]> git.proxmox.com Git - qemu.git/blob - cpus.c
cpus: Pass CPUState to cpu_is_stopped()
[qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "qmp-commands.h"
34
35 #include "qemu-thread.h"
36 #include "cpus.h"
37 #include "qtest.h"
38 #include "main-loop.h"
39 #include "bitmap.h"
40
41 #ifndef _WIN32
42 #include "compatfd.h"
43 #endif
44
45 #ifdef CONFIG_LINUX
46
47 #include <sys/prctl.h>
48
49 #ifndef PR_MCE_KILL
50 #define PR_MCE_KILL 33
51 #endif
52
53 #ifndef PR_MCE_KILL_SET
54 #define PR_MCE_KILL_SET 1
55 #endif
56
57 #ifndef PR_MCE_KILL_EARLY
58 #define PR_MCE_KILL_EARLY 1
59 #endif
60
61 #endif /* CONFIG_LINUX */
62
63 static CPUArchState *next_cpu;
64
65 static bool cpu_thread_is_idle(CPUArchState *env)
66 {
67 CPUState *cpu = ENV_GET_CPU(env);
68
69 if (cpu->stop || env->queued_work_first) {
70 return false;
71 }
72 if (cpu->stopped || !runstate_is_running()) {
73 return true;
74 }
75 if (!env->halted || qemu_cpu_has_work(env) ||
76 kvm_async_interrupts_enabled()) {
77 return false;
78 }
79 return true;
80 }
81
82 static bool all_cpu_threads_idle(void)
83 {
84 CPUArchState *env;
85
86 for (env = first_cpu; env != NULL; env = env->next_cpu) {
87 if (!cpu_thread_is_idle(env)) {
88 return false;
89 }
90 }
91 return true;
92 }
93
94 /***********************************************************/
95 /* guest cycle counter */
96
97 /* Conversion factor from emulated instructions to virtual clock ticks. */
98 static int icount_time_shift;
99 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
100 #define MAX_ICOUNT_SHIFT 10
101 /* Compensate for varying guest execution speed. */
102 static int64_t qemu_icount_bias;
103 static QEMUTimer *icount_rt_timer;
104 static QEMUTimer *icount_vm_timer;
105 static QEMUTimer *icount_warp_timer;
106 static int64_t vm_clock_warp_start;
107 static int64_t qemu_icount;
108
109 typedef struct TimersState {
110 int64_t cpu_ticks_prev;
111 int64_t cpu_ticks_offset;
112 int64_t cpu_clock_offset;
113 int32_t cpu_ticks_enabled;
114 int64_t dummy;
115 } TimersState;
116
117 TimersState timers_state;
118
119 /* Return the virtual CPU time, based on the instruction counter. */
120 int64_t cpu_get_icount(void)
121 {
122 int64_t icount;
123 CPUArchState *env = cpu_single_env;
124
125 icount = qemu_icount;
126 if (env) {
127 if (!can_do_io(env)) {
128 fprintf(stderr, "Bad clock read\n");
129 }
130 icount -= (env->icount_decr.u16.low + env->icount_extra);
131 }
132 return qemu_icount_bias + (icount << icount_time_shift);
133 }
134
135 /* return the host CPU cycle counter and handle stop/restart */
136 int64_t cpu_get_ticks(void)
137 {
138 if (use_icount) {
139 return cpu_get_icount();
140 }
141 if (!timers_state.cpu_ticks_enabled) {
142 return timers_state.cpu_ticks_offset;
143 } else {
144 int64_t ticks;
145 ticks = cpu_get_real_ticks();
146 if (timers_state.cpu_ticks_prev > ticks) {
147 /* Note: non increasing ticks may happen if the host uses
148 software suspend */
149 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
150 }
151 timers_state.cpu_ticks_prev = ticks;
152 return ticks + timers_state.cpu_ticks_offset;
153 }
154 }
155
156 /* return the host CPU monotonic timer and handle stop/restart */
157 int64_t cpu_get_clock(void)
158 {
159 int64_t ti;
160 if (!timers_state.cpu_ticks_enabled) {
161 return timers_state.cpu_clock_offset;
162 } else {
163 ti = get_clock();
164 return ti + timers_state.cpu_clock_offset;
165 }
166 }
167
168 /* enable cpu_get_ticks() */
169 void cpu_enable_ticks(void)
170 {
171 if (!timers_state.cpu_ticks_enabled) {
172 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
173 timers_state.cpu_clock_offset -= get_clock();
174 timers_state.cpu_ticks_enabled = 1;
175 }
176 }
177
178 /* disable cpu_get_ticks() : the clock is stopped. You must not call
179 cpu_get_ticks() after that. */
180 void cpu_disable_ticks(void)
181 {
182 if (timers_state.cpu_ticks_enabled) {
183 timers_state.cpu_ticks_offset = cpu_get_ticks();
184 timers_state.cpu_clock_offset = cpu_get_clock();
185 timers_state.cpu_ticks_enabled = 0;
186 }
187 }
188
189 /* Correlation between real and virtual time is always going to be
190 fairly approximate, so ignore small variation.
