]> git.proxmox.com Git - qemu.git/blob - cpus.c
main-loop: create main-loop.h
[qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33
34 #include "qemu-thread.h"
35 #include "cpus.h"
36 #include "main-loop.h"
37
38 #ifndef _WIN32
39 #include "compatfd.h"
40 #endif
41
42 #ifdef CONFIG_LINUX
43
44 #include <sys/prctl.h>
45
46 #ifndef PR_MCE_KILL
47 #define PR_MCE_KILL 33
48 #endif
49
50 #ifndef PR_MCE_KILL_SET
51 #define PR_MCE_KILL_SET 1
52 #endif
53
54 #ifndef PR_MCE_KILL_EARLY
55 #define PR_MCE_KILL_EARLY 1
56 #endif
57
58 #endif /* CONFIG_LINUX */
59
60 static CPUState *next_cpu;
61
62 /***********************************************************/
63 /* guest cycle counter */
64
65 /* Conversion factor from emulated instructions to virtual clock ticks. */
66 static int icount_time_shift;
67 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
68 #define MAX_ICOUNT_SHIFT 10
69 /* Compensate for varying guest execution speed. */
70 static int64_t qemu_icount_bias;
71 static QEMUTimer *icount_rt_timer;
72 static QEMUTimer *icount_vm_timer;
73 static QEMUTimer *icount_warp_timer;
74 static int64_t vm_clock_warp_start;
75 static int64_t qemu_icount;
76
77 typedef struct TimersState {
78 int64_t cpu_ticks_prev;
79 int64_t cpu_ticks_offset;
80 int64_t cpu_clock_offset;
81 int32_t cpu_ticks_enabled;
82 int64_t dummy;
83 } TimersState;
84
85 TimersState timers_state;
86
87 /* Return the virtual CPU time, based on the instruction counter. */
88 int64_t cpu_get_icount(void)
89 {
90 int64_t icount;
91 CPUState *env = cpu_single_env;;
92
93 icount = qemu_icount;
94 if (env) {
95 if (!can_do_io(env)) {
96 fprintf(stderr, "Bad clock read\n");
97 }
98 icount -= (env->icount_decr.u16.low + env->icount_extra);
99 }
100 return qemu_icount_bias + (icount << icount_time_shift);
101 }
102
103 /* return the host CPU cycle counter and handle stop/restart */
104 int64_t cpu_get_ticks(void)
105 {
106 if (use_icount) {
107 return cpu_get_icount();
108 }
109 if (!timers_state.cpu_ticks_enabled) {
110 return timers_state.cpu_ticks_offset;
111 } else {
112 int64_t ticks;
113 ticks = cpu_get_real_ticks();
114 if (timers_state.cpu_ticks_prev > ticks) {
115 /* Note: non increasing ticks may happen if the host uses
116 software suspend */
117 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
118 }
119 timers_state.cpu_ticks_prev = ticks;
120 return ticks + timers_state.cpu_ticks_offset;
121 }
122 }
123
124 /* return the host CPU monotonic timer and handle stop/restart */
125 int64_t cpu_get_clock(void)
126 {
127 int64_t ti;
128 if (!timers_state.cpu_ticks_enabled) {
129 return timers_state.cpu_clock_offset;
130 } else {
131 ti = get_clock();
132 return ti + timers_state.cpu_clock_offset;
133 }
134 }
135
136 /* enable cpu_get_ticks() */
137 void cpu_enable_ticks(void)
138 {
139 if (!timers_state.cpu_ticks_enabled) {
140 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
141 timers_state.cpu_clock_offset -= get_clock();
142 timers_state.cpu_ticks_enabled = 1;
143 }
144 }
145
146 /* disable cpu_get_ticks() : the clock is stopped. You must not call
147 cpu_get_ticks() after that. */
148 void cpu_disable_ticks(void)
149 {
150 if (timers_state.cpu_ticks_enabled) {
151 timers_state.cpu_ticks_offset = cpu_get_ticks();
152 timers_state.cpu_clock_offset = cpu_get_clock();
153 timers_state.cpu_ticks_enabled = 0;
154 }
155 }
156
157 /* Correlation between real and virtual time is always going to be
158 fairly approximate, so ignore small variation.
