]> git.proxmox.com Git - qemu.git/blob - cpus.c
Merge branch pci into master
[qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "qmp-commands.h"
34
35 #include "qemu-thread.h"
36 #include "cpus.h"
37 #include "qtest.h"
38 #include "main-loop.h"
39
40 #ifndef _WIN32
41 #include "compatfd.h"
42 #endif
43
44 #ifdef CONFIG_LINUX
45
46 #include <sys/prctl.h>
47
48 #ifndef PR_MCE_KILL
49 #define PR_MCE_KILL 33
50 #endif
51
52 #ifndef PR_MCE_KILL_SET
53 #define PR_MCE_KILL_SET 1
54 #endif
55
56 #ifndef PR_MCE_KILL_EARLY
57 #define PR_MCE_KILL_EARLY 1
58 #endif
59
60 #endif /* CONFIG_LINUX */
61
62 static CPUArchState *next_cpu;
63
64 static bool cpu_thread_is_idle(CPUArchState *env)
65 {
66 if (env->stop || env->queued_work_first) {
67 return false;
68 }
69 if (env->stopped || !runstate_is_running()) {
70 return true;
71 }
72 if (!env->halted || qemu_cpu_has_work(env) || kvm_irqchip_in_kernel()) {
73 return false;
74 }
75 return true;
76 }
77
78 static bool all_cpu_threads_idle(void)
79 {
80 CPUArchState *env;
81
82 for (env = first_cpu; env != NULL; env = env->next_cpu) {
83 if (!cpu_thread_is_idle(env)) {
84 return false;
85 }
86 }
87 return true;
88 }
89
90 /***********************************************************/
91 /* guest cycle counter */
92
93 /* Conversion factor from emulated instructions to virtual clock ticks. */
94 static int icount_time_shift;
95 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
96 #define MAX_ICOUNT_SHIFT 10
97 /* Compensate for varying guest execution speed. */
98 static int64_t qemu_icount_bias;
99 static QEMUTimer *icount_rt_timer;
100 static QEMUTimer *icount_vm_timer;
101 static QEMUTimer *icount_warp_timer;
102 static int64_t vm_clock_warp_start;
103 static int64_t qemu_icount;
104
105 typedef struct TimersState {
106 int64_t cpu_ticks_prev;
107 int64_t cpu_ticks_offset;
108 int64_t cpu_clock_offset;
109 int32_t cpu_ticks_enabled;
110 int64_t dummy;
111 } TimersState;
112
113 TimersState timers_state;
114
115 /* Return the virtual CPU time, based on the instruction counter. */
116 int64_t cpu_get_icount(void)
117 {
118 int64_t icount;
119 CPUArchState *env = cpu_single_env;
120
121 icount = qemu_icount;
122 if (env) {
123 if (!can_do_io(env)) {
124 fprintf(stderr, "Bad clock read\n");
125 }
126 icount -= (env->icount_decr.u16.low + env->icount_extra);
127 }
128 return qemu_icount_bias + (icount << icount_time_shift);
129 }
130
131 /* return the host CPU cycle counter and handle stop/restart */
132 int64_t cpu_get_ticks(void)
133 {
134 if (use_icount) {
135 return cpu_get_icount();
136 }
137 if (!timers_state.cpu_ticks_enabled) {
138 return timers_state.cpu_ticks_offset;
139 } else {
140 int64_t ticks;
141 ticks = cpu_get_real_ticks();
142 if (timers_state.cpu_ticks_prev > ticks) {
143 /* Note: non increasing ticks may happen if the host uses
144 software suspend */
145 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
146 }
147 timers_state.cpu_ticks_prev = ticks;
148 return ticks + timers_state.cpu_ticks_offset;
149 }
150 }
151
152 /* return the host CPU monotonic timer and handle stop/restart */
153 int64_t cpu_get_clock(void)
154 {
155 int64_t ti;
156 if (!timers_state.cpu_ticks_enabled) {
157 return timers_state.cpu_clock_offset;
158 } else {
159 ti = get_clock();
160 return ti + timers_state.cpu_clock_offset;
161 }
162 }
163
164 /* enable cpu_get_ticks() */
165 void cpu_enable_ticks(void)
166 {
167 if (!timers_state.cpu_ticks_enabled) {
168 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
169 timers_state.cpu_clock_offset -= get_clock();
170 timers_state.cpu_ticks_enabled = 1;
171 }
172 }
173
174 /* disable cpu_get_ticks() : the clock is stopped. You must not call
175 cpu_get_ticks() after that. */
176 void cpu_disable_ticks(void)
177 {
178 if (timers_state.cpu_ticks_enabled) {
179 timers_state.cpu_ticks_offset = cpu_get_ticks();
180 timers_state.cpu_clock_offset = cpu_get_clock();
181 timers_state.cpu_ticks_enabled = 0;
182 }
183 }
184
185 /* Correlation between real and virtual time is always going to be
186 fairly approximate, so ignore small variation.
