]> git.proxmox.com Git - qemu.git/blob - cpus.c
cpu: Move stop field to CPUState
[qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "qmp-commands.h"
34
35 #include "qemu-thread.h"
36 #include "cpus.h"
37 #include "qtest.h"
38 #include "main-loop.h"
39 #include "bitmap.h"
40
41 #ifndef _WIN32
42 #include "compatfd.h"
43 #endif
44
45 #ifdef CONFIG_LINUX
46
47 #include <sys/prctl.h>
48
49 #ifndef PR_MCE_KILL
50 #define PR_MCE_KILL 33
51 #endif
52
53 #ifndef PR_MCE_KILL_SET
54 #define PR_MCE_KILL_SET 1
55 #endif
56
57 #ifndef PR_MCE_KILL_EARLY
58 #define PR_MCE_KILL_EARLY 1
59 #endif
60
61 #endif /* CONFIG_LINUX */
62
63 static CPUArchState *next_cpu;
64
65 static bool cpu_thread_is_idle(CPUArchState *env)
66 {
67 CPUState *cpu = ENV_GET_CPU(env);
68
69 if (cpu->stop || env->queued_work_first) {
70 return false;
71 }
72 if (env->stopped || !runstate_is_running()) {
73 return true;
74 }
75 if (!env->halted || qemu_cpu_has_work(env) ||
76 kvm_async_interrupts_enabled()) {
77 return false;
78 }
79 return true;
80 }
81
82 static bool all_cpu_threads_idle(void)
83 {
84 CPUArchState *env;
85
86 for (env = first_cpu; env != NULL; env = env->next_cpu) {
87 if (!cpu_thread_is_idle(env)) {
88 return false;
89 }
90 }
91 return true;
92 }
93
94 /***********************************************************/
95 /* guest cycle counter */
96
97 /* Conversion factor from emulated instructions to virtual clock ticks. */
98 static int icount_time_shift;
99 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
100 #define MAX_ICOUNT_SHIFT 10
101 /* Compensate for varying guest execution speed. */
102 static int64_t qemu_icount_bias;
103 static QEMUTimer *icount_rt_timer;
104 static QEMUTimer *icount_vm_timer;
105 static QEMUTimer *icount_warp_timer;
106 static int64_t vm_clock_warp_start;
107 static int64_t qemu_icount;
108
109 typedef struct TimersState {
110 int64_t cpu_ticks_prev;
111 int64_t cpu_ticks_offset;
112 int64_t cpu_clock_offset;
113 int32_t cpu_ticks_enabled;
114 int64_t dummy;
115 } TimersState;
116
117 TimersState timers_state;
118
119 /* Return the virtual CPU time, based on the instruction counter. */
120 int64_t cpu_get_icount(void)
121 {
122 int64_t icount;
123 CPUArchState *env = cpu_single_env;
124
125 icount = qemu_icount;
126 if (env) {
127 if (!can_do_io(env)) {
128 fprintf(stderr, "Bad clock read\n");
129 }
130 icount -= (env->icount_decr.u16.low + env->icount_extra);
131 }
132 return qemu_icount_bias + (icount << icount_time_shift);
133 }
134
135 /* return the host CPU cycle counter and handle stop/restart */
136 int64_t cpu_get_ticks(void)
137 {
138 if (use_icount) {
139 return cpu_get_icount();
140 }
141 if (!timers_state.cpu_ticks_enabled) {
142 return timers_state.cpu_ticks_offset;
143 } else {
144 int64_t ticks;
145 ticks = cpu_get_real_ticks();
146 if (timers_state.cpu_ticks_prev > ticks) {
147 /* Note: non increasing ticks may happen if the host uses
148 software suspend */
149 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
150 }
151 timers_state.cpu_ticks_prev = ticks;
152 return ticks + timers_state.cpu_ticks_offset;
153 }
154 }
155
156 /* return the host CPU monotonic timer and handle stop/restart */
157 int64_t cpu_get_clock(void)
158 {
159 int64_t ti;
160 if (!timers_state.cpu_ticks_enabled) {
161 return timers_state.cpu_clock_offset;
162 } else {
163 ti = get_clock();
164 return ti + timers_state.cpu_clock_offset;
165 }
166 }
167
168 /* enable cpu_get_ticks() */
169 void cpu_enable_ticks(void)
170 {
171 if (!timers_state.cpu_ticks_enabled) {
172 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
173 timers_state.cpu_clock_offset -= get_clock();
174 timers_state.cpu_ticks_enabled = 1;
175 }
176 }
177
178 /* disable cpu_get_ticks() : the clock is stopped. You must not call
179 cpu_get_ticks() after that. */
180 void cpu_disable_ticks(void)
181 {
182 if (timers_state.cpu_ticks_enabled) {
183 timers_state.cpu_ticks_offset = cpu_get_ticks();
184 timers_state.cpu_clock_offset = cpu_get_clock();
185 timers_state.cpu_ticks_enabled = 0;
186 }
187 }
188
189 /* Correlation between real and virtual time is always going to be
190 fairly approximate, so ignore small variation.
