]> git.proxmox.com Git - qemu.git/blob - cpus.c
cpus: Pass CPUState to qemu_wait_io_event_common()
[qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "qmp-commands.h"
34
35 #include "qemu-thread.h"
36 #include "cpus.h"
37 #include "qtest.h"
38 #include "main-loop.h"
39 #include "bitmap.h"
40
41 #ifndef _WIN32
42 #include "compatfd.h"
43 #endif
44
45 #ifdef CONFIG_LINUX
46
47 #include <sys/prctl.h>
48
49 #ifndef PR_MCE_KILL
50 #define PR_MCE_KILL 33
51 #endif
52
53 #ifndef PR_MCE_KILL_SET
54 #define PR_MCE_KILL_SET 1
55 #endif
56
57 #ifndef PR_MCE_KILL_EARLY
58 #define PR_MCE_KILL_EARLY 1
59 #endif
60
61 #endif /* CONFIG_LINUX */
62
63 static CPUArchState *next_cpu;
64
65 static bool cpu_thread_is_idle(CPUArchState *env)
66 {
67 CPUState *cpu = ENV_GET_CPU(env);
68
69 if (cpu->stop || cpu->queued_work_first) {
70 return false;
71 }
72 if (cpu->stopped || !runstate_is_running()) {
73 return true;
74 }
75 if (!env->halted || qemu_cpu_has_work(env) ||
76 kvm_async_interrupts_enabled()) {
77 return false;
78 }
79 return true;
80 }
81
82 static bool all_cpu_threads_idle(void)
83 {
84 CPUArchState *env;
85
86 for (env = first_cpu; env != NULL; env = env->next_cpu) {
87 if (!cpu_thread_is_idle(env)) {
88 return false;
89 }
90 }
91 return true;
92 }
93
94 /***********************************************************/
95 /* guest cycle counter */
96
97 /* Conversion factor from emulated instructions to virtual clock ticks. */
98 static int icount_time_shift;
99 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
100 #define MAX_ICOUNT_SHIFT 10
101 /* Compensate for varying guest execution speed. */
102 static int64_t qemu_icount_bias;
103 static QEMUTimer *icount_rt_timer;
104 static QEMUTimer *icount_vm_timer;
105 static QEMUTimer *icount_warp_timer;
106 static int64_t vm_clock_warp_start;
107 static int64_t qemu_icount;
108
109 typedef struct TimersState {
110 int64_t cpu_ticks_prev;
111 int64_t cpu_ticks_offset;
112 int64_t cpu_clock_offset;
113 int32_t cpu_ticks_enabled;
114 int64_t dummy;
115 } TimersState;
116
117 TimersState timers_state;
118
119 /* Return the virtual CPU time, based on the instruction counter. */
120 int64_t cpu_get_icount(void)
121 {
122 int64_t icount;
123 CPUArchState *env = cpu_single_env;
124
125 icount = qemu_icount;
126 if (env) {
127 if (!can_do_io(env)) {
128 fprintf(stderr, "Bad clock read\n");
129 }
130 icount -= (env->icount_decr.u16.low + env->icount_extra);
131 }
132 return qemu_icount_bias + (icount << icount_time_shift);
133 }
134
135 /* return the host CPU cycle counter and handle stop/restart */
136 int64_t cpu_get_ticks(void)
137 {
138 if (use_icount) {
139 return cpu_get_icount();
140 }
141 if (!timers_state.cpu_ticks_enabled) {
142 return timers_state.cpu_ticks_offset;
143 } else {
144 int64_t ticks;
145 ticks = cpu_get_real_ticks();
146 if (timers_state.cpu_ticks_prev > ticks) {
147 /* Note: non increasing ticks may happen if the host uses
148 software suspend */
149 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
150 }
151 timers_state.cpu_ticks_prev = ticks;
152 return ticks + timers_state.cpu_ticks_offset;
153 }
154 }
155
156 /* return the host CPU monotonic timer and handle stop/restart */
157 int64_t cpu_get_clock(void)
158 {
159 int64_t ti;
160 if (!timers_state.cpu_ticks_enabled) {
161 return timers_state.cpu_clock_offset;
162 } else {
163 ti = get_clock();
164 return ti + timers_state.cpu_clock_offset;
165 }
166 }
167
168 /* enable cpu_get_ticks() */
169 void cpu_enable_ticks(void)
170 {
171 if (!timers_state.cpu_ticks_enabled) {
172 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
173 timers_state.cpu_clock_offset -= get_clock();
174 timers_state.cpu_ticks_enabled = 1;
175 }
176 }
177
178 /* disable cpu_get_ticks() : the clock is stopped. You must not call
179 cpu_get_ticks() after that. */
180 void cpu_disable_ticks(void)
181 {
182 if (timers_state.cpu_ticks_enabled) {
183 timers_state.cpu_ticks_offset = cpu_get_ticks();
184 timers_state.cpu_clock_offset = cpu_get_clock();
185 timers_state.cpu_ticks_enabled = 0;
186 }
187 }
188
189 /* Correlation between real and virtual time is always going to be
190 fairly approximate, so ignore small variation.