187 When the guest is idle real and virtual time will be aligned in
188 the IO wait loop. */
189 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
190
191 static void icount_adjust(void)
192 {
193 int64_t cur_time;
194 int64_t cur_icount;
195 int64_t delta;
196 static int64_t last_delta;
197 /* If the VM is not running, then do nothing. */
198 if (!runstate_is_running()) {
199 return;
200 }
201 cur_time = cpu_get_clock();
202 cur_icount = qemu_get_clock_ns(vm_clock);
203 delta = cur_icount - cur_time;
204 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
205 if (delta > 0
206 && last_delta + ICOUNT_WOBBLE < delta * 2
207 && icount_time_shift > 0) {
208 /* The guest is getting too far ahead. Slow time down. */
209 icount_time_shift--;
210 }
211 if (delta < 0
212 && last_delta - ICOUNT_WOBBLE > delta * 2
213 && icount_time_shift < MAX_ICOUNT_SHIFT) {
214 /* The guest is getting too far behind. Speed time up. */
215 icount_time_shift++;
216 }
217 last_delta = delta;
218 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
219 }
220
221 static void icount_adjust_rt(void *opaque)
222 {
223 qemu_mod_timer(icount_rt_timer,
224 qemu_get_clock_ms(rt_clock) + 1000);
225 icount_adjust();
226 }
227
228 static void icount_adjust_vm(void *opaque)
229 {
230 qemu_mod_timer(icount_vm_timer,
231 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
232 icount_adjust();
233 }
234
235 static int64_t qemu_icount_round(int64_t count)
236 {
237 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
238 }
239
240 static void icount_warp_rt(void *opaque)
241 {
242 if (vm_clock_warp_start == -1) {
243 return;
244 }
245
246 if (runstate_is_running()) {
247 int64_t clock = qemu_get_clock_ns(rt_clock);
248 int64_t warp_delta = clock - vm_clock_warp_start;
249 if (use_icount == 1) {
250 qemu_icount_bias += warp_delta;
251 } else {
252 /*
253 * In adaptive mode, do not let the vm_clock run too
254 * far ahead of real time.
255 */
256 int64_t cur_time = cpu_get_clock();
257 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
258 int64_t delta = cur_time - cur_icount;
259 qemu_icount_bias += MIN(warp_delta, delta);
260 }
261 if (qemu_clock_expired(vm_clock)) {
262 qemu_notify_event();
263 }
264 }
265 vm_clock_warp_start = -1;
266 }
267
268 void qtest_clock_warp(int64_t dest)
269 {
270 int64_t clock = qemu_get_clock_ns(vm_clock);
271 assert(qtest_enabled());
272 while (clock < dest) {
273 int64_t deadline = qemu_clock_deadline(vm_clock);
274 int64_t warp = MIN(dest - clock, deadline);
275 qemu_icount_bias += warp;
276 qemu_run_timers(vm_clock);
277 clock = qemu_get_clock_ns(vm_clock);
278 }
279 qemu_notify_event();
280 }
281
282 void qemu_clock_warp(QEMUClock *clock)
283 {
284 int64_t deadline;
285
286 /*
287 * There are too many global variables to make the "warp" behavior
288 * applicable to other clocks. But a clock argument removes the
289 * need for if statements all over the place.
290 */
291 if (clock != vm_clock || !use_icount) {
292 return;
293 }
294
295 /*
296 * If the CPUs have been sleeping, advance the vm_clock timer now. This
297 * ensures that the deadline for the timer is computed correctly below.
298 * This also makes sure that the insn counter is synchronized before the
299 * CPU starts running, in case the CPU is woken by an event other than
300 * the earliest vm_clock timer.
301 */
302 icount_warp_rt(NULL);
303 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
304 qemu_del_timer(icount_warp_timer);
305 return;
306 }
307
308 if (qtest_enabled()) {
309 /* When testing, qtest commands advance icount. */
310 return;
311 }
312
313 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
314 deadline = qemu_clock_deadline(vm_clock);
315 if (deadline > 0) {
316 /*
317 * Ensure the vm_clock proceeds even when the virtual CPU goes to
318 * sleep. Otherwise, the CPU might be waiting for a future timer
319 * interrupt to wake it up, but the interrupt never comes because
320 * the vCPU isn't running any insns and thus doesn't advance the
321 * vm_clock.
