemu_wait_io_event_common(env);
803 }
804
805 return NULL;
806 #endif
807 }
808
809 static void tcg_exec_all(void);
810
811 static void *qemu_tcg_cpu_thread_fn(void *arg)
812 {
813 CPUArchState *env = arg;
814 CPUState *cpu = ENV_GET_CPU(env);
815
816 qemu_tcg_init_cpu_signals();
817 qemu_thread_get_self(cpu->thread);
818
819 /* signal CPU creation */
820 qemu_mutex_lock(&qemu_global_mutex);
821 for (env = first_cpu; env != NULL; env = env->next_cpu) {
822 env->thread_id = qemu_get_thread_id();
823 env->created = 1;
824 }
825 qemu_cond_signal(&qemu_cpu_cond);
826
827 /* wait for initial kick-off after machine start */
828 while (first_cpu->stopped) {
829 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
830
831 /* process any pending work */
832 for (env = first_cpu; env != NULL; env = env->next_cpu) {
833 qemu_wait_io_event_common(env);
834 }
835 }
836
837 while (1) {
838 tcg_exec_all();
839 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
840 qemu_notify_event();
841 }
842 qemu_tcg_wait_io_event();
843 }
844
845 return NULL;
846 }
847
848 static void qemu_cpu_kick_thread(CPUArchState *env)
849 {
850 CPUState *cpu = ENV_GET_CPU(env);
851 #ifndef _WIN32
852 int err;
853
854 err = pthread_kill(cpu->thread->thread, SIG_IPI);
855 if (err) {
856 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
857 exit(1);
858 }
859 #else /* _WIN32 */
860 if (!qemu_cpu_is_self(env)) {
861 SuspendThread(cpu->hThread);
862 cpu_signal(0);
863 ResumeThread(cpu->hThread);
864 }
865 #endif
866 }
867
868 void qemu_cpu_kick(void *_env)
869 {
870 CPUArchState *env = _env;
871 CPUState *cpu = ENV_GET_CPU(env);
872
873 qemu_cond_broadcast(env->halt_cond);
874 if (!tcg_enabled() && !cpu->thread_kicked) {
875 qemu_cpu_kick_thread(env);
876 cpu->thread_kicked = true;
877 }
878 }
879
880 void qemu_cpu_kick_self(void)
881 {
882 #ifndef _WIN32
883 assert(cpu_single_env);
884 CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
885
886 if (!cpu_single_cpu->thread_kicked) {
887 qemu_cpu_kick_thread(cpu_single_env);
888 cpu_single_cpu->thread_kicked = true;
889 }
890 #else
891 abort();
892 #endif
893 }
894
895 int qemu_cpu_is_self(void *_env)
896 {
897 CPUArchState *env = _env;
898 CPUState *cpu = ENV_GET_CPU(env);
899
900 return qemu_thread_is_self(cpu->thread);
901 }
902
903 void qemu_mutex_lock_iothread(void)
904 {
905 if (!tcg_enabled()) {
906 qemu_mutex_lock(&qemu_global_mutex);
907 } else {
908 iothread_requesting_mutex = true;
909 if (qemu_mutex_trylock(&qemu_global_mutex)) {
910 qemu_cpu_kick_thread(first_cpu);
911 qemu_mutex_lock(&qemu_global_mutex);
912 }
913 iothread_requesting_mutex = false;
914 qemu_cond_broadcast(&qemu_io_proceeded_cond);
915 }
916 }
917
918 void qemu_mutex_unlock_iothread(void)
919 {
920 qemu_mutex_unlock(&qemu_global_mutex);
921 }
922
923 static int all_vcpus_paused(void)
924 {
925 CPUArchState *penv = first_cpu;
926
927 while (penv) {
928 if (!penv->stopped) {
929 return 0;
930 }
931 penv = penv->next_cpu;
932 }
933
934 return 1;
935 }
936
937 void pause_all_vcpus(void)
938 {
939 CPUArchState *penv = first_cpu;
940
941 qemu_clock_enable(vm_clock, false);
942 while (penv) {
943 penv->stop = 1;
944 qemu_cpu_kick(penv);