191 When the guest is idle real and virtual time will be aligned in
192 the IO wait loop. */
193 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
194
195 static void icount_adjust(void)
196 {
197 int64_t cur_time;
198 int64_t cur_icount;
199 int64_t delta;
200 static int64_t last_delta;
201 /* If the VM is not running, then do nothing. */
202 if (!runstate_is_running()) {
203 return;
204 }
205 cur_time = cpu_get_clock();
206 cur_icount = qemu_get_clock_ns(vm_clock);
207 delta = cur_icount - cur_time;
208 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
209 if (delta > 0
210 && last_delta + ICOUNT_WOBBLE < delta * 2
211 && icount_time_shift > 0) {
212 /* The guest is getting too far ahead. Slow time down. */
213 icount_time_shift--;
214 }
215 if (delta < 0
216 && last_delta - ICOUNT_WOBBLE > delta * 2
217 && icount_time_shift < MAX_ICOUNT_SHIFT) {
218 /* The guest is getting too far behind. Speed time up. */
219 icount_time_shift++;
220 }
221 last_delta = delta;
222 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
223 }
224
225 static void icount_adjust_rt(void *opaque)
226 {
227 qemu_mod_timer(icount_rt_timer,
228 qemu_get_clock_ms(rt_clock) + 1000);
229 icount_adjust();
230 }
231
232 static void icount_adjust_vm(void *opaque)
233 {
234 qemu_mod_timer(icount_vm_timer,
235 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
236 icount_adjust();
237 }
238
239 static int64_t qemu_icount_round(int64_t count)
240 {
241 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
242 }
243
244 static void icount_warp_rt(void *opaque)
245 {
246 if (vm_clock_warp_start == -1) {
247 return;
248 }
249
250 if (runstate_is_running()) {
251 int64_t clock = qemu_get_clock_ns(rt_clock);
252 int64_t warp_delta = clock - vm_clock_warp_start;
253 if (use_icount == 1) {
254 qemu_icount_bias += warp_delta;
255 } else {
256 /*
257 * In adaptive mode, do not let the vm_clock run too
258 * far ahead of real time.
259 */
260 int64_t cur_time = cpu_get_clock();
261 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
262 int64_t delta = cur_time - cur_icount;
263 qemu_icount_bias += MIN(warp_delta, delta);
264 }
265 if (qemu_clock_expired(vm_clock)) {
266 qemu_notify_event();
267 }
268 }
269 vm_clock_warp_start = -1;
270 }
271
272 void qtest_clock_warp(int64_t dest)
273 {
274 int64_t clock = qemu_get_clock_ns(vm_clock);
275 assert(qtest_enabled());
276 while (clock < dest) {
277 int64_t deadline = qemu_clock_deadline(vm_clock);
278 int64_t warp = MIN(dest - clock, deadline);
279 qemu_icount_bias += warp;
280 qemu_run_timers(vm_clock);
281 clock = qemu_get_clock_ns(vm_clock);
282 }
283 qemu_notify_event();
284 }
285
286 void qemu_clock_warp(QEMUClock *clock)
287 {
288 int64_t deadline;
289
290 /*
291 * There are too many global variables to make the "warp" behavior
292 * applicable to other clocks. But a clock argument removes the
293 * need for if statements all over the place.
294 */
295 if (clock != vm_clock || !use_icount) {
296 return;
297 }
298
299 /*
300 * If the CPUs have been sleeping, advance the vm_clock timer now. This
301 * ensures that the deadline for the timer is computed correctly below.
302 * This also makes sure that the insn counter is synchronized before the
303 * CPU starts running, in case the CPU is woken by an event other than
304 * the earliest vm_clock timer.
305 */
306 icount_warp_rt(NULL);
307 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
308 qemu_del_timer(icount_warp_timer);
309 return;
310 }
311
312 if (qtest_enabled()) {
313 /* When testing, qtest commands advance icount. */
314 return;
315 }
316
317 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
318 deadline = qemu_clock_deadline(vm_clock);
319 if (deadline > 0) {
320 /*
321 * Ensure the vm_clock proceeds even when the virtual CPU goes to
322 * sleep. Otherwise, the CPU might be waiting for a future timer
323 * interrupt to wake it up, but the interrupt never comes because
324 * the vCPU isn't running any insns and thus doesn't advance the
325 * vm_clock.
326 *
327 * An extreme solution for this problem would be to never let VCPUs
328 * sleep in icount mode if there is a pending vm_clock timer; rather
329 * time could just advance to the next vm_clock event. Instead, we
330 * do stop VCPUs and only advance vm_clock after some "real" time,
331 * (related to the time left until the next event) has passed. This
332 * rt_clock timer will do this. This avoids that the warps are too
333 * visible externally---for example, you will not be sending network
334 * packets continuously instead of every 100ms.