159 When the guest is idle real and virtual time will be aligned in
160 the IO wait loop. */
161 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
162
163 static void icount_adjust(void)
164 {
165 int64_t cur_time;
166 int64_t cur_icount;
167 int64_t delta;
168 static int64_t last_delta;
169 /* If the VM is not running, then do nothing. */
170 if (!runstate_is_running()) {
171 return;
172 }
173 cur_time = cpu_get_clock();
174 cur_icount = qemu_get_clock_ns(vm_clock);
175 delta = cur_icount - cur_time;
176 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
177 if (delta > 0
178 && last_delta + ICOUNT_WOBBLE < delta * 2
179 && icount_time_shift > 0) {
180 /* The guest is getting too far ahead. Slow time down. */
181 icount_time_shift--;
182 }
183 if (delta < 0
184 && last_delta - ICOUNT_WOBBLE > delta * 2
185 && icount_time_shift < MAX_ICOUNT_SHIFT) {
186 /* The guest is getting too far behind. Speed time up. */
187 icount_time_shift++;
188 }
189 last_delta = delta;
190 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
191 }
192
193 static void icount_adjust_rt(void *opaque)
194 {
195 qemu_mod_timer(icount_rt_timer,
196 qemu_get_clock_ms(rt_clock) + 1000);
197 icount_adjust();
198 }
199
200 static void icount_adjust_vm(void *opaque)
201 {
202 qemu_mod_timer(icount_vm_timer,
203 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
204 icount_adjust();
205 }
206
207 static int64_t qemu_icount_round(int64_t count)
208 {
209 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
210 }
211
212 static void icount_warp_rt(void *opaque)
213 {
214 if (vm_clock_warp_start == -1) {
215 return;
216 }
217
218 if (runstate_is_running()) {
219 int64_t clock = qemu_get_clock_ns(rt_clock);
220 int64_t warp_delta = clock - vm_clock_warp_start;
221 if (use_icount == 1) {
222 qemu_icount_bias += warp_delta;
223 } else {
224 /*
225 * In adaptive mode, do not let the vm_clock run too
226 * far ahead of real time.
227 */
228 int64_t cur_time = cpu_get_clock();
229 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
230 int64_t delta = cur_time - cur_icount;
231 qemu_icount_bias += MIN(warp_delta, delta);
232 }
233 if (qemu_clock_expired(vm_clock)) {
234 qemu_notify_event();
235 }
236 }
237 vm_clock_warp_start = -1;
238 }
239
240 void qemu_clock_warp(QEMUClock *clock)
241 {
242 int64_t deadline;
243
244 /*
245 * There are too many global variables to make the "warp" behavior
246 * applicable to other clocks. But a clock argument removes the
247 * need for if statements all over the place.
248 */
249 if (clock != vm_clock || !use_icount) {
250 return;
251 }
252
253 /*
254 * If the CPUs have been sleeping, advance the vm_clock timer now. This
255 * ensures that the deadline for the timer is computed correctly below.
256 * This also makes sure that the insn counter is synchronized before the
257 * CPU starts running, in case the CPU is woken by an event other than
258 * the earliest vm_clock timer.
259 */
260 icount_warp_rt(NULL);
261 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
262 qemu_del_timer(icount_warp_timer);
263 return;
264 }
265
266 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
267 deadline = qemu_clock_deadline(vm_clock);
268 if (deadline > 0) {
269 /*
270 * Ensure the vm_clock proceeds even when the virtual CPU goes to
271 * sleep. Otherwise, the CPU might be waiting for a future timer
272 * interrupt to wake it up, but the interrupt never comes because
273 * the vCPU isn't running any insns and thus doesn't advance the
274 * vm_clock.
275 *
276 * An extreme solution for this problem would be to never let VCPUs
277 * sleep in icount mode if there is a pending vm_clock timer; rather
278 * time could just advance to the next vm_clock event. Instead, we
279 * do stop VCPUs and only advance vm_clock after some "real" time,
280 * (related to the time left until the next event) has passed. This
281 * rt_clock timer will do this. This avoids that the warps are too
282 * visible externally---for example, you will not be sending network
283 * packets continously instead of every 100ms.
284 */
285 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
286 } else {
287 qemu_notify_event();
288 }
289 }
290
291 static const VMStateDescription vmstate_timers = {
292 .name = "timer",
293 .version_id = 2,
294 .minimum_version_id = 1,
295 .minimum_version_id_old = 1,
296 .fields = (VMStateField[]) {
297 VMSTATE_INT64(cpu_ticks_offset, TimersState),
298 VMSTATE_INT64(dummy, TimersState),
299 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
300 VMSTATE_END_OF_LIST()
301 }
302 };
303
304 void configure_icount(const char *option)
305 {
306 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
307 if (!option) {
308 return;
309 }
310
311 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
312 if (strcmp(option, "auto") != 0) {
313 icount_time_shift = strtol(option, NULL, 0);
314 use_icount = 1;
315 return;
316 }
317
318 use_icount = 2;
319
320 /* 125MIPS seems a reasonable initial guess at the guest speed.