945 penv = penv->next_cpu;
946 }
947
948 if (!qemu_thread_is_self(&io_thread)) {
949 cpu_stop_current();
950 if (!kvm_enabled()) {
951 while (penv) {
952 penv->stop = 0;
953 penv->stopped = 1;
954 penv = penv->next_cpu;
955 }
956 return;
957 }
958 }
959
960 while (!all_vcpus_paused()) {
961 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
962 penv = first_cpu;
963 while (penv) {
964 qemu_cpu_kick(penv);
965 penv = penv->next_cpu;
966 }
967 }
968 }
969
970 void resume_all_vcpus(void)
971 {
972 CPUArchState *penv = first_cpu;
973
974 qemu_clock_enable(vm_clock, true);
975 while (penv) {
976 penv->stop = 0;
977 penv->stopped = 0;
978 qemu_cpu_kick(penv);
979 penv = penv->next_cpu;
980 }
981 }
982
983 static void qemu_tcg_init_vcpu(void *_env)
984 {
985 CPUArchState *env = _env;
986 CPUState *cpu = ENV_GET_CPU(env);
987
988 /* share a single thread for all cpus with TCG */
989 if (!tcg_cpu_thread) {
990 cpu->thread = g_malloc0(sizeof(QemuThread));
991 env->halt_cond = g_malloc0(sizeof(QemuCond));
992 qemu_cond_init(env->halt_cond);
993 tcg_halt_cond = env->halt_cond;
994 qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, env,
995 QEMU_THREAD_JOINABLE);
996 #ifdef _WIN32
997 cpu->hThread = qemu_thread_get_handle(cpu->thread);
998 #endif
999 while (env->created == 0) {
1000 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1001 }
1002 tcg_cpu_thread = cpu->thread;
1003 } else {
1004 cpu->thread = tcg_cpu_thread;
1005 env->halt_cond = tcg_halt_cond;
1006 }
1007 }
1008
1009 static void qemu_kvm_start_vcpu(CPUArchState *env)
1010 {
1011 CPUState *cpu = ENV_GET_CPU(env);
1012
1013 cpu->thread = g_malloc0(sizeof(QemuThread));
1014 env->halt_cond = g_malloc0(sizeof(QemuCond));
1015 qemu_cond_init(env->halt_cond);
1016 qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, env,
1017 QEMU_THREAD_JOINABLE);
1018 while (env->created == 0) {
1019 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1020 }
1021 }
1022
1023 static void qemu_dummy_start_vcpu(CPUArchState *env)
1024 {
1025 CPUState *cpu = ENV_GET_CPU(env);
1026
1027 cpu->thread = g_malloc0(sizeof(QemuThread));
1028 env->halt_cond = g_malloc0(sizeof(QemuCond));
1029 qemu_cond_init(env->halt_cond);
1030 qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, env,
1031 QEMU_THREAD_JOINABLE);
1032 while (env->created == 0) {
1033 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1034 }
1035 }
1036
1037 void qemu_init_vcpu(void *_env)
1038 {
1039 CPUArchState *env = _env;
1040
1041 env->nr_cores = smp_cores;
1042 env->nr_threads = smp_threads;
1043 env->stopped = 1;
1044 if (kvm_enabled()) {
1045 qemu_kvm_start_vcpu(env);
1046 } else if (tcg_enabled()) {
1047 qemu_tcg_init_vcpu(env);
1048 } else {
1049 qemu_dummy_start_vcpu(env);
1050 }
1051 }
1052
1053 void cpu_stop_current(void)
1054 {
1055 if (cpu_single_env) {
1056 cpu_single_env->stop = 0;
1057 cpu_single_env->stopped = 1;
1058 cpu_exit(cpu_single_env);
1059 qemu_cond_signal(&qemu_pause_cond);
1060 }
1061 }
1062
1063 void vm_stop(RunState state)
1064 {
1065 if (!qemu_thread_is_self(&io_thread)) {
1066 qemu_system_vmstop_request(state);
1067 /*
1068 * FIXME: should not return to device code in case
1069 * vm_stop() has been requested.