322 *
323 * An extreme solution for this problem would be to never let VCPUs
324 * sleep in icount mode if there is a pending vm_clock timer; rather
325 * time could just advance to the next vm_clock event. Instead, we
326 * do stop VCPUs and only advance vm_clock after some "real" time,
327 * (related to the time left until the next event) has passed. This
328 * rt_clock timer will do this. This avoids that the warps are too
329 * visible externally---for example, you will not be sending network
330 * packets continuously instead of every 100ms.
331 */
332 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
333 } else {
334 qemu_notify_event();
335 }
336 }
337
338 static const VMStateDescription vmstate_timers = {
339 .name = "timer",
340 .version_id = 2,
341 .minimum_version_id = 1,
342 .minimum_version_id_old = 1,
343 .fields = (VMStateField[]) {
344 VMSTATE_INT64(cpu_ticks_offset, TimersState),
345 VMSTATE_INT64(dummy, TimersState),
346 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
347 VMSTATE_END_OF_LIST()
348 }
349 };
350
351 void configure_icount(const char *option)
352 {
353 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
354 if (!option) {
355 return;
356 }
357
358 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
359 if (strcmp(option, "auto") != 0) {
360 icount_time_shift = strtol(option, NULL, 0);
361 use_icount = 1;
362 return;
363 }
364
365 use_icount = 2;
366
367 /* 125MIPS seems a reasonable initial guess at the guest speed.
368 It will be corrected fairly quickly anyway. */
369 icount_time_shift = 3;
370
371 /* Have both realtime and virtual time triggers for speed adjustment.
372 The realtime trigger catches emulated time passing too slowly,
373 the virtual time trigger catches emulated time passing too fast.
374 Realtime triggers occur even when idle, so use them less frequently
375 than VM triggers. */
376 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
377 qemu_mod_timer(icount_rt_timer,
378 qemu_get_clock_ms(rt_clock) + 1000);
379 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
380 qemu_mod_timer(icount_vm_timer,
381 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
382 }
383
384 /***********************************************************/
385 void hw_error(const char *fmt, ...)
386 {
387 va_list ap;
388 CPUArchState *env;
389
390 va_start(ap, fmt);
391 fprintf(stderr, "qemu: hardware error: ");
392 vfprintf(stderr, fmt, ap);
393 fprintf(stderr, "\n");
394 for(env = first_cpu; env != NULL; env = env->next_cpu) {
395 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
396 #ifdef TARGET_I386
397 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
398 #else
399 cpu_dump_state(env, stderr, fprintf, 0);
400 #endif
401 }
402 va_end(ap);
403 abort();
404 }
405
406 void cpu_synchronize_all_states(void)
407 {
408 CPUArchState *cpu;
409
410 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
411 cpu_synchronize_state(cpu);
412 }
413 }
414
415 void cpu_synchronize_all_post_reset(void)
416 {
417 CPUArchState *cpu;
418
419 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
420 cpu_synchronize_post_reset(cpu);
421 }
422 }
423
424 void cpu_synchronize_all_post_init(void)
425 {
426 CPUArchState *cpu;
427
428 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
429 cpu_synchronize_post_init(cpu);
430 }
431 }
432
433 int cpu_is_stopped(CPUArchState *env)
434 {
435 return !runstate_is_running() || env->stopped;
436 }
437
438 static void do_vm_stop(RunState state)
439 {
440 if (runstate_is_running()) {
441 cpu_disable_ticks();
442 pause_all_vcpus();
443 runstate_set(state);
444 vm_state_notify(0, state);
445 bdrv_drain_all();
446 bdrv_flush_all();
447 monitor_protocol_event(QEVENT_STOP, NULL);
448 }
449 }
450
451 static int cpu_can_run(CPUArchState *env)
452 {
453 if (env->stop) {
454 return 0;
455 }
456 if (env->stopped || !runstate_is_running()) {
457 return 0;
458 }
459 return 1;
460 }
461
462 static void cpu_handle_guest_debug(CPUArchState *env)