321 It will be corrected fairly quickly anyway. */
322 icount_time_shift = 3;
323
324 /* Have both realtime and virtual time triggers for speed adjustment.
325 The realtime trigger catches emulated time passing too slowly,
326 the virtual time trigger catches emulated time passing too fast.
327 Realtime triggers occur even when idle, so use them less frequently
328 than VM triggers. */
329 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
330 qemu_mod_timer(icount_rt_timer,
331 qemu_get_clock_ms(rt_clock) + 1000);
332 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
333 qemu_mod_timer(icount_vm_timer,
334 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
335 }
336
337 /***********************************************************/
338 void hw_error(const char *fmt, ...)
339 {
340 va_list ap;
341 CPUState *env;
342
343 va_start(ap, fmt);
344 fprintf(stderr, "qemu: hardware error: ");
345 vfprintf(stderr, fmt, ap);
346 fprintf(stderr, "\n");
347 for(env = first_cpu; env != NULL; env = env->next_cpu) {
348 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
349 #ifdef TARGET_I386
350 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
351 #else
352 cpu_dump_state(env, stderr, fprintf, 0);
353 #endif
354 }
355 va_end(ap);
356 abort();
357 }
358
359 void cpu_synchronize_all_states(void)
360 {
361 CPUState *cpu;
362
363 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
364 cpu_synchronize_state(cpu);
365 }
366 }
367
368 void cpu_synchronize_all_post_reset(void)
369 {
370 CPUState *cpu;
371
372 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
373 cpu_synchronize_post_reset(cpu);
374 }
375 }
376
377 void cpu_synchronize_all_post_init(void)
378 {
379 CPUState *cpu;
380
381 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
382 cpu_synchronize_post_init(cpu);
383 }
384 }
385
386 int cpu_is_stopped(CPUState *env)
387 {
388 return !runstate_is_running() || env->stopped;
389 }
390
391 static void do_vm_stop(RunState state)
392 {
393 if (runstate_is_running()) {
394 cpu_disable_ticks();
395 pause_all_vcpus();
396 runstate_set(state);
397 vm_state_notify(0, state);
398 qemu_aio_flush();
399 bdrv_flush_all();
400 monitor_protocol_event(QEVENT_STOP, NULL);
401 }
402 }
403
404 static int cpu_can_run(CPUState *env)
405 {
406 if (env->stop) {
407 return 0;
408 }
409 if (env->stopped || !runstate_is_running()) {
410 return 0;
411 }
412 return 1;
413 }
414
415 static bool cpu_thread_is_idle(CPUState *env)
416 {
417 if (env->stop || env->queued_work_first) {
418 return false;
419 }
420 if (env->stopped || !runstate_is_running()) {
421 return true;
422 }
423 if (!env->halted || qemu_cpu_has_work(env) ||
424 (kvm_enabled() && kvm_irqchip_in_kernel())) {
425 return false;
426 }
427 return true;
428 }
429
430 bool all_cpu_threads_idle(void)
431 {
432 CPUState *env;
433
434 for (env = first_cpu; env != NULL; env = env->next_cpu) {
435 if (!cpu_thread_is_idle(env)) {
436 return false;
437 }
438 }
439 return true;
440 }
441
442 static void cpu_handle_guest_debug(CPUState *env)
443 {
444 gdb_set_stop_cpu(env);
445 qemu_system_debug_request();
446 env->stopped = 1;
447 }
448
449 static void cpu_signal(int sig)
450 {
451 if (cpu_single_env) {
452 cpu_exit(cpu_single_env);
453 }
454 exit_request = 1;
455 }
456
457 #ifdef CONFIG_LINUX
458 static void sigbus_reraise(void)
459 {
460 sigset_t set;
461 struct sigaction action;
462
463 memset(&action, 0, sizeof(action));
464 action.sa_handler = SIG_DFL;
465 if (!sigaction(SIGBUS, &action, NULL)) {
466 raise(SIGBUS);
467 sigemptyset(&set);
468 sigaddset(&set, SIGBUS);
469 sigprocmask(SIG_UNBLOCK, &set, NULL);
470 }
471 perror("Failed to re-raise SIGBUS!\n");
472 abort();
473 }
474
475 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
476 void *ctx)
477 {
478 if (kvm_on_sigbus(siginfo->ssi_code,
479 (void *)(intptr_t)siginfo->ssi_addr)) {
480 sigbus_reraise();
481 }
482 }
483
484 static void qemu_init_sigbus(void)