1070 */
1071 cpu_stop_current();
1072 return;
1073 }
1074 do_vm_stop(state);
1075 }
1076
1077 /* does a state transition even if the VM is already stopped,
1078 current state is forgotten forever */
1079 void vm_stop_force_state(RunState state)
1080 {
1081 if (runstate_is_running()) {
1082 vm_stop(state);
1083 } else {
1084 runstate_set(state);
1085 }
1086 }
1087
1088 static int tcg_cpu_exec(CPUArchState *env)
1089 {
1090 int ret;
1091 #ifdef CONFIG_PROFILER
1092 int64_t ti;
1093 #endif
1094
1095 #ifdef CONFIG_PROFILER
1096 ti = profile_getclock();
1097 #endif
1098 if (use_icount) {
1099 int64_t count;
1100 int decr;
1101 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1102 env->icount_decr.u16.low = 0;
1103 env->icount_extra = 0;
1104 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1105 qemu_icount += count;
1106 decr = (count > 0xffff) ? 0xffff : count;
1107 count -= decr;
1108 env->icount_decr.u16.low = decr;
1109 env->icount_extra = count;
1110 }
1111 ret = cpu_exec(env);
1112 #ifdef CONFIG_PROFILER
1113 qemu_time += profile_getclock() - ti;
1114 #endif
1115 if (use_icount) {
1116 /* Fold pending instructions back into the
1117 instruction counter, and clear the interrupt flag. */
1118 qemu_icount -= (env->icount_decr.u16.low
1119 + env->icount_extra);
1120 env->icount_decr.u32 = 0;
1121 env->icount_extra = 0;
1122 }
1123 return ret;
1124 }
1125
1126 static void tcg_exec_all(void)
1127 {
1128 int r;
1129
1130 /* Account partial waits to the vm_clock. */
1131 qemu_clock_warp(vm_clock);
1132
1133 if (next_cpu == NULL) {
1134 next_cpu = first_cpu;
1135 }
1136 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1137 CPUArchState *env = next_cpu;
1138
1139 qemu_clock_enable(vm_clock,
1140 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1141
1142 if (cpu_can_run(env)) {
1143 r = tcg_cpu_exec(env);
1144 if (r == EXCP_DEBUG) {
1145 cpu_handle_guest_debug(env);
1146 break;
1147 }
1148 } else if (env->stop || env->stopped) {
1149 break;
1150 }
1151 }
1152 exit_request = 0;
1153 }
1154
1155 void set_numa_modes(void)
1156 {
1157 CPUArchState *env;
1158 int i;
1159
1160 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1161 for (i = 0; i < nb_numa_nodes; i++) {
1162 if (node_cpumask[i] & (1 << env->cpu_index)) {
1163 env->numa_node = i;
1164 }
1165 }
1166 }
1167 }
1168
1169 void set_cpu_log(const char *optarg)
1170 {
1171 int mask;
1172 const CPULogItem *item;
1173
1174 mask = cpu_str_to_log_mask(optarg);
1175 if (!mask) {
1176 printf("Log items (comma separated):\n");
1177 for (item = cpu_log_items; item->mask != 0; item++) {
1178 printf("%-10s %s\n", item->name, item->help);
1179 }
1180 exit(1);
1181 }
1182 cpu_set_log(mask);
1183 }
1184
1185 void set_cpu_log_filename(const char *optarg)
1186 {
1187 cpu_set_log_filename(optarg);
1188 }
1189
1190 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1191 {
1192 /* XXX: implement xxx_cpu_list for targets that still miss it */
1193 #if defined(cpu_list_id)
1194 cpu_list_id(f, cpu_fprintf, optarg);
1195 #elif defined(cpu_list)
1196 cpu_list(f, cpu_fprintf); /* deprecated */
1197 #endif
1198 }
1199
1200 CpuInfoList *qmp_query_cpus(Error **errp)