191 When the guest is idle real and virtual time will be aligned in
192 the IO wait loop. */
193 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
194
195 static void icount_adjust(void)
196 {
197 int64_t cur_time;
198 int64_t cur_icount;
199 int64_t delta;
200 static int64_t last_delta;
201 /* If the VM is not running, then do nothing. */
202 if (!runstate_is_running()) {
203 return;
204 }
205 cur_time = cpu_get_clock();
206 cur_icount = qemu_get_clock_ns(vm_clock);
207 delta = cur_icount - cur_time;
208 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
209 if (delta > 0
210 && last_delta + ICOUNT_WOBBLE < delta * 2
211 && icount_time_shift > 0) {
212 /* The guest is getting too far ahead. Slow time down. */
213 icount_time_shift--;
214 }
215 if (delta < 0
216 && last_delta - ICOUNT_WOBBLE > delta * 2
217 && icount_time_shift < MAX_ICOUNT_SHIFT) {
218 /* The guest is getting too far behind. Speed time up. */
219 icount_time_shift++;
220 }
221 last_delta = delta;
222 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
223 }
224
225 static void icount_adjust_rt(void *opaque)
226 {
227 qemu_mod_timer(icount_rt_timer,
228 qemu_get_clock_ms(rt_clock) + 1000);
229 icount_adjust();
230 }
231
232 static void icount_adjust_vm(void *opaque)
233 {
234 qemu_mod_timer(icount_vm_timer,
235 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
236 icount_adjust();
237 }
238
239 static int64_t qemu_icount_round(int64_t count)
240 {
241 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
242 }
243
244 static void icount_warp_rt(void *opaque)
245 {
246 if (vm_clock_warp_start == -1) {
247 return;
248 }
249
250 if (runstate_is_running()) {
251 int64_t clock = qemu_get_clock_ns(rt_clock);
252 int64_t warp_delta = clock - vm_clock_warp_start;
253 if (use_icount == 1) {
254 qemu_icount_bias += warp_delta;
255 } else {
256 /*
257 * In adaptive mode, do not let the vm_clock run too
258 * far ahead of real time.
259 */
260 int64_t cur_time = cpu_get_clock();
261 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
262 int64_t delta = cur_time - cur_icount;
263 qemu_icount_bias += MIN(warp_delta, delta);
264 }
265 if (qemu_clock_expired(vm_clock)) {
266 qemu_notify_event();
267 }
268 }
269 vm_clock_warp_start = -1;
270 }
271
272 void qtest_clock_warp(int64_t dest)
273 {
274 int64_t clock = qemu_get_clock_ns(vm_clock);
275 assert(qtest_enabled());
276 while (clock < dest) {
277 int64_t deadline = qemu_clock_deadline(vm_clock);
278 int64_t warp = MIN(dest - clock, deadline);
279 qemu_icount_bias += warp;
280 qemu_run_timers(vm_clock);
281 clock = qemu_get_clock_ns(vm_clock);
282 }
283 qemu_notify_event();
284 }
285
286 void qemu_clock_warp(QEMUClock *clock)
287 {
288 int64_t deadline;
289
290 /*
291 * There are too many global variables to make the "warp" behavior
292 * applicable to other clocks. But a clock argument removes the
293 * need for if statements all over the place.
294 */
295 if (clock != vm_clock || !use_icount) {
296 return;
297 }
298
299 /*
300 * If the CPUs have been sleeping, advance the vm_clock timer now. This
301 * ensures that the deadline for the timer is computed correctly below.
302 * This also makes sure that the insn counter is synchronized before the
303 * CPU starts running, in case the CPU is woken by an event other than
304 * the earliest vm_clock timer.
305 */
306 icount_warp_rt(NULL);
307 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
308 qemu_del_timer(icount_warp_timer);
309 return;
310 }
311
312 if (qtest_enabled()) {
313 /* When testing, qtest commands advance icount. */
314 return;
315 }
316
317 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
318 deadline = qemu_clock_deadline(vm_clock);
319 if (deadline > 0) {
320 /*
321 * Ensure the vm_clock proceeds even when the virtual CPU goes to
322 * sleep. Otherwise, the CPU might be waiting for a future timer
323 * interrupt to wake it up, but the interrupt never comes because
324 * the vCPU isn't running any insns and thus doesn't advance the
325 * vm_clock.
326 *
327 * An extreme solution for this problem would be to never let VCPUs
328 * sleep in icount mode if there is a pending vm_clock timer; rather
329 * time could just advance to the next vm_clock event. Instead, we
330 * do stop VCPUs and only advance vm_clock after some "real" time,
331 * (related to the time left until the next event) has passed. This
332 * rt_clock timer will do this. This avoids that the warps are too
333 * visible externally---for example, you will not be sending network
334 * packets continuously instead of every 100ms.