191 When the guest is idle real and virtual time will be aligned in
192 the IO wait loop. */
193 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
194
195 static void icount_adjust(void)
196 {
197 int64_t cur_time;
198 int64_t cur_icount;
199 int64_t delta;
200 static int64_t last_delta;
201 /* If the VM is not running, then do nothing. */
202 if (!runstate_is_running()) {
203 return;
204 }
205 cur_time = cpu_get_clock();
206 cur_icount = qemu_get_clock_ns(vm_clock);
207 delta = cur_icount - cur_time;
208 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
209 if (delta > 0
210 && last_delta + ICOUNT_WOBBLE < delta * 2
211 && icount_time_shift > 0) {
212 /* The guest is getting too far ahead. Slow time down. */
213 icount_time_shift--;
214 }
215 if (delta < 0
216 && last_delta - ICOUNT_WOBBLE > delta * 2
217 && icount_time_shift < MAX_ICOUNT_SHIFT) {
218 /* The guest is getting too far behind. Speed time up. */
219 icount_time_shift++;
220 }
221 last_delta = delta;
222 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
223 }
224
225 static void icount_adjust_rt(void *opaque)
226 {
227 qemu_mod_timer(icount_rt_timer,
228 qemu_get_clock_ms(rt_clock) + 1000);
229 icount_adjust();
230 }
231
232 static void icount_adjust_vm(void *opaque)
233 {
234 qemu_mod_timer(icount_vm_timer,
235 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
236 icount_adjust();
237 }
238
239 static int64_t qemu_icount_round(int64_t count)
240 {
241 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
242 }
243
244 static void icount_warp_rt(void *opaque)
245 {
246 if (vm_clock_warp_start == -1) {
247 return;
248 }
249
250 if (runstate_is_running()) {
251 int64_t clock = qemu_get_clock_ns(rt_clock);
252 int64_t warp_delta = clock - vm_clock_warp_start;
253 if (use_icount == 1) {
254 qemu_icount_bias += warp_delta;
255 } else {
256 /*
257 * In adaptive mode, do not let the vm_clock run too
258 * far ahead of real time.
259 */
260 int64_t cur_time = cpu_get_clock();
261 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
262 int64_t delta = cur_time - cur_icount;
263 qemu_icount_bias += MIN(warp_delta, delta);
264 }
265 if (qemu_clock_expired(vm_clock)) {
266 qemu_notify_event();
267 }
268 }
269 vm_clock_warp_start = -1;
270 }
271
272 void qtest_clock_warp(int64_t dest)
273 {
274 int64_t clock = qemu_get_clock_ns(vm_clock);
275 assert(qtest_enabled());
276 while (clock < dest) {
277 int64_t deadline = qemu_clock_deadline(vm_clock);
278 int64_t warp = MIN(dest - clock, deadline);
279 qemu_icount_bias += warp;
280 qemu_run_timers(vm_clock);
281 clock = qemu_get_clock_ns(vm_clock);
282 }
283 qemu_notify_event();
284 }
285
286 void qemu_clock_warp(QEMUClock *clock)
287 {
288 int64_t deadline;
289
290 /*
291 * There are too many global variables to make the "warp" behavior
292 * applicable to other clocks. But a clock argument removes the
293 * need for if statements all over the place.
294 */
295 if (clock != vm_clock || !use_icount) {
296 return;
297 }
298
299 /*
300 * If the CPUs have been sleeping, advance the vm_clock timer now. This
301 * ensures that the deadline for the timer is computed correctly below.
302 * This also makes sure that the insn counter is synchronized before the
303 * CPU starts running, in case the CPU is woken by an event other than
304 * the earliest vm_clock timer.
305 */
306 icount_warp_rt(NULL);
307 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
308 qemu_del_timer(icount_warp_timer);
309 return;
310 }
311
312 if (qtest_enabled()) {
313 /* When testing, qtest commands advance icount. */
314 return;
315 }
316
317 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
318 deadline = qemu_clock_deadline(vm_clock);
319 if (deadline > 0) {
320 /*
321 * Ensure the vm_clock proceeds even when the virtual CPU goes to
322 * sleep. Otherwise, the CPU might be waiting for a future timer
323 * interrupt to wake it up, but the interrupt never comes because
324 * the vCPU isn't running any insns and thus doesn't advance the
325 * vm_clock.
326 *
327 * An extreme solution for this problem would be to never let VCPUs
328 * sleep in icount mode if there is a pending vm_clock timer; rather
329 * time could just advance to the next vm_clock event. Instead, we
330 * do stop VCPUs and only advance vm_clock after some "real" time,
331 * (related to the time left until the next event) has passed. This
332 * rt_clock timer will do this. This avoids that the warps are too
333 * visible externally---for example, you will not be sending network
334 * packets continuously instead of every 100ms.