463 {
464 gdb_set_stop_cpu(env);
465 qemu_system_debug_request();
466 env->stopped = 1;
467 }
468
469 static void cpu_signal(int sig)
470 {
471 if (cpu_single_env) {
472 cpu_exit(cpu_single_env);
473 }
474 exit_request = 1;
475 }
476
477 #ifdef CONFIG_LINUX
478 static void sigbus_reraise(void)
479 {
480 sigset_t set;
481 struct sigaction action;
482
483 memset(&action, 0, sizeof(action));
484 action.sa_handler = SIG_DFL;
485 if (!sigaction(SIGBUS, &action, NULL)) {
486 raise(SIGBUS);
487 sigemptyset(&set);
488 sigaddset(&set, SIGBUS);
489 sigprocmask(SIG_UNBLOCK, &set, NULL);
490 }
491 perror("Failed to re-raise SIGBUS!\n");
492 abort();
493 }
494
495 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
496 void *ctx)
497 {
498 if (kvm_on_sigbus(siginfo->ssi_code,
499 (void *)(intptr_t)siginfo->ssi_addr)) {
500 sigbus_reraise();
501 }
502 }
503
504 static void qemu_init_sigbus(void)
505 {
506 struct sigaction action;
507
508 memset(&action, 0, sizeof(action));
509 action.sa_flags = SA_SIGINFO;
510 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
511 sigaction(SIGBUS, &action, NULL);
512
513 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
514 }
515
516 static void qemu_kvm_eat_signals(CPUArchState *env)
517 {
518 struct timespec ts = { 0, 0 };
519 siginfo_t siginfo;
520 sigset_t waitset;
521 sigset_t chkset;
522 int r;
523
524 sigemptyset(&waitset);
525 sigaddset(&waitset, SIG_IPI);
526 sigaddset(&waitset, SIGBUS);
527
528 do {
529 r = sigtimedwait(&waitset, &siginfo, &ts);
530 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
531 perror("sigtimedwait");
532 exit(1);
533 }
534
535 switch (r) {
536 case SIGBUS:
537 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
538 sigbus_reraise();
539 }
540 break;
541 default:
542 break;
543 }
544
545 r = sigpending(&chkset);
546 if (r == -1) {
547 perror("sigpending");
548 exit(1);
549 }
550 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
551 }
552
553 #else /* !CONFIG_LINUX */
554
555 static void qemu_init_sigbus(void)
556 {
557 }
558
559 static void qemu_kvm_eat_signals(CPUArchState *env)
560 {
561 }
562 #endif /* !CONFIG_LINUX */
563
564 #ifndef _WIN32
565 static void dummy_signal(int sig)
566 {
567 }
568
569 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
570 {
571 int r;
572 sigset_t set;
573 struct sigaction sigact;
574
575 memset(&sigact, 0, sizeof(sigact));
576 sigact.sa_handler = dummy_signal;
577 sigaction(SIG_IPI, &sigact, NULL);
578
579 pthread_sigmask(SIG_BLOCK, NULL, &set);
580 sigdelset(&set, SIG_IPI);
581 sigdelset(&set, SIGBUS);
582 r = kvm_set_signal_mask(env, &set);
583 if (r) {
584 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
585 exit(1);
586 }
587 }
588
589 static void qemu_tcg_init_cpu_signals(void)
590 {
591 sigset_t set;
592 struct sigaction sigact;
593
594 memset(&sigact, 0, sizeof(sigact));
595 sigact.sa_handler = cpu_signal;
596 sigaction(SIG_IPI, &sigact, NULL);
597
598 sigemptyset(&set);
599 sigaddset(&set, SIG_IPI);
600 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
601 }
602
603 #else /* _WIN32 */
604 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
605 {
606 abort();
607 }
608
609 static void qemu_tcg_init_cpu_signals(void)
610 {
611 }
612 #endif /* _WIN32 */
613
614 QemuMutex qemu_global_mutex;
615 static QemuCond qemu_io_proceeded_cond;
616 static bool iothread_requesting_mutex;
617
618 static QemuThread io_thread;
619
620 static QemuThread *tcg_cpu_thread;
621 static QemuCond *tcg_halt_cond;
622
623 /* cpu creation */
624 static QemuCond qemu_cpu_cond;
625 /* system init */
626 static QemuCond qemu_pause_cond;
627 static QemuCond qemu_work_cond;
628
629 void qemu_init_cpu_loop(void)
630 {
631 qemu_init_sigbus();
632 qemu_cond_init(&qemu_cpu_cond);
633 qemu_cond_init(&qemu_pause_cond);
634 qemu_cond_init(&qemu_work_cond);
635 qemu_cond_init(&qemu_io_proceeded_cond);
636 qemu_mutex_init(&qemu_global_mutex);
637
638 qemu_thread_get_self(&io_thread);
639 }
640