335 */
336 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
337 } else {
338 qemu_notify_event();
339 }
340 }
341
342 static const VMStateDescription vmstate_timers = {
343 .name = "timer",
344 .version_id = 2,
345 .minimum_version_id = 1,
346 .minimum_version_id_old = 1,
347 .fields = (VMStateField[]) {
348 VMSTATE_INT64(cpu_ticks_offset, TimersState),
349 VMSTATE_INT64(dummy, TimersState),
350 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
351 VMSTATE_END_OF_LIST()
352 }
353 };
354
355 void configure_icount(const char *option)
356 {
357 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
358 if (!option) {
359 return;
360 }
361
362 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
363 if (strcmp(option, "auto") != 0) {
364 icount_time_shift = strtol(option, NULL, 0);
365 use_icount = 1;
366 return;
367 }
368
369 use_icount = 2;
370
371 /* 125MIPS seems a reasonable initial guess at the guest speed.
372 It will be corrected fairly quickly anyway. */
373 icount_time_shift = 3;
374
375 /* Have both realtime and virtual time triggers for speed adjustment.
376 The realtime trigger catches emulated time passing too slowly,
377 the virtual time trigger catches emulated time passing too fast.
378 Realtime triggers occur even when idle, so use them less frequently
379 than VM triggers. */
380 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
381 qemu_mod_timer(icount_rt_timer,
382 qemu_get_clock_ms(rt_clock) + 1000);
383 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
384 qemu_mod_timer(icount_vm_timer,
385 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
386 }
387
388 /***********************************************************/
389 void hw_error(const char *fmt, ...)
390 {
391 va_list ap;
392 CPUArchState *env;
393
394 va_start(ap, fmt);
395 fprintf(stderr, "qemu: hardware error: ");
396 vfprintf(stderr, fmt, ap);
397 fprintf(stderr, "\n");
398 for(env = first_cpu; env != NULL; env = env->next_cpu) {
399 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
400 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU);
401 }
402 va_end(ap);
403 abort();
404 }
405
406 void cpu_synchronize_all_states(void)
407 {
408 CPUArchState *cpu;
409
410 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
411 cpu_synchronize_state(cpu);
412 }
413 }
414
415 void cpu_synchronize_all_post_reset(void)
416 {
417 CPUArchState *cpu;
418
419 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
420 cpu_synchronize_post_reset(cpu);
421 }
422 }
423
424 void cpu_synchronize_all_post_init(void)
425 {
426 CPUArchState *cpu;
427
428 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
429 cpu_synchronize_post_init(cpu);
430 }
431 }
432
433 bool cpu_is_stopped(CPUState *cpu)
434 {
435 return !runstate_is_running() || cpu->stopped;
436 }
437
438 static void do_vm_stop(RunState state)
439 {
440 if (runstate_is_running()) {
441 cpu_disable_ticks();
442 pause_all_vcpus();
443 runstate_set(state);
444 vm_state_notify(0, state);
445 bdrv_drain_all();
446 bdrv_flush_all();
447 monitor_protocol_event(QEVENT_STOP, NULL);
448 }
449 }
450
451 static bool cpu_can_run(CPUState *cpu)
452 {
453 if (cpu->stop) {
454 return false;
455 }
456 if (cpu->stopped || !runstate_is_running()) {
457 return false;
458 }
459 return true;
460 }
461
462 static void cpu_handle_guest_debug(CPUArchState *env)
463 {
464 CPUState *cpu = ENV_GET_CPU(env);
465
466 gdb_set_stop_cpu(env);
467 qemu_system_debug_request();
468 cpu->stopped = true;
469 }
470
471 static void cpu_signal(int sig)
472 {
473 if (cpu_single_env) {
474 cpu_exit(cpu_single_env);
475 }
476 exit_request = 1;
477 }
478
479 #ifdef CONFIG_LINUX
480 static void sigbus_reraise(void)
481 {
482 sigset_t set;
483 struct sigaction action;
484
485 memset(&action, 0, sizeof(action));
486 action.sa_handler = SIG_DFL;
487 if (!sigaction(SIGBUS, &action, NULL)) {
488 raise(SIGBUS);
489 sigemptyset(&set);
490 sigaddset(&set, SIGBUS);
491 sigprocmask(SIG_UNBLOCK, &set, NULL);
492 }