485 {
486 struct sigaction action;
487
488 memset(&action, 0, sizeof(action));
489 action.sa_flags = SA_SIGINFO;
490 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
491 sigaction(SIGBUS, &action, NULL);
492
493 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
494 }
495
496 static void qemu_kvm_eat_signals(CPUState *env)
497 {
498 struct timespec ts = { 0, 0 };
499 siginfo_t siginfo;
500 sigset_t waitset;
501 sigset_t chkset;
502 int r;
503
504 sigemptyset(&waitset);
505 sigaddset(&waitset, SIG_IPI);
506 sigaddset(&waitset, SIGBUS);
507
508 do {
509 r = sigtimedwait(&waitset, &siginfo, &ts);
510 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
511 perror("sigtimedwait");
512 exit(1);
513 }
514
515 switch (r) {
516 case SIGBUS:
517 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
518 sigbus_reraise();
519 }
520 break;
521 default:
522 break;
523 }
524
525 r = sigpending(&chkset);
526 if (r == -1) {
527 perror("sigpending");
528 exit(1);
529 }
530 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
531 }
532
533 #else /* !CONFIG_LINUX */
534
535 static void qemu_init_sigbus(void)
536 {
537 }
538
539 static void qemu_kvm_eat_signals(CPUState *env)
540 {
541 }
542 #endif /* !CONFIG_LINUX */
543
544 #ifndef _WIN32
545 static int io_thread_fd = -1;
546
547 static void qemu_event_increment(void)
548 {
549 /* Write 8 bytes to be compatible with eventfd. */
550 static const uint64_t val = 1;
551 ssize_t ret;
552
553 if (io_thread_fd == -1) {
554 return;
555 }
556 do {
557 ret = write(io_thread_fd, &val, sizeof(val));
558 } while (ret < 0 && errno == EINTR);
559
560 /* EAGAIN is fine, a read must be pending. */
561 if (ret < 0 && errno != EAGAIN) {
562 fprintf(stderr, "qemu_event_increment: write() failed: %s\n",
563 strerror(errno));
564 exit (1);
565 }
566 }
567
568 static void qemu_event_read(void *opaque)
569 {
570 int fd = (intptr_t)opaque;
571 ssize_t len;
572 char buffer[512];
573
574 /* Drain the notify pipe. For eventfd, only 8 bytes will be read. */
575 do {
576 len = read(fd, buffer, sizeof(buffer));
577 } while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
578 }
579
580 static int qemu_event_init(void)
581 {
582 int err;
583 int fds[2];
584
585 err = qemu_eventfd(fds);
586 if (err == -1) {
587 return -errno;
588 }
589 err = fcntl_setfl(fds[0], O_NONBLOCK);
590 if (err < 0) {
591 goto fail;
592 }
593 err = fcntl_setfl(fds[1], O_NONBLOCK);
594 if (err < 0) {
595 goto fail;
596 }
597 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
598 (void *)(intptr_t)fds[0]);
599
600 io_thread_fd = fds[1];
601 return 0;
602
603 fail:
604 close(fds[0]);
605 close(fds[1]);
606 return err;
607 }
608
609 static void dummy_signal(int sig)
610 {
611 }
612
613 /* If we have signalfd, we mask out the signals we want to handle and then
614 * use signalfd to listen for them. We rely on whatever the current signal
615 * handler is to dispatch the signals when we receive them.
616 */
617 static void sigfd_handler(void *opaque)
618 {
619 int fd = (intptr_t)opaque;
620 struct qemu_signalfd_siginfo info;
621 struct sigaction action;
622 ssize_t len;
623
624 while (1) {
625 do {
626 len = read(fd, &info, sizeof(info));
627 } while (len == -1 && errno == EINTR);
628
629 if (len == -1 && errno == EAGAIN) {
630 break;
631 }
632
633 if (len != sizeof(info)) {
634 printf("read from sigfd returned %zd: %m\n", len);
635 return;
636 }
637
638 sigaction(info.ssi_signo, NULL, &action);
639 if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
640 action.sa_sigaction(info.ssi_signo,
641 (siginfo_t *)&info, NULL);
642 } else if (action.sa_handler) {
643 action.sa_handler(info.ssi_signo);
644 }
645 }
646 }
647
648 static int qemu_signal_init(void)
649 {
650 int sigfd;
651 sigset_t set;
652
653 /*
654 * SIG_IPI must be blocked in the main thread and must not be caught
655 * by sigwait() in the signal thread. Otherwise, the cpu thread will
656 * not catch it reliably.