335 */
336 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
337 } else {
338 qemu_notify_event();
339 }
340 }
341
342 static const VMStateDescription vmstate_timers = {
343 .name = "timer",
344 .version_id = 2,
345 .minimum_version_id = 1,
346 .minimum_version_id_old = 1,
347 .fields = (VMStateField[]) {
348 VMSTATE_INT64(cpu_ticks_offset, TimersState),
349 VMSTATE_INT64(dummy, TimersState),
350 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
351 VMSTATE_END_OF_LIST()
352 }
353 };
354
355 void configure_icount(const char *option)
356 {
357 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
358 if (!option) {
359 return;
360 }
361
362 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
363 if (strcmp(option, "auto") != 0) {
364 icount_time_shift = strtol(option, NULL, 0);
365 use_icount = 1;
366 return;
367 }
368
369 use_icount = 2;
370
371 /* 125MIPS seems a reasonable initial guess at the guest speed.
372 It will be corrected fairly quickly anyway. */
373 icount_time_shift = 3;
374
375 /* Have both realtime and virtual time triggers for speed adjustment.
376 The realtime trigger catches emulated time passing too slowly,
377 the virtual time trigger catches emulated time passing too fast.
378 Realtime triggers occur even when idle, so use them less frequently
379 than VM triggers. */
380 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
381 qemu_mod_timer(icount_rt_timer,
382 qemu_get_clock_ms(rt_clock) + 1000);
383 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
384 qemu_mod_timer(icount_vm_timer,
385 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
386 }
387
388 /***********************************************************/
389 void hw_error(const char *fmt, ...)
390 {
391 va_list ap;
392 CPUArchState *env;
393
394 va_start(ap, fmt);
395 fprintf(stderr, "qemu: hardware error: ");
396 vfprintf(stderr, fmt, ap);
397 fprintf(stderr, "\n");
398 for(env = first_cpu; env != NULL; env = env->next_cpu) {
399 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
400 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU);
401 }
402 va_end(ap);
403 abort();
404 }
405
406 void cpu_synchronize_all_states(void)
407 {
408 CPUArchState *cpu;
409
410 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
411 cpu_synchronize_state(cpu);
412 }
413 }
414
415 void cpu_synchronize_all_post_reset(void)
416 {
417 CPUArchState *cpu;
418
419 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
420 cpu_synchronize_post_reset(cpu);
421 }
422 }
423
424 void cpu_synchronize_all_post_init(void)
425 {
426 CPUArchState *cpu;
427
428 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
429 cpu_synchronize_post_init(cpu);
430 }
431 }
432
433 bool cpu_is_stopped(CPUState *cpu)
434 {
435 return !runstate_is_running() || cpu->stopped;
436 }
437
438 static void do_vm_stop(RunState state)
439 {
440 if (runstate_is_running()) {
441 cpu_disable_ticks();
442 pause_all_vcpus();
443 runstate_set(state);
444 vm_state_notify(0, state);
445 bdrv_drain_all();
446 bdrv_flush_all();
447 monitor_protocol_event(QEVENT_STOP, NULL);
448 }
449 }
450
451 static int cpu_can_run(CPUArchState *env)
452 {
453 CPUState *cpu = ENV_GET_CPU(env);
454
455 if (cpu->stop) {
456 return 0;
457 }
458 if (cpu->stopped || !runstate_is_running()) {
459 return 0;
460 }
461 return 1;
462 }
463
464 static void cpu_handle_guest_debug(CPUArchState *env)
465 {
466 CPUState *cpu = ENV_GET_CPU(env);
467
468 gdb_set_stop_cpu(env);
469 qemu_system_debug_request();
470 cpu->stopped = true;
471 }
472
473 static void cpu_signal(int sig)
474 {
475 if (cpu_single_env) {
476 cpu_exit(cpu_single_env);
477 }
478 exit_request = 1;
479 }
480
481 #ifdef CONFIG_LINUX
482 static void sigbus_reraise(void)
483 {
484 sigset_t set;
485 struct sigaction action;
486
487 memset(&action, 0, sizeof(action));
488 action.sa_handler = SIG_DFL;
489 if (!sigaction(SIGBUS, &action, NULL)) {
490 raise(SIGBUS);
491 sigemptyset(&set);
492 sigaddset(&set, SIGBUS);
493 sigprocmask(SIG_UNBLOCK, &set, NULL);
494 }