335 */
336 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
337 } else {
338 qemu_notify_event();
339 }
340 }
341
342 static const VMStateDescription vmstate_timers = {
343 .name = "timer",
344 .version_id = 2,
345 .minimum_version_id = 1,
346 .minimum_version_id_old = 1,
347 .fields = (VMStateField[]) {
348 VMSTATE_INT64(cpu_ticks_offset, TimersState),
349 VMSTATE_INT64(dummy, TimersState),
350 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
351 VMSTATE_END_OF_LIST()
352 }
353 };
354
355 void configure_icount(const char *option)
356 {
357 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
358 if (!option) {
359 return;
360 }
361
362 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
363 if (strcmp(option, "auto") != 0) {
364 icount_time_shift = strtol(option, NULL, 0);
365 use_icount = 1;
366 return;
367 }
368
369 use_icount = 2;
370
371 /* 125MIPS seems a reasonable initial guess at the guest speed.
372 It will be corrected fairly quickly anyway. */
373 icount_time_shift = 3;
374
375 /* Have both realtime and virtual time triggers for speed adjustment.
376 The realtime trigger catches emulated time passing too slowly,
377 the virtual time trigger catches emulated time passing too fast.
378 Realtime triggers occur even when idle, so use them less frequently
379 than VM triggers. */
380 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
381 qemu_mod_timer(icount_rt_timer,
382 qemu_get_clock_ms(rt_clock) + 1000);
383 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
384 qemu_mod_timer(icount_vm_timer,
385 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
386 }
387
388 /***********************************************************/
389 void hw_error(const char *fmt, ...)
390 {
391 va_list ap;
392 CPUArchState *env;
393
394 va_start(ap, fmt);
395 fprintf(stderr, "qemu: hardware error: ");
396 vfprintf(stderr, fmt, ap);
397 fprintf(stderr, "\n");
398 for(env = first_cpu; env != NULL; env = env->next_cpu) {
399 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
400 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU);
401 }
402 va_end(ap);
403 abort();
404 }
405
406 void cpu_synchronize_all_states(void)
407 {
408 CPUArchState *cpu;
409
410 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
411 cpu_synchronize_state(cpu);
412 }
413 }
414
415 void cpu_synchronize_all_post_reset(void)
416 {
417 CPUArchState *cpu;
418
419 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
420 cpu_synchronize_post_reset(cpu);
421 }
422 }
423
424 void cpu_synchronize_all_post_init(void)
425 {
426 CPUArchState *cpu;
427
428 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
429 cpu_synchronize_post_init(cpu);
430 }
431 }
432
433 int cpu_is_stopped(CPUArchState *env)
434 {
435 return !runstate_is_running() || env->stopped;
436 }
437
438 static void do_vm_stop(RunState state)
439 {
440 if (runstate_is_running()) {
441 cpu_disable_ticks();
442 pause_all_vcpus();
443 runstate_set(state);
444 vm_state_notify(0, state);
445 bdrv_drain_all();
446 bdrv_flush_all();
447 monitor_protocol_event(QEVENT_STOP, NULL);
448 }
449 }
450
451 static int cpu_can_run(CPUArchState *env)
452 {
453 CPUState *cpu = ENV_GET_CPU(env);
454
455 if (cpu->stop) {
456 return 0;
457 }
458 if (env->stopped || !runstate_is_running()) {
459 return 0;
460 }
461 return 1;
462 }
463
464 static void cpu_handle_guest_debug(CPUArchState *env)
465 {
466 gdb_set_stop_cpu(env);
467 qemu_system_debug_request();
468 env->stopped = 1;
469 }
470
471 static void cpu_signal(int sig)
472 {
473 if (cpu_single_env) {
474 cpu_exit(cpu_single_env);
475 }
476 exit_request = 1;
477 }
478
479 #ifdef CONFIG_LINUX
480 static void sigbus_reraise(void)
481 {
482 sigset_t set;
483 struct sigaction action;
484
485 memset(&action, 0, sizeof(action));
486 action.sa_handler = SIG_DFL;
487 if (!sigaction(SIGBUS, &action, NULL)) {
488 raise(SIGBUS);
489 sigemptyset(&set);
490 sigaddset(&set, SIGBUS);
491 sigprocmask(SIG_UNBLOCK, &set, NULL);
492 }
493 perror("Failed to re-raise SIGBUS!\n");