657 */
658 sigemptyset(&set);
659 sigaddset(&set, SIG_IPI);
660 pthread_sigmask(SIG_BLOCK, &set, NULL);
661
662 sigemptyset(&set);
663 sigaddset(&set, SIGIO);
664 sigaddset(&set, SIGALRM);
665 sigaddset(&set, SIGBUS);
666 pthread_sigmask(SIG_BLOCK, &set, NULL);
667
668 sigfd = qemu_signalfd(&set);
669 if (sigfd == -1) {
670 fprintf(stderr, "failed to create signalfd\n");
671 return -errno;
672 }
673
674 fcntl_setfl(sigfd, O_NONBLOCK);
675
676 qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
677 (void *)(intptr_t)sigfd);
678
679 return 0;
680 }
681
682 static void qemu_kvm_init_cpu_signals(CPUState *env)
683 {
684 int r;
685 sigset_t set;
686 struct sigaction sigact;
687
688 memset(&sigact, 0, sizeof(sigact));
689 sigact.sa_handler = dummy_signal;
690 sigaction(SIG_IPI, &sigact, NULL);
691
692 pthread_sigmask(SIG_BLOCK, NULL, &set);
693 sigdelset(&set, SIG_IPI);
694 sigdelset(&set, SIGBUS);
695 r = kvm_set_signal_mask(env, &set);
696 if (r) {
697 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
698 exit(1);
699 }
700
701 sigdelset(&set, SIG_IPI);
702 sigdelset(&set, SIGBUS);
703 r = kvm_set_signal_mask(env, &set);
704 if (r) {
705 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
706 exit(1);
707 }
708 }
709
710 static void qemu_tcg_init_cpu_signals(void)
711 {
712 sigset_t set;
713 struct sigaction sigact;
714
715 memset(&sigact, 0, sizeof(sigact));
716 sigact.sa_handler = cpu_signal;
717 sigaction(SIG_IPI, &sigact, NULL);
718
719 sigemptyset(&set);
720 sigaddset(&set, SIG_IPI);
721 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
722 }
723
724 #else /* _WIN32 */
725
726 HANDLE qemu_event_handle;
727
728 static void dummy_event_handler(void *opaque)
729 {
730 }
731
732 static int qemu_event_init(void)
733 {
734 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
735 if (!qemu_event_handle) {
736 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
737 return -1;
738 }
739 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
740 return 0;
741 }
742
743 static void qemu_event_increment(void)
744 {
745 if (!SetEvent(qemu_event_handle)) {
746 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
747 GetLastError());
748 exit (1);
749 }
750 }
751
752 static int qemu_signal_init(void)
753 {
754 return 0;
755 }
756
757 static void qemu_kvm_init_cpu_signals(CPUState *env)
758 {
759 abort();
760 }
761
762 static void qemu_tcg_init_cpu_signals(void)
763 {
764 }
765 #endif /* _WIN32 */
766
767 QemuMutex qemu_global_mutex;
768 static QemuCond qemu_io_proceeded_cond;
769 static bool iothread_requesting_mutex;
770
771 static QemuThread io_thread;
772
773 static QemuThread *tcg_cpu_thread;
774 static QemuCond *tcg_halt_cond;
775
776 /* cpu creation */
777 static QemuCond qemu_cpu_cond;
778 /* system init */
779 static QemuCond qemu_pause_cond;
780 static QemuCond qemu_work_cond;
781
782 int qemu_init_main_loop(void)
783 {
784 int ret;
785
786 qemu_init_sigbus();
787
788 ret = qemu_signal_init();
789 if (ret) {
790 return ret;
791 }
792
793 /* Note eventfd must be drained before signalfd handlers run */
794 ret = qemu_event_init();
795 if (ret) {
796 return ret;
797 }
798
799 qemu_cond_init(&qemu_cpu_cond);
800 qemu_cond_init(&qemu_pause_cond);
801 qemu_cond_init(&qemu_work_cond);
802 qemu_cond_init(&qemu_io_proceeded_cond);
803 qemu_mutex_init(&qemu_global_mutex);
804 qemu_mutex_lock(&qemu_global_mutex);
805
806 qemu_thread_get_self(&io_thread);
807
808 return 0;
809 }
810
811 void qemu_main_loop_start(void)
812 {
813 resume_all_vcpus();
814 }
815
816 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
817 {
818 struct qemu_work_item wi;
819
820 if (qemu_cpu_is_self(env)) {
821 func(data);
822 return;
823 }
824
825 wi.func = func;
826 wi.data = data;
827 if (!env->queued_work_first) {