495 perror("Failed to re-raise SIGBUS!\n");
496 abort();
497 }
498
499 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
500 void *ctx)
501 {
502 if (kvm_on_sigbus(siginfo->ssi_code,
503 (void *)(intptr_t)siginfo->ssi_addr)) {
504 sigbus_reraise();
505 }
506 }
507
508 static void qemu_init_sigbus(void)
509 {
510 struct sigaction action;
511
512 memset(&action, 0, sizeof(action));
513 action.sa_flags = SA_SIGINFO;
514 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
515 sigaction(SIGBUS, &action, NULL);
516
517 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
518 }
519
520 static void qemu_kvm_eat_signals(CPUArchState *env)
521 {
522 struct timespec ts = { 0, 0 };
523 siginfo_t siginfo;
524 sigset_t waitset;
525 sigset_t chkset;
526 int r;
527
528 sigemptyset(&waitset);
529 sigaddset(&waitset, SIG_IPI);
530 sigaddset(&waitset, SIGBUS);
531
532 do {
533 r = sigtimedwait(&waitset, &siginfo, &ts);
534 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
535 perror("sigtimedwait");
536 exit(1);
537 }
538
539 switch (r) {
540 case SIGBUS:
541 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
542 sigbus_reraise();
543 }
544 break;
545 default:
546 break;
547 }
548
549 r = sigpending(&chkset);
550 if (r == -1) {
551 perror("sigpending");
552 exit(1);
553 }
554 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
555 }
556
557 #else /* !CONFIG_LINUX */
558
559 static void qemu_init_sigbus(void)
560 {
561 }
562
563 static void qemu_kvm_eat_signals(CPUArchState *env)
564 {
565 }
566 #endif /* !CONFIG_LINUX */
567
568 #ifndef _WIN32
569 static void dummy_signal(int sig)
570 {
571 }
572
573 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
574 {
575 int r;
576 sigset_t set;
577 struct sigaction sigact;
578
579 memset(&sigact, 0, sizeof(sigact));
580 sigact.sa_handler = dummy_signal;
581 sigaction(SIG_IPI, &sigact, NULL);
582
583 pthread_sigmask(SIG_BLOCK, NULL, &set);
584 sigdelset(&set, SIG_IPI);
585 sigdelset(&set, SIGBUS);
586 r = kvm_set_signal_mask(env, &set);
587 if (r) {
588 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
589 exit(1);
590 }
591 }
592
593 static void qemu_tcg_init_cpu_signals(void)
594 {
595 sigset_t set;
596 struct sigaction sigact;
597
598 memset(&sigact, 0, sizeof(sigact));
599 sigact.sa_handler = cpu_signal;
600 sigaction(SIG_IPI, &sigact, NULL);
601
602 sigemptyset(&set);
603 sigaddset(&set, SIG_IPI);
604 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
605 }
606
607 #else /* _WIN32 */
608 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
609 {
610 abort();
611 }
612
613 static void qemu_tcg_init_cpu_signals(void)
614 {
615 }
616 #endif /* _WIN32 */
617
618 static QemuMutex qemu_global_mutex;
619 static QemuCond qemu_io_proceeded_cond;
620 static bool iothread_requesting_mutex;
621
622 static QemuThread io_thread;
623
624 static QemuThread *tcg_cpu_thread;
625 static QemuCond *tcg_halt_cond;
626
627 /* cpu creation */
628 static QemuCond qemu_cpu_cond;
629 /* system init */
630 static QemuCond qemu_pause_cond;
631 static QemuCond qemu_work_cond;
632
633 void qemu_init_cpu_loop(void)
634 {
635 qemu_init_sigbus();
636 qemu_cond_init(&qemu_cpu_cond);
637 qemu_cond_init(&qemu_pause_cond);
638 qemu_cond_init(&qemu_work_cond);
639 qemu_cond_init(&qemu_io_proceeded_cond);
640 qemu_mutex_init(&qemu_global_mutex);
641
642 qemu_thread_get_self(&io_thread);
643 }
644
645 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data)
646 {
647 CPUState *cpu = ENV_GET_CPU(env);
648 struct qemu_work_item wi;
649
650 if (qemu_cpu_is_self(cpu)) {
651 func(data);
652 return;
653 }
654
655 wi.func = func;
656 wi.data = data;
657 if (!env->queued_work_first) {
658 env->queued_work_first = &wi;
659 } else {
660 env->queued_work_last->next = &wi;
661 }
662 env->queued_work_last = &wi;
663 wi.next = NULL;
664 wi.done = false;
665
666 qemu_cpu_kick(env);
667 while (!wi.done) {
668 CPUArchState *self_env = cpu_single_env;
669
670 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
671 cpu_single_env = self_env;
672 }
