]> git.proxmox.com Git - qemu.git/blob - cpus.c
Prevent abortion on multiple VCPU kicks
[qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "exec-all.h"
34
35 #include "cpus.h"
36 #include "compatfd.h"
37 #ifdef CONFIG_LINUX
38 #include <sys/prctl.h>
39 #endif
40
41 #ifdef SIGRTMIN
42 #define SIG_IPI (SIGRTMIN+4)
43 #else
44 #define SIG_IPI SIGUSR1
45 #endif
46
47 #ifndef PR_MCE_KILL
48 #define PR_MCE_KILL 33
49 #endif
50
51 static CPUState *next_cpu;
52
53 /***********************************************************/
54 void hw_error(const char *fmt, ...)
55 {
56 va_list ap;
57 CPUState *env;
58
59 va_start(ap, fmt);
60 fprintf(stderr, "qemu: hardware error: ");
61 vfprintf(stderr, fmt, ap);
62 fprintf(stderr, "\n");
63 for(env = first_cpu; env != NULL; env = env->next_cpu) {
64 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
65 #ifdef TARGET_I386
66 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
67 #else
68 cpu_dump_state(env, stderr, fprintf, 0);
69 #endif
70 }
71 va_end(ap);
72 abort();
73 }
74
75 void cpu_synchronize_all_states(void)
76 {
77 CPUState *cpu;
78
79 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
80 cpu_synchronize_state(cpu);
81 }
82 }
83
84 void cpu_synchronize_all_post_reset(void)
85 {
86 CPUState *cpu;
87
88 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
89 cpu_synchronize_post_reset(cpu);
90 }
91 }
92
93 void cpu_synchronize_all_post_init(void)
94 {
95 CPUState *cpu;
96
97 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
98 cpu_synchronize_post_init(cpu);
99 }
100 }
101
102 int cpu_is_stopped(CPUState *env)
103 {
104 return !vm_running || env->stopped;
105 }
106
107 static void do_vm_stop(int reason)
108 {
109 if (vm_running) {
110 cpu_disable_ticks();
111 vm_running = 0;
112 pause_all_vcpus();
113 vm_state_notify(0, reason);
114 qemu_aio_flush();
115 bdrv_flush_all();
116 monitor_protocol_event(QEVENT_STOP, NULL);
117 }
118 }
119
120 static int cpu_can_run(CPUState *env)
121 {
122 if (env->stop)
123 return 0;
124 if (env->stopped || !vm_running)
125 return 0;
126 return 1;
127 }
128
129 static int cpu_has_work(CPUState *env)
130 {
131 if (env->stop)
132 return 1;
133 if (env->queued_work_first)
134 return 1;
135 if (env->stopped || !vm_running)
136 return 0;
137 if (!env->halted)
138 return 1;
139 if (qemu_cpu_has_work(env))
140 return 1;
141 return 0;
142 }
143
144 static int any_cpu_has_work(void)
145 {
146 CPUState *env;
147
148 for (env = first_cpu; env != NULL; env = env->next_cpu)
149 if (cpu_has_work(env))
150 return 1;
151 return 0;
152 }
153
154 static void cpu_debug_handler(CPUState *env)
155 {
156 gdb_set_stop_cpu(env);
157 debug_requested = EXCP_DEBUG;
158 vm_stop(EXCP_DEBUG);
159 }
160
161 #ifndef _WIN32
162 static int io_thread_fd = -1;
163
164 static void qemu_event_increment(void)
165 {
166 /* Write 8 bytes to be compatible with eventfd. */
167 static const uint64_t val = 1;
168 ssize_t ret;
169
170 if (io_thread_fd == -1)
171 return;
172
173 do {
174 ret = write(io_thread_fd, &val, sizeof(val));
175 } while (ret < 0 && errno == EINTR);
176
177 /* EAGAIN is fine, a read must be pending. */
178 if (ret < 0 && errno != EAGAIN) {
179 fprintf(stderr, "qemu_event_increment: write() filed: %s\n",
180 strerror(errno));
181 exit (1);
182 }
183 }
184
185 static void qemu_event_read(void *opaque)
186 {
187 int fd = (unsigned long)opaque;
188 ssize_t len;
189 char buffer[512];
190
191 /* Drain the notify pipe. For eventfd, only 8 bytes will be read. */
192 do {
193 len = read(fd, buffer, sizeof(buffer));
194 } while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
195 }
196
197 static int qemu_event_init(void)
198 {
199 int err;
200 int fds[2];
201
202 err = qemu_eventfd(fds);
203 if (err == -1)
204 return -errno;
205
206 err = fcntl_setfl(fds[0], O_NONBLOCK);
207 if (err < 0)
208 goto fail;
209
210 err = fcntl_setfl(fds[1], O_NONBLOCK);
211 if (err < 0)
212 goto fail;
213
214 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
215 (void *)(unsigned long)fds[0]);
216
217 io_thread_fd = fds[1];
218 return 0;
219
220 fail:
221 close(fds[0]);
222 close(fds[1]);
223 return err;
224 }
225 #else
226 HANDLE qemu_event_handle;
227
228 static void dummy_event_handler(void *opaque)
229 {
230 }
231