494 abort();
495 }
496
497 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
498 void *ctx)
499 {
500 if (kvm_on_sigbus(siginfo->ssi_code,
501 (void *)(intptr_t)siginfo->ssi_addr)) {
502 sigbus_reraise();
503 }
504 }
505
506 static void qemu_init_sigbus(void)
507 {
508 struct sigaction action;
509
510 memset(&action, 0, sizeof(action));
511 action.sa_flags = SA_SIGINFO;
512 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
513 sigaction(SIGBUS, &action, NULL);
514
515 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
516 }
517
518 static void qemu_kvm_eat_signals(CPUArchState *env)
519 {
520 struct timespec ts = { 0, 0 };
521 siginfo_t siginfo;
522 sigset_t waitset;
523 sigset_t chkset;
524 int r;
525
526 sigemptyset(&waitset);
527 sigaddset(&waitset, SIG_IPI);
528 sigaddset(&waitset, SIGBUS);
529
530 do {
531 r = sigtimedwait(&waitset, &siginfo, &ts);
532 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
533 perror("sigtimedwait");
534 exit(1);
535 }
536
537 switch (r) {
538 case SIGBUS:
539 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
540 sigbus_reraise();
541 }
542 break;
543 default:
544 break;
545 }
546
547 r = sigpending(&chkset);
548 if (r == -1) {
549 perror("sigpending");
550 exit(1);
551 }
552 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
553 }
554
555 #else /* !CONFIG_LINUX */
556
557 static void qemu_init_sigbus(void)
558 {
559 }
560
561 static void qemu_kvm_eat_signals(CPUArchState *env)
562 {
563 }
564 #endif /* !CONFIG_LINUX */
565
566 #ifndef _WIN32
567 static void dummy_signal(int sig)
568 {
569 }
570
571 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
572 {
573 int r;
574 sigset_t set;
575 struct sigaction sigact;
576
577 memset(&sigact, 0, sizeof(sigact));
578 sigact.sa_handler = dummy_signal;
579 sigaction(SIG_IPI, &sigact, NULL);
580
581 pthread_sigmask(SIG_BLOCK, NULL, &set);
582 sigdelset(&set, SIG_IPI);
583 sigdelset(&set, SIGBUS);
584 r = kvm_set_signal_mask(env, &set);
585 if (r) {
586 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
587 exit(1);
588 }
589 }
590
591 static void qemu_tcg_init_cpu_signals(void)
592 {
593 sigset_t set;
594 struct sigaction sigact;
595
596 memset(&sigact, 0, sizeof(sigact));
597 sigact.sa_handler = cpu_signal;
598 sigaction(SIG_IPI, &sigact, NULL);
599
600 sigemptyset(&set);
601 sigaddset(&set, SIG_IPI);
602 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
603 }
604
605 #else /* _WIN32 */
606 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
607 {
608 abort();
609 }
610
611 static void qemu_tcg_init_cpu_signals(void)
612 {
613 }
614 #endif /* _WIN32 */
615
616 static QemuMutex qemu_global_mutex;
617 static QemuCond qemu_io_proceeded_cond;
618 static bool iothread_requesting_mutex;
619
620 static QemuThread io_thread;
621
622 static QemuThread *tcg_cpu_thread;
623 static QemuCond *tcg_halt_cond;
624
625 /* cpu creation */
626 static QemuCond qemu_cpu_cond;
627 /* system init */
628 static QemuCond qemu_pause_cond;
629 static QemuCond qemu_work_cond;
630
631 void qemu_init_cpu_loop(void)
632 {
633 qemu_init_sigbus();
634 qemu_cond_init(&qemu_cpu_cond);
635 qemu_cond_init(&qemu_pause_cond);
636 qemu_cond_init(&qemu_work_cond);
637 qemu_cond_init(&qemu_io_proceeded_cond);
638 qemu_mutex_init(&qemu_global_mutex);
639
640 qemu_thread_get_self(&io_thread);
641 }
642
643 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data)
644 {
645 CPUState *cpu = ENV_GET_CPU(env);
646 struct qemu_work_item wi;
647
648 if (qemu_cpu_is_self(cpu)) {
649 func(data);
650 return;
651 }
652
653 wi.func = func;
654 wi.data = data;
655 if (!env->queued_work_first) {
656 env->queued_work_first = &wi;
657 } else {
658 env->queued_work_last->next = &wi;
659 }
660 env->queued_work_last = &wi;
661 wi.next = NULL;
662 wi.done = false;
663
664 qemu_cpu_kick(env);
665 while (!wi.done) {
666 CPUArchState *self_env = cpu_single_env;
667
668 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
669 cpu_single_env = self_env;