493 perror("Failed to re-raise SIGBUS!\n");
494 abort();
495 }
496
497 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
498 void *ctx)
499 {
500 if (kvm_on_sigbus(siginfo->ssi_code,
501 (void *)(intptr_t)siginfo->ssi_addr)) {
502 sigbus_reraise();
503 }
504 }
505
506 static void qemu_init_sigbus(void)
507 {
508 struct sigaction action;
509
510 memset(&action, 0, sizeof(action));
511 action.sa_flags = SA_SIGINFO;
512 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
513 sigaction(SIGBUS, &action, NULL);
514
515 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
516 }
517
518 static void qemu_kvm_eat_signals(CPUArchState *env)
519 {
520 struct timespec ts = { 0, 0 };
521 siginfo_t siginfo;
522 sigset_t waitset;
523 sigset_t chkset;
524 int r;
525
526 sigemptyset(&waitset);
527 sigaddset(&waitset, SIG_IPI);
528 sigaddset(&waitset, SIGBUS);
529
530 do {
531 r = sigtimedwait(&waitset, &siginfo, &ts);
532 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
533 perror("sigtimedwait");
534 exit(1);
535 }
536
537 switch (r) {
538 case SIGBUS:
539 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
540 sigbus_reraise();
541 }
542 break;
543 default:
544 break;
545 }
546
547 r = sigpending(&chkset);
548 if (r == -1) {
549 perror("sigpending");
550 exit(1);
551 }
552 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
553 }
554
555 #else /* !CONFIG_LINUX */
556
557 static void qemu_init_sigbus(void)
558 {
559 }
560
561 static void qemu_kvm_eat_signals(CPUArchState *env)
562 {
563 }
564 #endif /* !CONFIG_LINUX */
565
566 #ifndef _WIN32
567 static void dummy_signal(int sig)
568 {
569 }
570
571 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
572 {
573 int r;
574 sigset_t set;
575 struct sigaction sigact;
576
577 memset(&sigact, 0, sizeof(sigact));
578 sigact.sa_handler = dummy_signal;
579 sigaction(SIG_IPI, &sigact, NULL);
580
581 pthread_sigmask(SIG_BLOCK, NULL, &set);
582 sigdelset(&set, SIG_IPI);
583 sigdelset(&set, SIGBUS);
584 r = kvm_set_signal_mask(env, &set);
585 if (r) {
586 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
587 exit(1);
588 }
589 }
590
591 static void qemu_tcg_init_cpu_signals(void)
592 {
593 sigset_t set;
594 struct sigaction sigact;
595
596 memset(&sigact, 0, sizeof(sigact));
597 sigact.sa_handler = cpu_signal;
598 sigaction(SIG_IPI, &sigact, NULL);
599
600 sigemptyset(&set);
601 sigaddset(&set, SIG_IPI);
602 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
603 }
604
605 #else /* _WIN32 */
606 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
607 {
608 abort();
609 }
610
611 static void qemu_tcg_init_cpu_signals(void)
612 {
613 }
614 #endif /* _WIN32 */
615
616 static QemuMutex qemu_global_mutex;
617 static QemuCond qemu_io_proceeded_cond;
618 static bool iothread_requesting_mutex;
619
620 static QemuThread io_thread;
621
622 static QemuThread *tcg_cpu_thread;
623 static QemuCond *tcg_halt_cond;
624
625 /* cpu creation */
626 static QemuCond qemu_cpu_cond;
627 /* system init */
628 static QemuCond qemu_pause_cond;
629 static QemuCond qemu_work_cond;
630
631 void qemu_init_cpu_loop(void)
632 {
633 qemu_init_sigbus();
634 qemu_cond_init(&qemu_cpu_cond);
635 qemu_cond_init(&qemu_pause_cond);
636 qemu_cond_init(&qemu_work_cond);
637 qemu_cond_init(&qemu_io_proceeded_cond);
638 qemu_mutex_init(&qemu_global_mutex);
639
640 qemu_thread_get_self(&io_thread);
641 }
642
643 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data)
644 {
645 CPUState *cpu = ENV_GET_CPU(env);
646 struct qemu_work_item wi;
647
648 if (qemu_cpu_is_self(cpu)) {
649 func(data);
650 return;
651 }
652
653 wi.func = func;
654 wi.data = data;
655 if (cpu->queued_work_first == NULL) {
656 cpu->queued_work_first = &wi;
657 } else {
658 cpu->queued_work_last->next = &wi;
659 }
660 cpu->queued_work_last = &wi;
661 wi.next = NULL;
662 wi.done = false;
663
664 qemu_cpu_kick(cpu);
665 while (!wi.done) {
666 CPUArchState *self_env = cpu_single_env;
667
668 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
669 cpu_single_env = self_env;