673 }
674
675 static void flush_queued_work(CPUArchState *env)
676 {
677 struct qemu_work_item *wi;
678
679 if (!env->queued_work_first) {
680 return;
681 }
682
683 while ((wi = env->queued_work_first)) {
684 env->queued_work_first = wi->next;
685 wi->func(wi->data);
686 wi->done = true;
687 }
688 env->queued_work_last = NULL;
689 qemu_cond_broadcast(&qemu_work_cond);
690 }
691
692 static void qemu_wait_io_event_common(CPUArchState *env)
693 {
694 CPUState *cpu = ENV_GET_CPU(env);
695
696 if (cpu->stop) {
697 cpu->stop = false;
698 cpu->stopped = true;
699 qemu_cond_signal(&qemu_pause_cond);
700 }
701 flush_queued_work(env);
702 cpu->thread_kicked = false;
703 }
704
705 static void qemu_tcg_wait_io_event(void)
706 {
707 CPUArchState *env;
708
709 while (all_cpu_threads_idle()) {
710 /* Start accounting real time to the virtual clock if the CPUs
711 are idle. */
712 qemu_clock_warp(vm_clock);
713 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
714 }
715
716 while (iothread_requesting_mutex) {
717 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
718 }
719
720 for (env = first_cpu; env != NULL; env = env->next_cpu) {
721 qemu_wait_io_event_common(env);
722 }
723 }
724
725 static void qemu_kvm_wait_io_event(CPUArchState *env)
726 {
727 while (cpu_thread_is_idle(env)) {
728 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
729 }
730
731 qemu_kvm_eat_signals(env);
732 qemu_wait_io_event_common(env);
733 }
734
735 static void *qemu_kvm_cpu_thread_fn(void *arg)
736 {
737 CPUArchState *env = arg;
738 CPUState *cpu = ENV_GET_CPU(env);
739 int r;
740
741 qemu_mutex_lock(&qemu_global_mutex);
742 qemu_thread_get_self(cpu->thread);
743 env->thread_id = qemu_get_thread_id();
744 cpu_single_env = env;
745
746 r = kvm_init_vcpu(env);
747 if (r < 0) {
748 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
749 exit(1);
750 }
751
752 qemu_kvm_init_cpu_signals(env);
753
754 /* signal CPU creation */
755 cpu->created = true;
756 qemu_cond_signal(&qemu_cpu_cond);
757
758 while (1) {
759 if (cpu_can_run(env)) {
760 r = kvm_cpu_exec(env);
761 if (r == EXCP_DEBUG) {
762 cpu_handle_guest_debug(env);
763 }
764 }
765 qemu_kvm_wait_io_event(env);
766 }
767
768 return NULL;
769 }
770
771 static void *qemu_dummy_cpu_thread_fn(void *arg)
772 {
773 #ifdef _WIN32
774 fprintf(stderr, "qtest is not supported under Windows\n");
775 exit(1);
776 #else
777 CPUArchState *env = arg;
778 CPUState *cpu = ENV_GET_CPU(env);
779 sigset_t waitset;
780 int r;
781
782 qemu_mutex_lock_iothread();
783 qemu_thread_get_self(cpu->thread);
784 env->thread_id = qemu_get_thread_id();
785
786 sigemptyset(&waitset);
787 sigaddset(&waitset, SIG_IPI);
788
789 /* signal CPU creation */
790 cpu->created = true;
791 qemu_cond_signal(&qemu_cpu_cond);
792
793 cpu_single_env = env;
794 while (1) {
795 cpu_single_env = NULL;
796 qemu_mutex_unlock_iothread();
797 do {
798 int sig;
799 r = sigwait(&waitset, &sig);
800 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
801 if (r == -1) {
802 perror("sigwait");
803 exit(1);
804 }
805 qemu_mutex_lock_iothread();
806 cpu_single_env = env;
807 qemu_wait_io_event_common(env);
808 }
809
810 return NULL;
811 #endif
812 }
813
814 static void tcg_exec_all(void);
815
816 static void *qemu_tcg_cpu_thread_fn(void *arg)
817 {
818 CPUArchState *env = arg;
819 CPUState *cpu = ENV_GET_CPU(env);
820
821 qemu_tcg_init_cpu_signals();
822 qemu_thread_get_self(cpu->thread);
823
824 /* signal CPU creation */
825 qemu_mutex_lock(&qemu_global_mutex);
826 for (env = first_cpu; env != NULL; env = env->next_cpu) {
827 cpu = ENV_GET_CPU(env);
828 env->thread_id = qemu_get_thread_id();
829 cpu->created = true;
830 }
831 qemu_cond_signal(&qemu_cpu_cond);
832
833 /* wait for initial kick-off after machine start */
834 while (ENV_GET_CPU(first_cpu)->stopped) {
835 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
836
837 /* process any pending work */
838 for (env = first_cpu; env != NULL; env = env->next_cpu) {
839 qemu_wait_io_event_common(env);
840 }
841 }
842