670 }
671 }
672
673 static void flush_queued_work(CPUArchState *env)
674 {
675 struct qemu_work_item *wi;
676
677 if (!env->queued_work_first) {
678 return;
679 }
680
681 while ((wi = env->queued_work_first)) {
682 env->queued_work_first = wi->next;
683 wi->func(wi->data);
684 wi->done = true;
685 }
686 env->queued_work_last = NULL;
687 qemu_cond_broadcast(&qemu_work_cond);
688 }
689
690 static void qemu_wait_io_event_common(CPUArchState *env)
691 {
692 CPUState *cpu = ENV_GET_CPU(env);
693
694 if (cpu->stop) {
695 cpu->stop = false;
696 env->stopped = 1;
697 qemu_cond_signal(&qemu_pause_cond);
698 }
699 flush_queued_work(env);
700 cpu->thread_kicked = false;
701 }
702
703 static void qemu_tcg_wait_io_event(void)
704 {
705 CPUArchState *env;
706
707 while (all_cpu_threads_idle()) {
708 /* Start accounting real time to the virtual clock if the CPUs
709 are idle. */
710 qemu_clock_warp(vm_clock);
711 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
712 }
713
714 while (iothread_requesting_mutex) {
715 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
716 }
717
718 for (env = first_cpu; env != NULL; env = env->next_cpu) {
719 qemu_wait_io_event_common(env);
720 }
721 }
722
723 static void qemu_kvm_wait_io_event(CPUArchState *env)
724 {
725 while (cpu_thread_is_idle(env)) {
726 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
727 }
728
729 qemu_kvm_eat_signals(env);
730 qemu_wait_io_event_common(env);
731 }
732
733 static void *qemu_kvm_cpu_thread_fn(void *arg)
734 {
735 CPUArchState *env = arg;
736 CPUState *cpu = ENV_GET_CPU(env);
737 int r;
738
739 qemu_mutex_lock(&qemu_global_mutex);
740 qemu_thread_get_self(cpu->thread);
741 env->thread_id = qemu_get_thread_id();
742 cpu_single_env = env;
743
744 r = kvm_init_vcpu(env);
745 if (r < 0) {
746 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
747 exit(1);
748 }
749
750 qemu_kvm_init_cpu_signals(env);
751
752 /* signal CPU creation */
753 cpu->created = true;
754 qemu_cond_signal(&qemu_cpu_cond);
755
756 while (1) {
757 if (cpu_can_run(env)) {
758 r = kvm_cpu_exec(env);
759 if (r == EXCP_DEBUG) {
760 cpu_handle_guest_debug(env);
761 }
762 }
763 qemu_kvm_wait_io_event(env);
764 }
765
766 return NULL;
767 }
768
769 static void *qemu_dummy_cpu_thread_fn(void *arg)
770 {
771 #ifdef _WIN32
772 fprintf(stderr, "qtest is not supported under Windows\n");
773 exit(1);
774 #else
775 CPUArchState *env = arg;
776 CPUState *cpu = ENV_GET_CPU(env);
777 sigset_t waitset;
778 int r;
779
780 qemu_mutex_lock_iothread();
781 qemu_thread_get_self(cpu->thread);
782 env->thread_id = qemu_get_thread_id();
783
784 sigemptyset(&waitset);
785 sigaddset(&waitset, SIG_IPI);
786
787 /* signal CPU creation */
788 cpu->created = true;
789 qemu_cond_signal(&qemu_cpu_cond);
790
791 cpu_single_env = env;
792 while (1) {
793 cpu_single_env = NULL;
794 qemu_mutex_unlock_iothread();
795 do {
796 int sig;
797 r = sigwait(&waitset, &sig);
798 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
799 if (r == -1) {
800 perror("sigwait");
801 exit(1);
802 }
803 qemu_mutex_lock_iothread();
804 cpu_single_env = env;
805 qemu_wait_io_event_common(env);
806 }
807
808 return NULL;
809 #endif
810 }
811
812 static void tcg_exec_all(void);
813
814 static void *qemu_tcg_cpu_thread_fn(void *arg)
815 {
816 CPUArchState *env = arg;
817 CPUState *cpu = ENV_GET_CPU(env);
818
819 qemu_tcg_init_cpu_signals();
820 qemu_thread_get_self(cpu->thread);
821
822 /* signal CPU creation */
823 qemu_mutex_lock(&qemu_global_mutex);
824 for (env = first_cpu; env != NULL; env = env->next_cpu) {
825 cpu = ENV_GET_CPU(env);
826 env->thread_id = qemu_get_thread_id();
827 cpu->created = true;
828 }
829 qemu_cond_signal(&qemu_cpu_cond);
830
831 /* wait for initial kick-off after machine start */
832 while (first_cpu->stopped) {
833 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
834
835 /* process any pending work */
836 for (env = first_cpu; env != NULL; env = env->next_cpu) {
837 qemu_wait_io_event_common(env);