641 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data)
642 {
643 struct qemu_work_item wi;
644
645 if (qemu_cpu_is_self(env)) {
646 func(data);
647 return;
648 }
649
650 wi.func = func;
651 wi.data = data;
652 if (!env->queued_work_first) {
653 env->queued_work_first = &wi;
654 } else {
655 env->queued_work_last->next = &wi;
656 }
657 env->queued_work_last = &wi;
658 wi.next = NULL;
659 wi.done = false;
660
661 qemu_cpu_kick(env);
662 while (!wi.done) {
663 CPUArchState *self_env = cpu_single_env;
664
665 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
666 cpu_single_env = self_env;
667 }
668 }
669
670 static void flush_queued_work(CPUArchState *env)
671 {
672 struct qemu_work_item *wi;
673
674 if (!env->queued_work_first) {
675 return;
676 }
677
678 while ((wi = env->queued_work_first)) {
679 env->queued_work_first = wi->next;
680 wi->func(wi->data);
681 wi->done = true;
682 }
683 env->queued_work_last = NULL;
684 qemu_cond_broadcast(&qemu_work_cond);
685 }
686
687 static void qemu_wait_io_event_common(CPUArchState *env)
688 {
689 if (env->stop) {
690 env->stop = 0;
691 env->stopped = 1;
692 qemu_cond_signal(&qemu_pause_cond);
693 }
694 flush_queued_work(env);
695 env->thread_kicked = false;
696 }
697
698 static void qemu_tcg_wait_io_event(void)
699 {
700 CPUArchState *env;
701
702 while (all_cpu_threads_idle()) {
703 /* Start accounting real time to the virtual clock if the CPUs
704 are idle. */
705 qemu_clock_warp(vm_clock);
706 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
707 }
708
709 while (iothread_requesting_mutex) {
710 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
711 }
712
713 for (env = first_cpu; env != NULL; env = env->next_cpu) {
714 qemu_wait_io_event_common(env);
715 }
716 }
717
718 static void qemu_kvm_wait_io_event(CPUArchState *env)
719 {
720 while (cpu_thread_is_idle(env)) {
721 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
722 }
723
724 qemu_kvm_eat_signals(env);
725 qemu_wait_io_event_common(env);
726 }
727
728 static void *qemu_kvm_cpu_thread_fn(void *arg)
729 {
730 CPUArchState *env = arg;
731 int r;
732
733 qemu_mutex_lock(&qemu_global_mutex);
734 qemu_thread_get_self(env->thread);
735 env->thread_id = qemu_get_thread_id();
736 cpu_single_env = env;
737
738 r = kvm_init_vcpu(env);
739 if (r < 0) {
740 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
741 exit(1);
742 }
743
744 qemu_kvm_init_cpu_signals(env);
745
746 /* signal CPU creation */
747 env->created = 1;
748 qemu_cond_signal(&qemu_cpu_cond);
749
750 while (1) {
751 if (cpu_can_run(env)) {
752 r = kvm_cpu_exec(env);
753 if (r == EXCP_DEBUG) {
754 cpu_handle_guest_debug(env);
755 }
756 }
757 qemu_kvm_wait_io_event(env);
758 }
759
760 return NULL;
761 }
762
763 static void *qemu_dummy_cpu_thread_fn(void *arg)
764 {
765 #ifdef _WIN32
766 fprintf(stderr, "qtest is not supported under Windows\n");
767 exit(1);
768 #else
769 CPUArchState *env = arg;
770 sigset_t waitset;
771 int r;
772
773 qemu_mutex_lock_iothread();
774 qemu_thread_get_self(env->thread);
775 env->thread_id = qemu_get_thread_id();
776
777 sigemptyset(&waitset);
778 sigaddset(&waitset, SIG_IPI);
779
780 /* signal CPU creation */
781 env->created = 1;
782 qemu_cond_signal(&qemu_cpu_cond);
783
784 cpu_single_env = env;
785 while (1) {
786 cpu_single_env = NULL;
787 qemu_mutex_unlock_iothread();
788 do {
789 int sig;
790 r = sigwait(&waitset, &sig);
791 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
792 if (r == -1) {
793 perror("sigwait");
794 exit(1);
795 }
796 qemu_mutex_lock_iothread();
797 cpu_single_env = env;
798 qemu_wait_io_event_common(env);
799 }
800
801 return NULL;
802 #endif
803 }
804
805 static void tcg_exec_all(void);
806
807 static void *qemu_tcg_cpu_thread_fn(void *arg)
808 {
809 CPUArchState *env = arg;
810
811 qemu_tcg_init_cpu_signals();
812 qemu_thread_get_self(env->thread);
813
814 /* signal CPU creation */
815 qemu_mutex_lock(&qemu_global_mutex);
816 for (env = first_cpu; env != NULL; env = env->next_cpu) {