670 }
671 }
672
673 static void flush_queued_work(CPUState *cpu)
674 {
675 struct qemu_work_item *wi;
676
677 if (cpu->queued_work_first == NULL) {
678 return;
679 }
680
681 while ((wi = cpu->queued_work_first)) {
682 cpu->queued_work_first = wi->next;
683 wi->func(wi->data);
684 wi->done = true;
685 }
686 cpu->queued_work_last = NULL;
687 qemu_cond_broadcast(&qemu_work_cond);
688 }
689
690 static void qemu_wait_io_event_common(CPUState *cpu)
691 {
692 if (cpu->stop) {
693 cpu->stop = false;
694 cpu->stopped = true;
695 qemu_cond_signal(&qemu_pause_cond);
696 }
697 flush_queued_work(cpu);
698 cpu->thread_kicked = false;
699 }
700
701 static void qemu_tcg_wait_io_event(void)
702 {
703 CPUArchState *env;
704
705 while (all_cpu_threads_idle()) {
706 /* Start accounting real time to the virtual clock if the CPUs
707 are idle. */
708 qemu_clock_warp(vm_clock);
709 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
710 }
711
712 while (iothread_requesting_mutex) {
713 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
714 }
715
716 for (env = first_cpu; env != NULL; env = env->next_cpu) {
717 qemu_wait_io_event_common(ENV_GET_CPU(env));
718 }
719 }
720
721 static void qemu_kvm_wait_io_event(CPUArchState *env)
722 {
723 CPUState *cpu = ENV_GET_CPU(env);
724
725 while (cpu_thread_is_idle(env)) {
726 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
727 }
728
729 qemu_kvm_eat_signals(env);
730 qemu_wait_io_event_common(cpu);
731 }
732
733 static void *qemu_kvm_cpu_thread_fn(void *arg)
734 {
735 CPUArchState *env = arg;
736 CPUState *cpu = ENV_GET_CPU(env);
737 int r;
738
739 qemu_mutex_lock(&qemu_global_mutex);
740 qemu_thread_get_self(cpu->thread);
741 env->thread_id = qemu_get_thread_id();
742 cpu_single_env = env;
743
744 r = kvm_init_vcpu(env);
745 if (r < 0) {
746 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
747 exit(1);
748 }
749
750 qemu_kvm_init_cpu_signals(env);
751
752 /* signal CPU creation */
753 cpu->created = true;
754 qemu_cond_signal(&qemu_cpu_cond);
755
756 while (1) {
757 if (cpu_can_run(cpu)) {
758 r = kvm_cpu_exec(env);
759 if (r == EXCP_DEBUG) {
760 cpu_handle_guest_debug(env);
761 }
762 }
763 qemu_kvm_wait_io_event(env);
764 }
765
766 return NULL;
767 }
768
769 static void *qemu_dummy_cpu_thread_fn(void *arg)
770 {
771 #ifdef _WIN32
772 fprintf(stderr, "qtest is not supported under Windows\n");
773 exit(1);
774 #else
775 CPUArchState *env = arg;
776 CPUState *cpu = ENV_GET_CPU(env);
777 sigset_t waitset;
778 int r;
779
780 qemu_mutex_lock_iothread();
781 qemu_thread_get_self(cpu->thread);
782 env->thread_id = qemu_get_thread_id();
783
784 sigemptyset(&waitset);
785 sigaddset(&waitset, SIG_IPI);
786
787 /* signal CPU creation */
788 cpu->created = true;
789 qemu_cond_signal(&qemu_cpu_cond);
790
791 cpu_single_env = env;
792 while (1) {
793 cpu_single_env = NULL;
794 qemu_mutex_unlock_iothread();
795 do {
796 int sig;
797 r = sigwait(&waitset, &sig);
798 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
799 if (r == -1) {
800 perror("sigwait");
801 exit(1);
802 }
803 qemu_mutex_lock_iothread();
804 cpu_single_env = env;
805 qemu_wait_io_event_common(cpu);
806 }
807
808 return NULL;
809 #endif
810 }
811
812 static void tcg_exec_all(void);
813
814 static void *qemu_tcg_cpu_thread_fn(void *arg)
815 {
816 CPUState *cpu = arg;
817 CPUArchState *env;
818
819 qemu_tcg_init_cpu_signals();
820 qemu_thread_get_self(cpu->thread);
821
822 /* signal CPU creation */
823 qemu_mutex_lock(&qemu_global_mutex);
824 for (env = first_cpu; env != NULL; env = env->next_cpu) {
825 cpu = ENV_GET_CPU(env);
826 env->thread_id = qemu_get_thread_id();
827 cpu->created = true;
828 }
829 qemu_cond_signal(&qemu_cpu_cond);
830
831 /* wait for initial kick-off after machine start */
832 while (ENV_GET_CPU(first_cpu)->stopped) {
833 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
834
835 /* process any pending work */
836 for (env = first_cpu; env != NULL; env = env->next_cpu) {
837 qemu_wait_io_event_common(ENV_GET_CPU(env));