843 while (1) {
844 tcg_exec_all();
845 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
846 qemu_notify_event();
847 }
848 qemu_tcg_wait_io_event();
849 }
850
851 return NULL;
852 }
853
854 static void qemu_cpu_kick_thread(CPUState *cpu)
855 {
856 #ifndef _WIN32
857 int err;
858
859 err = pthread_kill(cpu->thread->thread, SIG_IPI);
860 if (err) {
861 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
862 exit(1);
863 }
864 #else /* _WIN32 */
865 if (!qemu_cpu_is_self(cpu)) {
866 SuspendThread(cpu->hThread);
867 cpu_signal(0);
868 ResumeThread(cpu->hThread);
869 }
870 #endif
871 }
872
873 void qemu_cpu_kick(void *_env)
874 {
875 CPUArchState *env = _env;
876 CPUState *cpu = ENV_GET_CPU(env);
877
878 qemu_cond_broadcast(env->halt_cond);
879 if (!tcg_enabled() && !cpu->thread_kicked) {
880 qemu_cpu_kick_thread(cpu);
881 cpu->thread_kicked = true;
882 }
883 }
884
885 void qemu_cpu_kick_self(void)
886 {
887 #ifndef _WIN32
888 assert(cpu_single_env);
889 CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
890
891 if (!cpu_single_cpu->thread_kicked) {
892 qemu_cpu_kick_thread(cpu_single_cpu);
893 cpu_single_cpu->thread_kicked = true;
894 }
895 #else
896 abort();
897 #endif
898 }
899
900 bool qemu_cpu_is_self(CPUState *cpu)
901 {
902 return qemu_thread_is_self(cpu->thread);
903 }
904
905 static bool qemu_in_vcpu_thread(void)
906 {
907 return cpu_single_env && qemu_cpu_is_self(ENV_GET_CPU(cpu_single_env));
908 }
909
910 void qemu_mutex_lock_iothread(void)
911 {
912 if (!tcg_enabled()) {
913 qemu_mutex_lock(&qemu_global_mutex);
914 } else {
915 iothread_requesting_mutex = true;
916 if (qemu_mutex_trylock(&qemu_global_mutex)) {
917 qemu_cpu_kick_thread(ENV_GET_CPU(first_cpu));
918 qemu_mutex_lock(&qemu_global_mutex);
919 }
920 iothread_requesting_mutex = false;
921 qemu_cond_broadcast(&qemu_io_proceeded_cond);
922 }
923 }
924
925 void qemu_mutex_unlock_iothread(void)
926 {
927 qemu_mutex_unlock(&qemu_global_mutex);
928 }
929
930 static int all_vcpus_paused(void)
931 {
932 CPUArchState *penv = first_cpu;
933
934 while (penv) {
935 CPUState *pcpu = ENV_GET_CPU(penv);
936 if (!pcpu->stopped) {
937 return 0;
938 }
939 penv = penv->next_cpu;
940 }
941
942 return 1;
943 }
944
945 void pause_all_vcpus(void)
946 {
947 CPUArchState *penv = first_cpu;
948
949 qemu_clock_enable(vm_clock, false);
950 while (penv) {
951 CPUState *pcpu = ENV_GET_CPU(penv);
952 pcpu->stop = true;
953 qemu_cpu_kick(penv);
954 penv = penv->next_cpu;
955 }
956
957 if (qemu_in_vcpu_thread()) {
958 cpu_stop_current();
959 if (!kvm_enabled()) {
960 while (penv) {
961 CPUState *pcpu = ENV_GET_CPU(penv);
962 pcpu->stop = 0;
963 pcpu->stopped = true;
964 penv = penv->next_cpu;
965 }
966 return;
967 }
968 }
969
970 while (!all_vcpus_paused()) {
971 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
972 penv = first_cpu;
973 while (penv) {
974 qemu_cpu_kick(penv);
975 penv = penv->next_cpu;
976 }
977 }
978 }
979
980 void resume_all_vcpus(void)
981 {
982 CPUArchState *penv = first_cpu;
983
984 qemu_clock_enable(vm_clock, true);
985 while (penv) {
986 CPUState *pcpu = ENV_GET_CPU(penv);
987 pcpu->stop = false;
988 pcpu->stopped = false;
989 qemu_cpu_kick(penv);
990 penv = penv->next_cpu;
991 }
992 }
993
994 static void qemu_tcg_init_vcpu(void *_env)
995 {
996 CPUArchState *env = _env;
997 CPUState *cpu = ENV_GET_CPU(env);
998
999 /* share a single thread for all cpus with TCG */
1000 if (!tcg_cpu_thread) {
1001 cpu->thread = g_malloc0(sizeof(QemuThread));
1002 env->halt_cond = g_malloc0(sizeof(QemuCond));
1003 qemu_cond_init(env->halt_cond);
1004 tcg_halt_cond = env->halt_cond;
1005 qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, env,
1006 QEMU_THREAD_JOINABLE);
1007 #ifdef _WIN32
1008 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1009 #endif
1010 while (!cpu->created) {
1011 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1012 }
1013 tcg_cpu_thread = cpu->thread;
1014 } else {
1015 cpu->thread = tcg_cpu_thread;
1016 env->halt_cond = tcg_halt_cond;
1017 }
1018 }