838 }
839 }
840
841 while (1) {
842 tcg_exec_all();
843 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
844 qemu_notify_event();
845 }
846 qemu_tcg_wait_io_event();
847 }
848
849 return NULL;
850 }
851
852 static void qemu_cpu_kick_thread(CPUState *cpu)
853 {
854 #ifndef _WIN32
855 int err;
856
857 err = pthread_kill(cpu->thread->thread, SIG_IPI);
858 if (err) {
859 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
860 exit(1);
861 }
862 #else /* _WIN32 */
863 if (!qemu_cpu_is_self(cpu)) {
864 SuspendThread(cpu->hThread);
865 cpu_signal(0);
866 ResumeThread(cpu->hThread);
867 }
868 #endif
869 }
870
871 void qemu_cpu_kick(void *_env)
872 {
873 CPUArchState *env = _env;
874 CPUState *cpu = ENV_GET_CPU(env);
875
876 qemu_cond_broadcast(env->halt_cond);
877 if (!tcg_enabled() && !cpu->thread_kicked) {
878 qemu_cpu_kick_thread(cpu);
879 cpu->thread_kicked = true;
880 }
881 }
882
883 void qemu_cpu_kick_self(void)
884 {
885 #ifndef _WIN32
886 assert(cpu_single_env);
887 CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
888
889 if (!cpu_single_cpu->thread_kicked) {
890 qemu_cpu_kick_thread(cpu_single_cpu);
891 cpu_single_cpu->thread_kicked = true;
892 }
893 #else
894 abort();
895 #endif
896 }
897
898 bool qemu_cpu_is_self(CPUState *cpu)
899 {
900 return qemu_thread_is_self(cpu->thread);
901 }
902
903 static bool qemu_in_vcpu_thread(void)
904 {
905 return cpu_single_env && qemu_cpu_is_self(ENV_GET_CPU(cpu_single_env));
906 }
907
908 void qemu_mutex_lock_iothread(void)
909 {
910 if (!tcg_enabled()) {
911 qemu_mutex_lock(&qemu_global_mutex);
912 } else {
913 iothread_requesting_mutex = true;
914 if (qemu_mutex_trylock(&qemu_global_mutex)) {
915 qemu_cpu_kick_thread(ENV_GET_CPU(first_cpu));
916 qemu_mutex_lock(&qemu_global_mutex);
917 }
918 iothread_requesting_mutex = false;
919 qemu_cond_broadcast(&qemu_io_proceeded_cond);
920 }
921 }
922
923 void qemu_mutex_unlock_iothread(void)
924 {
925 qemu_mutex_unlock(&qemu_global_mutex);
926 }
927
928 static int all_vcpus_paused(void)
929 {
930 CPUArchState *penv = first_cpu;
931
932 while (penv) {
933 if (!penv->stopped) {
934 return 0;
935 }
936 penv = penv->next_cpu;
937 }
938
939 return 1;
940 }
941
942 void pause_all_vcpus(void)
943 {
944 CPUArchState *penv = first_cpu;
945
946 qemu_clock_enable(vm_clock, false);
947 while (penv) {
948 CPUState *pcpu = ENV_GET_CPU(penv);
949 pcpu->stop = true;
950 qemu_cpu_kick(penv);
951 penv = penv->next_cpu;
952 }
953
954 if (qemu_in_vcpu_thread()) {
955 cpu_stop_current();
956 if (!kvm_enabled()) {
957 while (penv) {
958 CPUState *pcpu = ENV_GET_CPU(penv);
959 pcpu->stop = 0;
960 penv->stopped = 1;
961 penv = penv->next_cpu;
962 }
963 return;
964 }
965 }
966
967 while (!all_vcpus_paused()) {
968 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
969 penv = first_cpu;
970 while (penv) {
971 qemu_cpu_kick(penv);
972 penv = penv->next_cpu;
973 }
974 }
975 }
976
977 void resume_all_vcpus(void)
978 {
979 CPUArchState *penv = first_cpu;
980
981 qemu_clock_enable(vm_clock, true);
982 while (penv) {
983 CPUState *pcpu = ENV_GET_CPU(penv);
984 pcpu->stop = false;
985 penv->stopped = 0;
986 qemu_cpu_kick(penv);
987 penv = penv->next_cpu;
988 }
989 }
990
991 static void qemu_tcg_init_vcpu(void *_env)
992 {
993 CPUArchState *env = _env;
994 CPUState *cpu = ENV_GET_CPU(env);
995
996 /* share a single thread for all cpus with TCG */
997 if (!tcg_cpu_thread) {
998 cpu->thread = g_malloc0(sizeof(QemuThread));
999 env->halt_cond = g_malloc0(sizeof(QemuCond));
1000 qemu_cond_init(env->halt_cond);
1001 tcg_halt_cond = env->halt_cond;
1002 qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, env,
1003 QEMU_THREAD_JOINABLE);
1004 #ifdef _WIN32
1005 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1006 #endif
1007 while (!cpu->created) {
1008 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1009 }
1010 tcg_cpu_thread = cpu->thread;
1011 } else {
1012 cpu->thread = tcg_cpu_thread;
1013 env->halt_cond = tcg_halt_cond;
1014 }
1015 }
1016