828 env->queued_work_first = &wi;
829 } else {
830 env->queued_work_last->next = &wi;
831 }
832 env->queued_work_last = &wi;
833 wi.next = NULL;
834 wi.done = false;
835
836 qemu_cpu_kick(env);
837 while (!wi.done) {
838 CPUState *self_env = cpu_single_env;
839
840 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
841 cpu_single_env = self_env;
842 }
843 }
844
845 static void flush_queued_work(CPUState *env)
846 {
847 struct qemu_work_item *wi;
848
849 if (!env->queued_work_first) {
850 return;
851 }
852
853 while ((wi = env->queued_work_first)) {
854 env->queued_work_first = wi->next;
855 wi->func(wi->data);
856 wi->done = true;
857 }
858 env->queued_work_last = NULL;
859 qemu_cond_broadcast(&qemu_work_cond);
860 }
861
862 static void qemu_wait_io_event_common(CPUState *env)
863 {
864 if (env->stop) {
865 env->stop = 0;
866 env->stopped = 1;
867 qemu_cond_signal(&qemu_pause_cond);
868 }
869 flush_queued_work(env);
870 env->thread_kicked = false;
871 }
872
873 static void qemu_tcg_wait_io_event(void)
874 {
875 CPUState *env;
876
877 while (all_cpu_threads_idle()) {
878 /* Start accounting real time to the virtual clock if the CPUs
879 are idle. */
880 qemu_clock_warp(vm_clock);
881 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
882 }
883
884 while (iothread_requesting_mutex) {
885 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
886 }
887
888 for (env = first_cpu; env != NULL; env = env->next_cpu) {
889 qemu_wait_io_event_common(env);
890 }
891 }
892
893 static void qemu_kvm_wait_io_event(CPUState *env)
894 {
895 while (cpu_thread_is_idle(env)) {
896 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
897 }
898
899 qemu_kvm_eat_signals(env);
900 qemu_wait_io_event_common(env);
901 }
902
903 static void *qemu_kvm_cpu_thread_fn(void *arg)
904 {
905 CPUState *env = arg;
906 int r;
907
908 qemu_mutex_lock(&qemu_global_mutex);
909 qemu_thread_get_self(env->thread);
910 env->thread_id = qemu_get_thread_id();
911
912 r = kvm_init_vcpu(env);
913 if (r < 0) {
914 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
915 exit(1);
916 }
917
918 qemu_kvm_init_cpu_signals(env);
919
920 /* signal CPU creation */
921 env->created = 1;
922 qemu_cond_signal(&qemu_cpu_cond);
923
924 while (1) {
925 if (cpu_can_run(env)) {
926 r = kvm_cpu_exec(env);
927 if (r == EXCP_DEBUG) {
928 cpu_handle_guest_debug(env);
929 }
930 }
931 qemu_kvm_wait_io_event(env);
932 }
933
934 return NULL;
935 }
936
937 static void *qemu_tcg_cpu_thread_fn(void *arg)
938 {
939 CPUState *env = arg;
940
941 qemu_tcg_init_cpu_signals();
942 qemu_thread_get_self(env->thread);
943
944 /* signal CPU creation */
945 qemu_mutex_lock(&qemu_global_mutex);
946 for (env = first_cpu; env != NULL; env = env->next_cpu) {
947 env->thread_id = qemu_get_thread_id();
948 env->created = 1;
949 }
950 qemu_cond_signal(&qemu_cpu_cond);
951
952 /* wait for initial kick-off after machine start */
953 while (first_cpu->stopped) {
954 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
955 }
956
957 while (1) {
958 cpu_exec_all();
959 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
960 qemu_notify_event();
961 }
962 qemu_tcg_wait_io_event();
963 }
964
965 return NULL;
966 }
967
968 static void qemu_cpu_kick_thread(CPUState *env)
969 {
970 #ifndef _WIN32
971 int err;
972
973 err = pthread_kill(env->thread->thread, SIG_IPI);
974 if (err) {
975 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
976 exit(1);
977 }
978 #else /* _WIN32 */
979 if (!qemu_cpu_is_self(env)) {
980 SuspendThread(env->thread->thread);
981 cpu_signal(0);
982 ResumeThread(env->thread->thread);
983 }
984 #endif
985 }
986
987 void qemu_cpu_kick(void *_env)
988 {
989 CPUState *env = _env;
990
991 qemu_cond_broadcast(env->halt_cond);
992 if (kvm_enabled() && !env->thread_kicked) {