838 }
839 }
840
841 while (1) {
842 tcg_exec_all();
843 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
844 qemu_notify_event();
845 }
846 qemu_tcg_wait_io_event();
847 }
848
849 return NULL;
850 }
851
852 static void qemu_cpu_kick_thread(CPUState *cpu)
853 {
854 #ifndef _WIN32
855 int err;
856
857 err = pthread_kill(cpu->thread->thread, SIG_IPI);
858 if (err) {
859 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
860 exit(1);
861 }
862 #else /* _WIN32 */
863 if (!qemu_cpu_is_self(cpu)) {
864 SuspendThread(cpu->hThread);
865 cpu_signal(0);
866 ResumeThread(cpu->hThread);
867 }
868 #endif
869 }
870
871 void qemu_cpu_kick(CPUState *cpu)
872 {
873 qemu_cond_broadcast(cpu->halt_cond);
874 if (!tcg_enabled() && !cpu->thread_kicked) {
875 qemu_cpu_kick_thread(cpu);
876 cpu->thread_kicked = true;
877 }
878 }
879
880 void qemu_cpu_kick_self(void)
881 {
882 #ifndef _WIN32
883 assert(cpu_single_env);
884 CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
885
886 if (!cpu_single_cpu->thread_kicked) {
887 qemu_cpu_kick_thread(cpu_single_cpu);
888 cpu_single_cpu->thread_kicked = true;
889 }
890 #else
891 abort();
892 #endif
893 }
894
895 bool qemu_cpu_is_self(CPUState *cpu)
896 {
897 return qemu_thread_is_self(cpu->thread);
898 }
899
900 static bool qemu_in_vcpu_thread(void)
901 {
902 return cpu_single_env && qemu_cpu_is_self(ENV_GET_CPU(cpu_single_env));
903 }
904
905 void qemu_mutex_lock_iothread(void)
906 {
907 if (!tcg_enabled()) {
908 qemu_mutex_lock(&qemu_global_mutex);
909 } else {
910 iothread_requesting_mutex = true;
911 if (qemu_mutex_trylock(&qemu_global_mutex)) {
912 qemu_cpu_kick_thread(ENV_GET_CPU(first_cpu));
913 qemu_mutex_lock(&qemu_global_mutex);
914 }
915 iothread_requesting_mutex = false;
916 qemu_cond_broadcast(&qemu_io_proceeded_cond);
917 }
918 }
919
920 void qemu_mutex_unlock_iothread(void)
921 {
922 qemu_mutex_unlock(&qemu_global_mutex);
923 }
924
925 static int all_vcpus_paused(void)
926 {
927 CPUArchState *penv = first_cpu;
928
929 while (penv) {
930 CPUState *pcpu = ENV_GET_CPU(penv);
931 if (!pcpu->stopped) {
932 return 0;
933 }
934 penv = penv->next_cpu;
935 }
936
937 return 1;
938 }
939
940 void pause_all_vcpus(void)
941 {
942 CPUArchState *penv = first_cpu;
943
944 qemu_clock_enable(vm_clock, false);
945 while (penv) {
946 CPUState *pcpu = ENV_GET_CPU(penv);
947 pcpu->stop = true;
948 qemu_cpu_kick(pcpu);
949 penv = penv->next_cpu;
950 }
951
952 if (qemu_in_vcpu_thread()) {
953 cpu_stop_current();
954 if (!kvm_enabled()) {
955 while (penv) {
956 CPUState *pcpu = ENV_GET_CPU(penv);
957 pcpu->stop = 0;
958 pcpu->stopped = true;
959 penv = penv->next_cpu;
960 }
961 return;
962 }
963 }
964
965 while (!all_vcpus_paused()) {
966 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
967 penv = first_cpu;
968 while (penv) {
969 qemu_cpu_kick(ENV_GET_CPU(penv));
970 penv = penv->next_cpu;
971 }
972 }
973 }
974
975 void resume_all_vcpus(void)
976 {
977 CPUArchState *penv = first_cpu;
978
979 qemu_clock_enable(vm_clock, true);
980 while (penv) {
981 CPUState *pcpu = ENV_GET_CPU(penv);
982 pcpu->stop = false;
983 pcpu->stopped = false;
984 qemu_cpu_kick(pcpu);
985 penv = penv->next_cpu;
986 }
987 }
988
989 static void qemu_tcg_init_vcpu(CPUState *cpu)
990 {
991 /* share a single thread for all cpus with TCG */
992 if (!tcg_cpu_thread) {
993 cpu->thread = g_malloc0(sizeof(QemuThread));
994 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
995 qemu_cond_init(cpu->halt_cond);
996 tcg_halt_cond = cpu->halt_cond;
997 qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, cpu,
998 QEMU_THREAD_JOINABLE);
999 #ifdef _WIN32
1000 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1001 #endif
1002 while (!cpu->created) {
1003 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1004 }
1005 tcg_cpu_thread = cpu->thread;
1006 } else {
1007 cpu->thread = tcg_cpu_thread;
1008 cpu->halt_cond = tcg_halt_cond;
1009 }
1010 }
1011
1012 static void qemu_kvm_start_vcpu(CPUArchState *env)