1201 {
1202 CpuInfoList *head = NULL, *cur_item = NULL;
1203 CPUArchState *env;
1204
1205 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1206 CpuInfoList *info;
1207
1208 cpu_synchronize_state(env);
1209
1210 info = g_malloc0(sizeof(*info));
1211 info->value = g_malloc0(sizeof(*info->value));
1212 info->value->CPU = env->cpu_index;
1213 info->value->current = (env == first_cpu);
1214 info->value->halted = env->halted;
1215 info->value->thread_id = env->thread_id;
1216 #if defined(TARGET_I386)
1217 info->value->has_pc = true;
1218 info->value->pc = env->eip + env->segs[R_CS].base;
1219 #elif defined(TARGET_PPC)
1220 info->value->has_nip = true;
1221 info->value->nip = env->nip;
1222 #elif defined(TARGET_SPARC)
1223 info->value->has_pc = true;
1224 info->value->pc = env->pc;
1225 info->value->has_npc = true;
1226 info->value->npc = env->npc;
1227 #elif defined(TARGET_MIPS)
1228 info->value->has_PC = true;
1229 info->value->PC = env->active_tc.PC;
1230 #endif
1231
1232 /* XXX: waiting for the qapi to support GSList */
1233 if (!cur_item) {
1234 head = cur_item = info;
1235 } else {
1236 cur_item->next = info;
1237 cur_item = info;
1238 }
1239 }
1240
1241 return head;
1242 }
1243
1244 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1245 bool has_cpu, int64_t cpu_index, Error **errp)
1246 {
1247 FILE *f;
1248 uint32_t l;
1249 CPUArchState *env;
1250 uint8_t buf[1024];
1251
1252 if (!has_cpu) {
1253 cpu_index = 0;
1254 }
1255
1256 for (env = first_cpu; env; env = env->next_cpu) {
1257 if (cpu_index == env->cpu_index) {
1258 break;
1259 }
1260 }
1261
1262 if (env == NULL) {
1263 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1264 "a CPU number");
1265 return;
1266 }
1267
1268 f = fopen(filename, "wb");
1269 if (!f) {
1270 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1271 return;
1272 }
1273
1274 while (size != 0) {
1275 l = sizeof(buf);
1276 if (l > size)
1277 l = size;
1278 cpu_memory_rw_debug(env, addr, buf, l, 0);
1279 if (fwrite(buf, 1, l, f) != l) {
1280 error_set(errp, QERR_IO_ERROR);
1281 goto exit;
1282 }
1283 addr += l;
1284 size -= l;
1285 }
1286
1287 exit:
1288 fclose(f);
1289 }
1290
1291 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1292 Error **errp)
1293 {
1294 FILE *f;
1295 uint32_t l;
1296 uint8_t buf[1024];
1297
1298 f = fopen(filename, "wb");
1299 if (!f) {
1300 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1301 return;
1302 }
1303
1304 while (size != 0) {
1305 l = sizeof(buf);
1306 if (l > size)
1307 l = size;
1308 cpu_physical_memory_rw(addr, buf, l, 0);
1309 if (fwrite(buf, 1, l, f) != l) {
1310 error_set(errp, QERR_IO_ERROR);
1311 goto exit;
1312 }
1313 addr += l;
1314 size -= l;
1315 }
1316
1317 exit:
1318 fclose(f);
1319 }
1320
1321 void qmp_inject_nmi(Error **errp)
1322 {
1323 #if defined(TARGET_I386)
1324 CPUArchState *env;
1325
1326 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1327 if (!env->apic_state) {
1328 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1329 } else {
1330 apic_deliver_nmi(env->apic_state);
1331 }
1332 }
1333 #else
1334 error_set(errp, QERR_UNSUPPORTED);
1335 #endif
1336 }