817 env->thread_id = qemu_get_thread_id();
818 env->created = 1;
819 }
820 qemu_cond_signal(&qemu_cpu_cond);
821
822 /* wait for initial kick-off after machine start */
823 while (first_cpu->stopped) {
824 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
825
826 /* process any pending work */
827 for (env = first_cpu; env != NULL; env = env->next_cpu) {
828 qemu_wait_io_event_common(env);
829 }
830 }
831
832 while (1) {
833 tcg_exec_all();
834 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
835 qemu_notify_event();
836 }
837 qemu_tcg_wait_io_event();
838 }
839
840 return NULL;
841 }
842
843 static void qemu_cpu_kick_thread(CPUArchState *env)
844 {
845 #ifndef _WIN32
846 int err;
847
848 err = pthread_kill(env->thread->thread, SIG_IPI);
849 if (err) {
850 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
851 exit(1);
852 }
853 #else /* _WIN32 */
854 if (!qemu_cpu_is_self(env)) {
855 SuspendThread(env->hThread);
856 cpu_signal(0);
857 ResumeThread(env->hThread);
858 }
859 #endif
860 }
861
862 void qemu_cpu_kick(void *_env)
863 {
864 CPUArchState *env = _env;
865
866 qemu_cond_broadcast(env->halt_cond);
867 if (!tcg_enabled() && !env->thread_kicked) {
868 qemu_cpu_kick_thread(env);
869 env->thread_kicked = true;
870 }
871 }
872
873 void qemu_cpu_kick_self(void)
874 {
875 #ifndef _WIN32
876 assert(cpu_single_env);
877
878 if (!cpu_single_env->thread_kicked) {
879 qemu_cpu_kick_thread(cpu_single_env);
880 cpu_single_env->thread_kicked = true;
881 }
882 #else
883 abort();
884 #endif
885 }
886
887 int qemu_cpu_is_self(void *_env)
888 {
889 CPUArchState *env = _env;
890
891 return qemu_thread_is_self(env->thread);
892 }
893
894 void qemu_mutex_lock_iothread(void)
895 {
896 if (!tcg_enabled()) {
897 qemu_mutex_lock(&qemu_global_mutex);
898 } else {
899 iothread_requesting_mutex = true;
900 if (qemu_mutex_trylock(&qemu_global_mutex)) {
901 qemu_cpu_kick_thread(first_cpu);
902 qemu_mutex_lock(&qemu_global_mutex);
903 }
904 iothread_requesting_mutex = false;
905 qemu_cond_broadcast(&qemu_io_proceeded_cond);
906 }
907 }
908
909 void qemu_mutex_unlock_iothread(void)
910 {
911 qemu_mutex_unlock(&qemu_global_mutex);
912 }
913
914 static int all_vcpus_paused(void)
915 {
916 CPUArchState *penv = first_cpu;
917
918 while (penv) {
919 if (!penv->stopped) {
920 return 0;
921 }
922 penv = penv->next_cpu;
923 }
924
925 return 1;
926 }
927
928 void pause_all_vcpus(void)
929 {
930 CPUArchState *penv = first_cpu;
931
932 qemu_clock_enable(vm_clock, false);
933 while (penv) {
934 penv->stop = 1;
935 qemu_cpu_kick(penv);
936 penv = penv->next_cpu;
937 }
938
939 if (!qemu_thread_is_self(&io_thread)) {
940 cpu_stop_current();
941 if (!kvm_enabled()) {
942 while (penv) {
943 penv->stop = 0;
944 penv->stopped = 1;
945 penv = penv->next_cpu;
946 }
947 return;
948 }
949 }
950
951 while (!all_vcpus_paused()) {
952 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
953 penv = first_cpu;
954 while (penv) {
955 qemu_cpu_kick(penv);
956 penv = penv->next_cpu;
957 }
958 }
959 }
960
961 void resume_all_vcpus(void)
962 {
963 CPUArchState *penv = first_cpu;
964
965 qemu_clock_enable(vm_clock, true);
966 while (penv) {
967 penv->stop = 0;
968 penv->stopped = 0;
969 qemu_cpu_kick(penv);
970 penv = penv->next_cpu;
971 }
972 }
973
974 static void qemu_tcg_init_vcpu(void *_env)
975 {
976 CPUArchState *env = _env;
977
978 /* share a single thread for all cpus with TCG */
979 if (!tcg_cpu_thread) {
980 env->thread = g_malloc0(sizeof(QemuThread));
981 env->halt_cond = g_malloc0(sizeof(QemuCond));
982 qemu_cond_init(env->halt_cond);
983 tcg_halt_cond = env->halt_cond;
984 qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env,
985 QEMU_THREAD_JOINABLE);
986 #ifdef _WIN32
987 env->hThread = qemu_thread_get_handle(env->thread);
988 #endif
989 while (env->created == 0) {
990 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
991 }
992 tcg_cpu_thread = env->thread;
993 } else {
994 env->thread = tcg_cpu_thread;