993 qemu_cpu_kick_thread(env);
994 env->thread_kicked = true;
995 }
996 }
997
998 void qemu_cpu_kick_self(void)
999 {
1000 #ifndef _WIN32
1001 assert(cpu_single_env);
1002
1003 if (!cpu_single_env->thread_kicked) {
1004 qemu_cpu_kick_thread(cpu_single_env);
1005 cpu_single_env->thread_kicked = true;
1006 }
1007 #else
1008 abort();
1009 #endif
1010 }
1011
1012 int qemu_cpu_is_self(void *_env)
1013 {
1014 CPUState *env = _env;
1015
1016 return qemu_thread_is_self(env->thread);
1017 }
1018
1019 void qemu_mutex_lock_iothread(void)
1020 {
1021 if (kvm_enabled()) {
1022 qemu_mutex_lock(&qemu_global_mutex);
1023 } else {
1024 iothread_requesting_mutex = true;
1025 if (qemu_mutex_trylock(&qemu_global_mutex)) {
1026 qemu_cpu_kick_thread(first_cpu);
1027 qemu_mutex_lock(&qemu_global_mutex);
1028 }
1029 iothread_requesting_mutex = false;
1030 qemu_cond_broadcast(&qemu_io_proceeded_cond);
1031 }
1032 }
1033
1034 void qemu_mutex_unlock_iothread(void)
1035 {
1036 qemu_mutex_unlock(&qemu_global_mutex);
1037 }
1038
1039 static int all_vcpus_paused(void)
1040 {
1041 CPUState *penv = first_cpu;
1042
1043 while (penv) {
1044 if (!penv->stopped) {
1045 return 0;
1046 }
1047 penv = (CPUState *)penv->next_cpu;
1048 }
1049
1050 return 1;
1051 }
1052
1053 void pause_all_vcpus(void)
1054 {
1055 CPUState *penv = first_cpu;
1056
1057 qemu_clock_enable(vm_clock, false);
1058 while (penv) {
1059 penv->stop = 1;
1060 qemu_cpu_kick(penv);
1061 penv = (CPUState *)penv->next_cpu;
1062 }
1063
1064 while (!all_vcpus_paused()) {
1065 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1066 penv = first_cpu;
1067 while (penv) {
1068 qemu_cpu_kick(penv);
1069 penv = (CPUState *)penv->next_cpu;
1070 }
1071 }
1072 }
1073
1074 void resume_all_vcpus(void)
1075 {
1076 CPUState *penv = first_cpu;
1077
1078 while (penv) {
1079 penv->stop = 0;
1080 penv->stopped = 0;
1081 qemu_cpu_kick(penv);
1082 penv = (CPUState *)penv->next_cpu;
1083 }
1084 }
1085
1086 static void qemu_tcg_init_vcpu(void *_env)
1087 {
1088 CPUState *env = _env;
1089
1090 /* share a single thread for all cpus with TCG */
1091 if (!tcg_cpu_thread) {
1092 env->thread = g_malloc0(sizeof(QemuThread));
1093 env->halt_cond = g_malloc0(sizeof(QemuCond));
1094 qemu_cond_init(env->halt_cond);
1095 tcg_halt_cond = env->halt_cond;
1096 qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env);
1097 while (env->created == 0) {
1098 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1099 }
1100 tcg_cpu_thread = env->thread;
1101 } else {
1102 env->thread = tcg_cpu_thread;
1103 env->halt_cond = tcg_halt_cond;
1104 }
1105 }
1106
1107 static void qemu_kvm_start_vcpu(CPUState *env)
1108 {
1109 env->thread = g_malloc0(sizeof(QemuThread));
1110 env->halt_cond = g_malloc0(sizeof(QemuCond));
1111 qemu_cond_init(env->halt_cond);
1112 qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env);
1113 while (env->created == 0) {
1114 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1115 }
1116 }
1117
1118 void qemu_init_vcpu(void *_env)
1119 {
1120 CPUState *env = _env;
1121
1122 env->nr_cores = smp_cores;
1123 env->nr_threads = smp_threads;
1124 env->stopped = 1;
1125 if (kvm_enabled()) {
1126 qemu_kvm_start_vcpu(env);
1127 } else {
1128 qemu_tcg_init_vcpu(env);
1129 }
1130 }
1131
1132 void qemu_notify_event(void)
1133 {
1134 qemu_event_increment();
1135 }
1136
1137 void cpu_stop_current(void)
1138 {
1139 if (cpu_single_env) {
1140 cpu_single_env->stop = 0;
1141 cpu_single_env->stopped = 1;
1142 cpu_exit(cpu_single_env);
1143 qemu_cond_signal(&qemu_pause_cond);
1144 }
1145 }
1146
1147 void vm_stop(RunState state)
1148 {
1149 if (!qemu_thread_is_self(&io_thread)) {
1150 qemu_system_vmstop_request(state);
1151 /*
1152 * FIXME: should not return to device code in case
1153 * vm_stop() has been requested.