1019
1020 static void qemu_kvm_start_vcpu(CPUArchState *env)
1021 {
1022 CPUState *cpu = ENV_GET_CPU(env);
1023
1024 cpu->thread = g_malloc0(sizeof(QemuThread));
1025 env->halt_cond = g_malloc0(sizeof(QemuCond));
1026 qemu_cond_init(env->halt_cond);
1027 qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, env,
1028 QEMU_THREAD_JOINABLE);
1029 while (!cpu->created) {
1030 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1031 }
1032 }
1033
1034 static void qemu_dummy_start_vcpu(CPUArchState *env)
1035 {
1036 CPUState *cpu = ENV_GET_CPU(env);
1037
1038 cpu->thread = g_malloc0(sizeof(QemuThread));
1039 env->halt_cond = g_malloc0(sizeof(QemuCond));
1040 qemu_cond_init(env->halt_cond);
1041 qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, env,
1042 QEMU_THREAD_JOINABLE);
1043 while (!cpu->created) {
1044 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1045 }
1046 }
1047
1048 void qemu_init_vcpu(void *_env)
1049 {
1050 CPUArchState *env = _env;
1051 CPUState *cpu = ENV_GET_CPU(env);
1052
1053 env->nr_cores = smp_cores;
1054 env->nr_threads = smp_threads;
1055 cpu->stopped = true;
1056 if (kvm_enabled()) {
1057 qemu_kvm_start_vcpu(env);
1058 } else if (tcg_enabled()) {
1059 qemu_tcg_init_vcpu(env);
1060 } else {
1061 qemu_dummy_start_vcpu(env);
1062 }
1063 }
1064
1065 void cpu_stop_current(void)
1066 {
1067 if (cpu_single_env) {
1068 CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
1069 cpu_single_cpu->stop = false;
1070 cpu_single_cpu->stopped = true;
1071 cpu_exit(cpu_single_env);
1072 qemu_cond_signal(&qemu_pause_cond);
1073 }
1074 }
1075
1076 void vm_stop(RunState state)
1077 {
1078 if (qemu_in_vcpu_thread()) {
1079 qemu_system_vmstop_request(state);
1080 /*
1081 * FIXME: should not return to device code in case
1082 * vm_stop() has been requested.
1083 */
1084 cpu_stop_current();
1085 return;
1086 }
1087 do_vm_stop(state);
1088 }
1089
1090 /* does a state transition even if the VM is already stopped,
1091 current state is forgotten forever */
1092 void vm_stop_force_state(RunState state)
1093 {
1094 if (runstate_is_running()) {
1095 vm_stop(state);
1096 } else {
1097 runstate_set(state);
1098 }
1099 }
1100
1101 static int tcg_cpu_exec(CPUArchState *env)
1102 {
1103 int ret;
1104 #ifdef CONFIG_PROFILER
1105 int64_t ti;
1106 #endif
1107
1108 #ifdef CONFIG_PROFILER
1109 ti = profile_getclock();
1110 #endif
1111 if (use_icount) {
1112 int64_t count;
1113 int decr;
1114 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1115 env->icount_decr.u16.low = 0;
1116 env->icount_extra = 0;
1117 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1118 qemu_icount += count;
1119 decr = (count > 0xffff) ? 0xffff : count;
1120 count -= decr;
1121 env->icount_decr.u16.low = decr;
1122 env->icount_extra = count;
1123 }
1124 ret = cpu_exec(env);
1125 #ifdef CONFIG_PROFILER
1126 qemu_time += profile_getclock() - ti;
1127 #endif
1128 if (use_icount) {
1129 /* Fold pending instructions back into the
1130 instruction counter, and clear the interrupt flag. */
1131 qemu_icount -= (env->icount_decr.u16.low
1132 + env->icount_extra);
1133 env->icount_decr.u32 = 0;
1134 env->icount_extra = 0;
1135 }
1136 return ret;
1137 }
1138
1139 static void tcg_exec_all(void)
1140 {
1141 int r;
1142
1143 /* Account partial waits to the vm_clock. */
1144 qemu_clock_warp(vm_clock);
1145
1146 if (next_cpu == NULL) {
1147 next_cpu = first_cpu;
1148 }
1149 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1150 CPUArchState *env = next_cpu;
1151 CPUState *cpu = ENV_GET_CPU(env);
1152
1153 qemu_clock_enable(vm_clock,
1154 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1155
1156 if (cpu_can_run(env)) {
1157 r = tcg_cpu_exec(env);
1158 if (r == EXCP_DEBUG) {
1159 cpu_handle_guest_debug(env);
1160 break;
1161 }
1162 } else if (cpu->stop || cpu->stopped) {
1163 break;
1164 }
1165 }
1166 exit_request = 0;
1167 }
1168
1169 void set_numa_modes(void)
1170 {
1171 CPUArchState *env;
1172 int i;
1173
1174 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1175 for (i = 0; i < nb_numa_nodes; i++) {