1017 static void qemu_kvm_start_vcpu(CPUArchState *env)
1018 {
1019 CPUState *cpu = ENV_GET_CPU(env);
1020
1021 cpu->thread = g_malloc0(sizeof(QemuThread));
1022 env->halt_cond = g_malloc0(sizeof(QemuCond));
1023 qemu_cond_init(env->halt_cond);
1024 qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, env,
1025 QEMU_THREAD_JOINABLE);
1026 while (!cpu->created) {
1027 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1028 }
1029 }
1030
1031 static void qemu_dummy_start_vcpu(CPUArchState *env)
1032 {
1033 CPUState *cpu = ENV_GET_CPU(env);
1034
1035 cpu->thread = g_malloc0(sizeof(QemuThread));
1036 env->halt_cond = g_malloc0(sizeof(QemuCond));
1037 qemu_cond_init(env->halt_cond);
1038 qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, env,
1039 QEMU_THREAD_JOINABLE);
1040 while (!cpu->created) {
1041 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1042 }
1043 }
1044
1045 void qemu_init_vcpu(void *_env)
1046 {
1047 CPUArchState *env = _env;
1048
1049 env->nr_cores = smp_cores;
1050 env->nr_threads = smp_threads;
1051 env->stopped = 1;
1052 if (kvm_enabled()) {
1053 qemu_kvm_start_vcpu(env);
1054 } else if (tcg_enabled()) {
1055 qemu_tcg_init_vcpu(env);
1056 } else {
1057 qemu_dummy_start_vcpu(env);
1058 }
1059 }
1060
1061 void cpu_stop_current(void)
1062 {
1063 if (cpu_single_env) {
1064 CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
1065 cpu_single_cpu->stop = false;
1066 cpu_single_env->stopped = 1;
1067 cpu_exit(cpu_single_env);
1068 qemu_cond_signal(&qemu_pause_cond);
1069 }
1070 }
1071
1072 void vm_stop(RunState state)
1073 {
1074 if (qemu_in_vcpu_thread()) {
1075 qemu_system_vmstop_request(state);
1076 /*
1077 * FIXME: should not return to device code in case
1078 * vm_stop() has been requested.
1079 */
1080 cpu_stop_current();
1081 return;
1082 }
1083 do_vm_stop(state);
1084 }
1085
1086 /* does a state transition even if the VM is already stopped,
1087 current state is forgotten forever */
1088 void vm_stop_force_state(RunState state)
1089 {
1090 if (runstate_is_running()) {
1091 vm_stop(state);
1092 } else {
1093 runstate_set(state);
1094 }
1095 }
1096
1097 static int tcg_cpu_exec(CPUArchState *env)
1098 {
1099 int ret;
1100 #ifdef CONFIG_PROFILER
1101 int64_t ti;
1102 #endif
1103
1104 #ifdef CONFIG_PROFILER
1105 ti = profile_getclock();
1106 #endif
1107 if (use_icount) {
1108 int64_t count;
1109 int decr;
1110 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1111 env->icount_decr.u16.low = 0;
1112 env->icount_extra = 0;
1113 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1114 qemu_icount += count;
1115 decr = (count > 0xffff) ? 0xffff : count;
1116 count -= decr;
1117 env->icount_decr.u16.low = decr;
1118 env->icount_extra = count;
1119 }
1120 ret = cpu_exec(env);
1121 #ifdef CONFIG_PROFILER
1122 qemu_time += profile_getclock() - ti;
1123 #endif
1124 if (use_icount) {
1125 /* Fold pending instructions back into the
1126 instruction counter, and clear the interrupt flag. */
1127 qemu_icount -= (env->icount_decr.u16.low
1128 + env->icount_extra);
1129 env->icount_decr.u32 = 0;
1130 env->icount_extra = 0;
1131 }
1132 return ret;
1133 }
1134
1135 static void tcg_exec_all(void)
1136 {
1137 int r;
1138
1139 /* Account partial waits to the vm_clock. */
1140 qemu_clock_warp(vm_clock);
1141
1142 if (next_cpu == NULL) {
1143 next_cpu = first_cpu;
1144 }
1145 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1146 CPUArchState *env = next_cpu;
1147 CPUState *cpu = ENV_GET_CPU(env);
1148
1149 qemu_clock_enable(vm_clock,
1150 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1151
1152 if (cpu_can_run(env)) {
1153 r = tcg_cpu_exec(env);
1154 if (r == EXCP_DEBUG) {
1155 cpu_handle_guest_debug(env);
1156 break;
1157 }
1158 } else if (cpu->stop || env->stopped) {
1159 break;
1160 }
1161 }
1162 exit_request = 0;
1163 }
1164
1165 void set_numa_modes(void)
1166 {
1167 CPUArchState *env;
1168 int i;
1169
1170 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1171 for (i = 0; i < nb_numa_nodes; i++) {