1013 {
1014 CPUState *cpu = ENV_GET_CPU(env);
1015
1016 cpu->thread = g_malloc0(sizeof(QemuThread));
1017 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1018 qemu_cond_init(cpu->halt_cond);
1019 qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, env,
1020 QEMU_THREAD_JOINABLE);
1021 while (!cpu->created) {
1022 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1023 }
1024 }
1025
1026 static void qemu_dummy_start_vcpu(CPUArchState *env)
1027 {
1028 CPUState *cpu = ENV_GET_CPU(env);
1029
1030 cpu->thread = g_malloc0(sizeof(QemuThread));
1031 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1032 qemu_cond_init(cpu->halt_cond);
1033 qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, env,
1034 QEMU_THREAD_JOINABLE);
1035 while (!cpu->created) {
1036 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1037 }
1038 }
1039
1040 void qemu_init_vcpu(void *_env)
1041 {
1042 CPUArchState *env = _env;
1043 CPUState *cpu = ENV_GET_CPU(env);
1044
1045 env->nr_cores = smp_cores;
1046 env->nr_threads = smp_threads;
1047 cpu->stopped = true;
1048 if (kvm_enabled()) {
1049 qemu_kvm_start_vcpu(env);
1050 } else if (tcg_enabled()) {
1051 qemu_tcg_init_vcpu(cpu);
1052 } else {
1053 qemu_dummy_start_vcpu(env);
1054 }
1055 }
1056
1057 void cpu_stop_current(void)
1058 {
1059 if (cpu_single_env) {
1060 CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
1061 cpu_single_cpu->stop = false;
1062 cpu_single_cpu->stopped = true;
1063 cpu_exit(cpu_single_env);
1064 qemu_cond_signal(&qemu_pause_cond);
1065 }
1066 }
1067
1068 void vm_stop(RunState state)
1069 {
1070 if (qemu_in_vcpu_thread()) {
1071 qemu_system_vmstop_request(state);
1072 /*
1073 * FIXME: should not return to device code in case
1074 * vm_stop() has been requested.
1075 */
1076 cpu_stop_current();
1077 return;
1078 }
1079 do_vm_stop(state);
1080 }
1081
1082 /* does a state transition even if the VM is already stopped,
1083 current state is forgotten forever */
1084 void vm_stop_force_state(RunState state)
1085 {
1086 if (runstate_is_running()) {
1087 vm_stop(state);
1088 } else {
1089 runstate_set(state);
1090 }
1091 }
1092
1093 static int tcg_cpu_exec(CPUArchState *env)
1094 {
1095 int ret;
1096 #ifdef CONFIG_PROFILER
1097 int64_t ti;
1098 #endif
1099
1100 #ifdef CONFIG_PROFILER
1101 ti = profile_getclock();
1102 #endif
1103 if (use_icount) {
1104 int64_t count;
1105 int decr;
1106 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1107 env->icount_decr.u16.low = 0;
1108 env->icount_extra = 0;
1109 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1110 qemu_icount += count;
1111 decr = (count > 0xffff) ? 0xffff : count;
1112 count -= decr;
1113 env->icount_decr.u16.low = decr;
1114 env->icount_extra = count;
1115 }
1116 ret = cpu_exec(env);
1117 #ifdef CONFIG_PROFILER
1118 qemu_time += profile_getclock() - ti;
1119 #endif
1120 if (use_icount) {
1121 /* Fold pending instructions back into the
1122 instruction counter, and clear the interrupt flag. */
1123 qemu_icount -= (env->icount_decr.u16.low
1124 + env->icount_extra);
1125 env->icount_decr.u32 = 0;
1126 env->icount_extra = 0;
1127 }
1128 return ret;
1129 }
1130
1131 static void tcg_exec_all(void)
1132 {
1133 int r;
1134
1135 /* Account partial waits to the vm_clock. */
1136 qemu_clock_warp(vm_clock);
1137
1138 if (next_cpu == NULL) {
1139 next_cpu = first_cpu;
1140 }
1141 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1142 CPUArchState *env = next_cpu;
1143 CPUState *cpu = ENV_GET_CPU(env);
1144
1145 qemu_clock_enable(vm_clock,
1146 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1147
1148 if (cpu_can_run(cpu)) {
1149 r = tcg_cpu_exec(env);
1150 if (r == EXCP_DEBUG) {
1151 cpu_handle_guest_debug(env);
1152 break;
1153 }
1154 } else if (cpu->stop || cpu->stopped) {
1155 break;
1156 }
1157 }
1158 exit_request = 0;
1159 }
1160
1161 void set_numa_modes(void)
1162 {
1163 CPUArchState *env;
1164 int i;
1165
1166 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1167 for (i = 0; i < nb_numa_nodes; i++) {