1176 if (test_bit(env->cpu_index, node_cpumask[i])) {
1177 env->numa_node = i;
1178 }
1179 }
1180 }
1181 }
1182
1183 void set_cpu_log(const char *optarg)
1184 {
1185 int mask;
1186 const CPULogItem *item;
1187
1188 mask = cpu_str_to_log_mask(optarg);
1189 if (!mask) {
1190 printf("Log items (comma separated):\n");
1191 for (item = cpu_log_items; item->mask != 0; item++) {
1192 printf("%-10s %s\n", item->name, item->help);
1193 }
1194 exit(1);
1195 }
1196 cpu_set_log(mask);
1197 }
1198
1199 void set_cpu_log_filename(const char *optarg)
1200 {
1201 cpu_set_log_filename(optarg);
1202 }
1203
1204 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1205 {
1206 /* XXX: implement xxx_cpu_list for targets that still miss it */
1207 #if defined(cpu_list)
1208 cpu_list(f, cpu_fprintf);
1209 #endif
1210 }
1211
1212 CpuInfoList *qmp_query_cpus(Error **errp)
1213 {
1214 CpuInfoList *head = NULL, *cur_item = NULL;
1215 CPUArchState *env;
1216
1217 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1218 CpuInfoList *info;
1219
1220 cpu_synchronize_state(env);
1221
1222 info = g_malloc0(sizeof(*info));
1223 info->value = g_malloc0(sizeof(*info->value));
1224 info->value->CPU = env->cpu_index;
1225 info->value->current = (env == first_cpu);
1226 info->value->halted = env->halted;
1227 info->value->thread_id = env->thread_id;
1228 #if defined(TARGET_I386)
1229 info->value->has_pc = true;
1230 info->value->pc = env->eip + env->segs[R_CS].base;
1231 #elif defined(TARGET_PPC)
1232 info->value->has_nip = true;
1233 info->value->nip = env->nip;
1234 #elif defined(TARGET_SPARC)
1235 info->value->has_pc = true;
1236 info->value->pc = env->pc;
1237 info->value->has_npc = true;
1238 info->value->npc = env->npc;
1239 #elif defined(TARGET_MIPS)
1240 info->value->has_PC = true;
1241 info->value->PC = env->active_tc.PC;
1242 #endif
1243
1244 /* XXX: waiting for the qapi to support GSList */
1245 if (!cur_item) {
1246 head = cur_item = info;
1247 } else {
1248 cur_item->next = info;
1249 cur_item = info;
1250 }
1251 }
1252
1253 return head;
1254 }
1255
1256 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1257 bool has_cpu, int64_t cpu_index, Error **errp)
1258 {
1259 FILE *f;
1260 uint32_t l;
1261 CPUArchState *env;
1262 uint8_t buf[1024];
1263
1264 if (!has_cpu) {
1265 cpu_index = 0;
1266 }
1267
1268 for (env = first_cpu; env; env = env->next_cpu) {
1269 if (cpu_index == env->cpu_index) {
1270 break;
1271 }
1272 }
1273
1274 if (env == NULL) {
1275 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1276 "a CPU number");
1277 return;
1278 }
1279
1280 f = fopen(filename, "wb");
1281 if (!f) {
1282 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1283 return;
1284 }
1285
1286 while (size != 0) {
1287 l = sizeof(buf);
1288 if (l > size)
1289 l = size;
1290 cpu_memory_rw_debug(env, addr, buf, l, 0);
1291 if (fwrite(buf, 1, l, f) != l) {
1292 error_set(errp, QERR_IO_ERROR);
1293 goto exit;
1294 }
1295 addr += l;
1296 size -= l;
1297 }
1298
1299 exit:
1300 fclose(f);
1301 }
1302
1303 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1304 Error **errp)
1305 {
1306 FILE *f;
1307 uint32_t l;
1308 uint8_t buf[1024];
1309
1310 f = fopen(filename, "wb");
1311 if (!f) {
1312 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1313 return;
1314 }
1315
1316 while (size != 0) {
1317 l = sizeof(buf);
1318 if (l > size)
1319 l = size;
1320 cpu_physical_memory_rw(addr, buf, l, 0);
1321 if (fwrite(buf, 1, l, f) != l) {
1322 error_set(errp, QERR_IO_ERROR);
1323 goto exit;
1324 }
1325 addr += l;
1326 size -= l;
1327 }
1328
1329 exit:
1330 fclose(f);
1331 }
1332
1333 void qmp_inject_nmi(Error **errp)
1334 {
1335 #if defined(TARGET_I386)
1336 CPUArchState *env;
1337
1338 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1339 if (!env->apic_state) {
1340 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1341 } else {
1342 apic_deliver_nmi(env->apic_state);
1343 }
1344 }
1345 #else
1346 error_set(errp, QERR_UNSUPPORTED);
1347 #endif
1348 }