1172 if (test_bit(env->cpu_index, node_cpumask[i])) {
1173 env->numa_node = i;
1174 }
1175 }
1176 }
1177 }
1178
1179 void set_cpu_log(const char *optarg)
1180 {
1181 int mask;
1182 const CPULogItem *item;
1183
1184 mask = cpu_str_to_log_mask(optarg);
1185 if (!mask) {
1186 printf("Log items (comma separated):\n");
1187 for (item = cpu_log_items; item->mask != 0; item++) {
1188 printf("%-10s %s\n", item->name, item->help);
1189 }
1190 exit(1);
1191 }
1192 cpu_set_log(mask);
1193 }
1194
1195 void set_cpu_log_filename(const char *optarg)
1196 {
1197 cpu_set_log_filename(optarg);
1198 }
1199
1200 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1201 {
1202 /* XXX: implement xxx_cpu_list for targets that still miss it */
1203 #if defined(cpu_list)
1204 cpu_list(f, cpu_fprintf);
1205 #endif
1206 }
1207
1208 CpuInfoList *qmp_query_cpus(Error **errp)
1209 {
1210 CpuInfoList *head = NULL, *cur_item = NULL;
1211 CPUArchState *env;
1212
1213 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1214 CpuInfoList *info;
1215
1216 cpu_synchronize_state(env);
1217
1218 info = g_malloc0(sizeof(*info));
1219 info->value = g_malloc0(sizeof(*info->value));
1220 info->value->CPU = env->cpu_index;
1221 info->value->current = (env == first_cpu);
1222 info->value->halted = env->halted;
1223 info->value->thread_id = env->thread_id;
1224 #if defined(TARGET_I386)
1225 info->value->has_pc = true;
1226 info->value->pc = env->eip + env->segs[R_CS].base;
1227 #elif defined(TARGET_PPC)
1228 info->value->has_nip = true;
1229 info->value->nip = env->nip;
1230 #elif defined(TARGET_SPARC)
1231 info->value->has_pc = true;
1232 info->value->pc = env->pc;
1233 info->value->has_npc = true;
1234 info->value->npc = env->npc;
1235 #elif defined(TARGET_MIPS)
1236 info->value->has_PC = true;
1237 info->value->PC = env->active_tc.PC;
1238 #endif
1239
1240 /* XXX: waiting for the qapi to support GSList */
1241 if (!cur_item) {
1242 head = cur_item = info;
1243 } else {
1244 cur_item->next = info;
1245 cur_item = info;
1246 }
1247 }
1248
1249 return head;
1250 }
1251
1252 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1253 bool has_cpu, int64_t cpu_index, Error **errp)
1254 {
1255 FILE *f;
1256 uint32_t l;
1257 CPUArchState *env;
1258 uint8_t buf[1024];
1259
1260 if (!has_cpu) {
1261 cpu_index = 0;
1262 }
1263
1264 for (env = first_cpu; env; env = env->next_cpu) {
1265 if (cpu_index == env->cpu_index) {
1266 break;
1267 }
1268 }
1269
1270 if (env == NULL) {
1271 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1272 "a CPU number");
1273 return;
1274 }
1275
1276 f = fopen(filename, "wb");
1277 if (!f) {
1278 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1279 return;
1280 }
1281
1282 while (size != 0) {
1283 l = sizeof(buf);
1284 if (l > size)
1285 l = size;
1286 cpu_memory_rw_debug(env, addr, buf, l, 0);
1287 if (fwrite(buf, 1, l, f) != l) {
1288 error_set(errp, QERR_IO_ERROR);
1289 goto exit;
1290 }
1291 addr += l;
1292 size -= l;
1293 }
1294
1295 exit:
1296 fclose(f);
1297 }
1298
1299 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1300 Error **errp)
1301 {
1302 FILE *f;
1303 uint32_t l;
1304 uint8_t buf[1024];
1305
1306 f = fopen(filename, "wb");
1307 if (!f) {
1308 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1309 return;
1310 }
1311
1312 while (size != 0) {
1313 l = sizeof(buf);
1314 if (l > size)
1315 l = size;
1316 cpu_physical_memory_rw(addr, buf, l, 0);
1317 if (fwrite(buf, 1, l, f) != l) {
1318 error_set(errp, QERR_IO_ERROR);
1319 goto exit;
1320 }
1321 addr += l;
1322 size -= l;
1323 }
1324
1325 exit:
1326 fclose(f);
1327 }
1328
1329 void qmp_inject_nmi(Error **errp)
1330 {
1331 #if defined(TARGET_I386)
1332 CPUArchState *env;
1333
1334 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1335 if (!env->apic_state) {
1336 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1337 } else {
1338 apic_deliver_nmi(env->apic_state);
1339 }
1340 }
1341 #else
1342 error_set(errp, QERR_UNSUPPORTED);
1343 #endif
1344 }