995 env->halt_cond = tcg_halt_cond;
996 }
997 }
998
999 static void qemu_kvm_start_vcpu(CPUArchState *env)
1000 {
1001 env->thread = g_malloc0(sizeof(QemuThread));
1002 env->halt_cond = g_malloc0(sizeof(QemuCond));
1003 qemu_cond_init(env->halt_cond);
1004 qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env,
1005 QEMU_THREAD_JOINABLE);
1006 while (env->created == 0) {
1007 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1008 }
1009 }
1010
1011 static void qemu_dummy_start_vcpu(CPUArchState *env)
1012 {
1013 env->thread = g_malloc0(sizeof(QemuThread));
1014 env->halt_cond = g_malloc0(sizeof(QemuCond));
1015 qemu_cond_init(env->halt_cond);
1016 qemu_thread_create(env->thread, qemu_dummy_cpu_thread_fn, env,
1017 QEMU_THREAD_JOINABLE);
1018 while (env->created == 0) {
1019 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1020 }
1021 }
1022
1023 void qemu_init_vcpu(void *_env)
1024 {
1025 CPUArchState *env = _env;
1026
1027 env->nr_cores = smp_cores;
1028 env->nr_threads = smp_threads;
1029 env->stopped = 1;
1030 if (kvm_enabled()) {
1031 qemu_kvm_start_vcpu(env);
1032 } else if (tcg_enabled()) {
1033 qemu_tcg_init_vcpu(env);
1034 } else {
1035 qemu_dummy_start_vcpu(env);
1036 }
1037 }
1038
1039 void cpu_stop_current(void)
1040 {
1041 if (cpu_single_env) {
1042 cpu_single_env->stop = 0;
1043 cpu_single_env->stopped = 1;
1044 cpu_exit(cpu_single_env);
1045 qemu_cond_signal(&qemu_pause_cond);
1046 }
1047 }
1048
1049 void vm_stop(RunState state)
1050 {
1051 if (!qemu_thread_is_self(&io_thread)) {
1052 qemu_system_vmstop_request(state);
1053 /*
1054 * FIXME: should not return to device code in case
1055 * vm_stop() has been requested.
1056 */
1057 cpu_stop_current();
1058 return;
1059 }
1060 do_vm_stop(state);
1061 }
1062
1063 /* does a state transition even if the VM is already stopped,
1064 current state is forgotten forever */
1065 void vm_stop_force_state(RunState state)
1066 {
1067 if (runstate_is_running()) {
1068 vm_stop(state);
1069 } else {
1070 runstate_set(state);
1071 }
1072 }
1073
1074 static int tcg_cpu_exec(CPUArchState *env)
1075 {
1076 int ret;
1077 #ifdef CONFIG_PROFILER
1078 int64_t ti;
1079 #endif
1080
1081 #ifdef CONFIG_PROFILER
1082 ti = profile_getclock();
1083 #endif
1084 if (use_icount) {
1085 int64_t count;
1086 int decr;
1087 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1088 env->icount_decr.u16.low = 0;
1089 env->icount_extra = 0;
1090 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1091 qemu_icount += count;
1092 decr = (count > 0xffff) ? 0xffff : count;
1093 count -= decr;
1094 env->icount_decr.u16.low = decr;
1095 env->icount_extra = count;
1096 }
1097 ret = cpu_exec(env);
1098 #ifdef CONFIG_PROFILER
1099 qemu_time += profile_getclock() - ti;
1100 #endif
1101 if (use_icount) {
1102 /* Fold pending instructions back into the
1103 instruction counter, and clear the interrupt flag. */
1104 qemu_icount -= (env->icount_decr.u16.low
1105 + env->icount_extra);
1106 env->icount_decr.u32 = 0;
1107 env->icount_extra = 0;
1108 }
1109 return ret;
1110 }
1111
1112 static void tcg_exec_all(void)
1113 {
1114 int r;
1115
1116 /* Account partial waits to the vm_clock. */
1117 qemu_clock_warp(vm_clock);
1118
1119 if (next_cpu == NULL) {
1120 next_cpu = first_cpu;
1121 }
1122 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1123 CPUArchState *env = next_cpu;
1124
1125 qemu_clock_enable(vm_clock,
1126 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1127
1128 if (cpu_can_run(env)) {
1129 r = tcg_cpu_exec(env);
1130 if (r == EXCP_DEBUG) {
1131 cpu_handle_guest_debug(env);
1132 break;
1133 }
1134 } else if (env->stop || env->stopped) {
1135 break;
1136 }
1137 }
1138 exit_request = 0;
1139 }
1140
1141 void set_numa_modes(void)
1142 {
1143 CPUArchState *env;
1144 int i;
1145
1146 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1147 for (i = 0; i < nb_numa_nodes; i++) {
1148 if (node_cpumask[i] & (1 << env->cpu_index)) {
1149 env->numa_node = i;
1150 }
1151 }
1152 }