1168 if (test_bit(env->cpu_index, node_cpumask[i])) {
1169 env->numa_node = i;
1170 }
1171 }
1172 }
1173 }
1174
1175 void set_cpu_log(const char *optarg)
1176 {
1177 int mask;
1178 const CPULogItem *item;
1179
1180 mask = cpu_str_to_log_mask(optarg);
1181 if (!mask) {
1182 printf("Log items (comma separated):\n");
1183 for (item = cpu_log_items; item->mask != 0; item++) {
1184 printf("%-10s %s\n", item->name, item->help);
1185 }
1186 exit(1);
1187 }
1188 cpu_set_log(mask);
1189 }
1190
1191 void set_cpu_log_filename(const char *optarg)
1192 {
1193 cpu_set_log_filename(optarg);
1194 }
1195
1196 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1197 {
1198 /* XXX: implement xxx_cpu_list for targets that still miss it */
1199 #if defined(cpu_list)
1200 cpu_list(f, cpu_fprintf);
1201 #endif
1202 }
1203
1204 CpuInfoList *qmp_query_cpus(Error **errp)
1205 {
1206 CpuInfoList *head = NULL, *cur_item = NULL;
1207 CPUArchState *env;
1208
1209 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1210 CpuInfoList *info;
1211
1212 cpu_synchronize_state(env);
1213
1214 info = g_malloc0(sizeof(*info));
1215 info->value = g_malloc0(sizeof(*info->value));
1216 info->value->CPU = env->cpu_index;
1217 info->value->current = (env == first_cpu);
1218 info->value->halted = env->halted;
1219 info->value->thread_id = env->thread_id;
1220 #if defined(TARGET_I386)
1221 info->value->has_pc = true;
1222 info->value->pc = env->eip + env->segs[R_CS].base;
1223 #elif defined(TARGET_PPC)
1224 info->value->has_nip = true;
1225 info->value->nip = env->nip;
1226 #elif defined(TARGET_SPARC)
1227 info->value->has_pc = true;
1228 info->value->pc = env->pc;
1229 info->value->has_npc = true;
1230 info->value->npc = env->npc;
1231 #elif defined(TARGET_MIPS)
1232 info->value->has_PC = true;
1233 info->value->PC = env->active_tc.PC;
1234 #endif
1235
1236 /* XXX: waiting for the qapi to support GSList */
1237 if (!cur_item) {
1238 head = cur_item = info;
1239 } else {
1240 cur_item->next = info;
1241 cur_item = info;
1242 }
1243 }
1244
1245 return head;
1246 }
1247
1248 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1249 bool has_cpu, int64_t cpu_index, Error **errp)
1250 {
1251 FILE *f;
1252 uint32_t l;
1253 CPUArchState *env;
1254 uint8_t buf[1024];
1255
1256 if (!has_cpu) {
1257 cpu_index = 0;
1258 }
1259
1260 for (env = first_cpu; env; env = env->next_cpu) {
1261 if (cpu_index == env->cpu_index) {
1262 break;
1263 }
1264 }
1265
1266 if (env == NULL) {
1267 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1268 "a CPU number");
1269 return;
1270 }
1271
1272 f = fopen(filename, "wb");
1273 if (!f) {
1274 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1275 return;
1276 }
1277
1278 while (size != 0) {
1279 l = sizeof(buf);
1280 if (l > size)
1281 l = size;
1282 cpu_memory_rw_debug(env, addr, buf, l, 0);
1283 if (fwrite(buf, 1, l, f) != l) {
1284 error_set(errp, QERR_IO_ERROR);
1285 goto exit;
1286 }
1287 addr += l;
1288 size -= l;
1289 }
1290
1291 exit:
1292 fclose(f);
1293 }
1294
1295 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1296 Error **errp)
1297 {
1298 FILE *f;
1299 uint32_t l;
1300 uint8_t buf[1024];
1301
1302 f = fopen(filename, "wb");
1303 if (!f) {
1304 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1305 return;
1306 }
1307
1308 while (size != 0) {
1309 l = sizeof(buf);
1310 if (l > size)
1311 l = size;
1312 cpu_physical_memory_rw(addr, buf, l, 0);
1313 if (fwrite(buf, 1, l, f) != l) {
1314 error_set(errp, QERR_IO_ERROR);
1315 goto exit;
1316 }
1317 addr += l;
1318 size -= l;
1319 }
1320
1321 exit:
1322 fclose(f);
1323 }
1324
1325 void qmp_inject_nmi(Error **errp)
1326 {
1327 #if defined(TARGET_I386)
1328 CPUArchState *env;
1329
1330 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1331 if (!env->apic_state) {
1332 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1333 } else {
1334 apic_deliver_nmi(env->apic_state);
1335 }
1336 }
1337 #else
1338 error_set(errp, QERR_UNSUPPORTED);
1339 #endif
1340 }