1154 */
1155 cpu_stop_current();
1156 return;
1157 }
1158 do_vm_stop(state);
1159 }
1160
1161 /* does a state transition even if the VM is already stopped,
1162 current state is forgotten forever */
1163 void vm_stop_force_state(RunState state)
1164 {
1165 if (runstate_is_running()) {
1166 vm_stop(state);
1167 } else {
1168 runstate_set(state);
1169 }
1170 }
1171
1172 static int tcg_cpu_exec(CPUState *env)
1173 {
1174 int ret;
1175 #ifdef CONFIG_PROFILER
1176 int64_t ti;
1177 #endif
1178
1179 #ifdef CONFIG_PROFILER
1180 ti = profile_getclock();
1181 #endif
1182 if (use_icount) {
1183 int64_t count;
1184 int decr;
1185 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1186 env->icount_decr.u16.low = 0;
1187 env->icount_extra = 0;
1188 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1189 qemu_icount += count;
1190 decr = (count > 0xffff) ? 0xffff : count;
1191 count -= decr;
1192 env->icount_decr.u16.low = decr;
1193 env->icount_extra = count;
1194 }
1195 ret = cpu_exec(env);
1196 #ifdef CONFIG_PROFILER
1197 qemu_time += profile_getclock() - ti;
1198 #endif
1199 if (use_icount) {
1200 /* Fold pending instructions back into the
1201 instruction counter, and clear the interrupt flag. */
1202 qemu_icount -= (env->icount_decr.u16.low
1203 + env->icount_extra);
1204 env->icount_decr.u32 = 0;
1205 env->icount_extra = 0;
1206 }
1207 return ret;
1208 }
1209
1210 bool cpu_exec_all(void)
1211 {
1212 int r;
1213
1214 /* Account partial waits to the vm_clock. */
1215 qemu_clock_warp(vm_clock);
1216
1217 if (next_cpu == NULL) {
1218 next_cpu = first_cpu;
1219 }
1220 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1221 CPUState *env = next_cpu;
1222
1223 qemu_clock_enable(vm_clock,
1224 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1225
1226 if (cpu_can_run(env)) {
1227 if (kvm_enabled()) {
1228 r = kvm_cpu_exec(env);
1229 qemu_kvm_eat_signals(env);
1230 } else {
1231 r = tcg_cpu_exec(env);
1232 }
1233 if (r == EXCP_DEBUG) {
1234 cpu_handle_guest_debug(env);
1235 break;
1236 }
1237 } else if (env->stop || env->stopped) {
1238 break;
1239 }
1240 }
1241 exit_request = 0;
1242 return !all_cpu_threads_idle();
1243 }
1244
1245 void set_numa_modes(void)
1246 {
1247 CPUState *env;
1248 int i;
1249
1250 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1251 for (i = 0; i < nb_numa_nodes; i++) {
1252 if (node_cpumask[i] & (1 << env->cpu_index)) {
1253 env->numa_node = i;
1254 }
1255 }
1256 }
1257 }
1258
1259 void set_cpu_log(const char *optarg)
1260 {
1261 int mask;
1262 const CPULogItem *item;
1263
1264 mask = cpu_str_to_log_mask(optarg);
1265 if (!mask) {
1266 printf("Log items (comma separated):\n");
1267 for (item = cpu_log_items; item->mask != 0; item++) {
1268 printf("%-10s %s\n", item->name, item->help);
1269 }
1270 exit(1);
1271 }
1272 cpu_set_log(mask);
1273 }
1274
1275 void set_cpu_log_filename(const char *optarg)
1276 {
1277 cpu_set_log_filename(optarg);
1278 }
1279
1280 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1281 {
1282 /* XXX: implement xxx_cpu_list for targets that still miss it */
1283 #if defined(cpu_list_id)
1284 cpu_list_id(f, cpu_fprintf, optarg);
1285 #elif defined(cpu_list)
1286 cpu_list(f, cpu_fprintf); /* deprecated */
1287 #endif
1288 }