1153 }
1154
1155 void set_cpu_log(const char *optarg)
1156 {
1157 int mask;
1158 const CPULogItem *item;
1159
1160 mask = cpu_str_to_log_mask(optarg);
1161 if (!mask) {
1162 printf("Log items (comma separated):\n");
1163 for (item = cpu_log_items; item->mask != 0; item++) {
1164 printf("%-10s %s\n", item->name, item->help);
1165 }
1166 exit(1);
1167 }
1168 cpu_set_log(mask);
1169 }
1170
1171 void set_cpu_log_filename(const char *optarg)
1172 {
1173 cpu_set_log_filename(optarg);
1174 }
1175
1176 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1177 {
1178 /* XXX: implement xxx_cpu_list for targets that still miss it */
1179 #if defined(cpu_list_id)
1180 cpu_list_id(f, cpu_fprintf, optarg);
1181 #elif defined(cpu_list)
1182 cpu_list(f, cpu_fprintf); /* deprecated */
1183 #endif
1184 }
1185
1186 CpuInfoList *qmp_query_cpus(Error **errp)
1187 {
1188 CpuInfoList *head = NULL, *cur_item = NULL;
1189 CPUArchState *env;
1190
1191 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1192 CpuInfoList *info;
1193
1194 cpu_synchronize_state(env);
1195
1196 info = g_malloc0(sizeof(*info));
1197 info->value = g_malloc0(sizeof(*info->value));
1198 info->value->CPU = env->cpu_index;
1199 info->value->current = (env == first_cpu);
1200 info->value->halted = env->halted;
1201 info->value->thread_id = env->thread_id;
1202 #if defined(TARGET_I386)
1203 info->value->has_pc = true;
1204 info->value->pc = env->eip + env->segs[R_CS].base;
1205 #elif defined(TARGET_PPC)
1206 info->value->has_nip = true;
1207 info->value->nip = env->nip;
1208 #elif defined(TARGET_SPARC)
1209 info->value->has_pc = true;
1210 info->value->pc = env->pc;
1211 info->value->has_npc = true;
1212 info->value->npc = env->npc;
1213 #elif defined(TARGET_MIPS)
1214 info->value->has_PC = true;
1215 info->value->PC = env->active_tc.PC;
1216 #endif
1217
1218 /* XXX: waiting for the qapi to support GSList */
1219 if (!cur_item) {
1220 head = cur_item = info;
1221 } else {
1222 cur_item->next = info;
1223 cur_item = info;
1224 }
1225 }
1226
1227 return head;
1228 }
1229
1230 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1231 bool has_cpu, int64_t cpu_index, Error **errp)
1232 {
1233 FILE *f;
1234 uint32_t l;
1235 CPUArchState *env;
1236 uint8_t buf[1024];
1237
1238 if (!has_cpu) {
1239 cpu_index = 0;
1240 }
1241
1242 for (env = first_cpu; env; env = env->next_cpu) {
1243 if (cpu_index == env->cpu_index) {
1244 break;
1245 }
1246 }
1247
1248 if (env == NULL) {
1249 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1250 "a CPU number");
1251 return;
1252 }
1253
1254 f = fopen(filename, "wb");
1255 if (!f) {
1256 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1257 return;
1258 }
1259
1260 while (size != 0) {
1261 l = sizeof(buf);
1262 if (l > size)
1263 l = size;
1264 cpu_memory_rw_debug(env, addr, buf, l, 0);
1265 if (fwrite(buf, 1, l, f) != l) {
1266 error_set(errp, QERR_IO_ERROR);
1267 goto exit;
1268 }
1269 addr += l;
1270 size -= l;
1271 }
1272
1273 exit:
1274 fclose(f);
1275 }
1276
1277 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1278 Error **errp)
1279 {
1280 FILE *f;
1281 uint32_t l;
1282 uint8_t buf[1024];
1283
1284 f = fopen(filename, "wb");
1285 if (!f) {
1286 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1287 return;
1288 }
1289
1290 while (size != 0) {
1291 l = sizeof(buf);
1292 if (l > size)
1293 l = size;
1294 cpu_physical_memory_rw(addr, buf, l, 0);
1295 if (fwrite(buf, 1, l, f) != l) {
1296 error_set(errp, QERR_IO_ERROR);
1297 goto exit;
1298 }
1299 addr += l;
1300 size -= l;
1301 }
1302
1303 exit:
1304 fclose(f);
1305 }
1306
1307 void qmp_inject_nmi(Error **errp)
1308 {
1309 #if defined(TARGET_I386)
1310 CPUArchState *env;
1311
1312 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1313 if (!env->apic_state) {
1314 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1315 } else {
1316 apic_deliver_nmi(env->apic_state);
1317 }
1318 }
1319 #else
1320 error_set(errp, QERR_UNSUPPORTED);
1321 #endif
1322 }