232 static int qemu_event_init(void)
233 {
234 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
235 if (!qemu_event_handle) {
236 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
237 return -1;
238 }
239 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
240 return 0;
241 }
242
243 static void qemu_event_increment(void)
244 {
245 if (!SetEvent(qemu_event_handle)) {
246 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
247 GetLastError());
248 exit (1);
249 }
250 }
251 #endif
252
253 #ifndef CONFIG_IOTHREAD
254 int qemu_init_main_loop(void)
255 {
256 cpu_set_debug_excp_handler(cpu_debug_handler);
257
258 return qemu_event_init();
259 }
260
261 void qemu_main_loop_start(void)
262 {
263 }
264
265 void qemu_init_vcpu(void *_env)
266 {
267 CPUState *env = _env;
268
269 env->nr_cores = smp_cores;
270 env->nr_threads = smp_threads;
271 if (kvm_enabled())
272 kvm_init_vcpu(env);
273 return;
274 }
275
276 int qemu_cpu_self(void *env)
277 {
278 return 1;
279 }
280
281 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
282 {
283 func(data);
284 }
285
286 void resume_all_vcpus(void)
287 {
288 }
289
290 void pause_all_vcpus(void)
291 {
292 }
293
294 void qemu_cpu_kick(void *env)
295 {
296 return;
297 }
298
299 void qemu_notify_event(void)
300 {
301 CPUState *env = cpu_single_env;
302
303 qemu_event_increment ();
304 if (env) {
305 cpu_exit(env);
306 }
307 if (next_cpu && env != next_cpu) {
308 cpu_exit(next_cpu);
309 }
310 }
311
312 void qemu_mutex_lock_iothread(void) {}
313 void qemu_mutex_unlock_iothread(void) {}
314
315 void vm_stop(int reason)
316 {
317 do_vm_stop(reason);
318 }
319
320 #else /* CONFIG_IOTHREAD */
321
322 #include "qemu-thread.h"
323
324 QemuMutex qemu_global_mutex;
325 static QemuMutex qemu_fair_mutex;
326
327 static QemuThread io_thread;
328
329 static QemuThread *tcg_cpu_thread;
330 static QemuCond *tcg_halt_cond;
331
332 static int qemu_system_ready;
333 /* cpu creation */
334 static QemuCond qemu_cpu_cond;
335 /* system init */
336 static QemuCond qemu_system_cond;
337 static QemuCond qemu_pause_cond;
338 static QemuCond qemu_work_cond;
339
340 static void tcg_init_ipi(void);
341 static void kvm_init_ipi(CPUState *env);
342 static sigset_t block_io_signals(void);
343
344 /* If we have signalfd, we mask out the signals we want to handle and then
345 * use signalfd to listen for them. We rely on whatever the current signal
346 * handler is to dispatch the signals when we receive them.
347 */
348 static void sigfd_handler(void *opaque)
349 {
350 int fd = (unsigned long) opaque;
351 struct qemu_signalfd_siginfo info;
352 struct sigaction action;
353 ssize_t len;
354
355 while (1) {
356 do {
357 len = read(fd, &info, sizeof(info));
358 } while (len == -1 && errno == EINTR);
359
360 if (len == -1 && errno == EAGAIN) {
361 break;
362 }
363
364 if (len != sizeof(info)) {
365 printf("read from sigfd returned %zd: %m\n", len);
366 return;
367 }
368
369 sigaction(info.ssi_signo, NULL, &action);
370 if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
371 action.sa_sigaction(info.ssi_signo,
372 (siginfo_t *)&info, NULL);
373 } else if (action.sa_handler) {
374 action.sa_handler(info.ssi_signo);
375 }
376 }
377 }
378
379 static int qemu_signalfd_init(sigset_t mask)
380 {
381 int sigfd;
382
383 sigfd = qemu_signalfd(&mask);
384 if (sigfd == -1) {
385 fprintf(stderr, "failed to create signalfd\n");
386 return -errno;
387 }
388
389 fcntl_setfl(sigfd, O_NONBLOCK);
390
391 qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
392 (void *)(unsigned long) sigfd);
393
394 return 0;
395 }
396
397 int qemu_init_main_loop(void)
398 {
399 int ret;
400 sigset_t blocked_signals;
401
402 cpu_set_debug_excp_handler(cpu_debug_handler);
403
404 blocked_signals = block_io_signals();
405
406 ret = qemu_signalfd_init(blocked_signals);
407 if (ret)
408 return ret;
409
410 /* Note eventfd must be drained before signalfd handlers run */
411 ret = qemu_event_init();
412 if (ret)
413 return ret;
414
415 qemu_cond_init(&qemu_pause_cond);
416 qemu_cond_init(&qemu_system_cond);
417 qemu_mutex_init(&qemu_fair_mutex);
418 qemu_mutex_init(&qemu_global_mutex);
419 qemu_mutex_lock(&qemu_global_mutex);
420
421 qemu_thread_self(&io_thread);
422
423 return 0;
424 }
425
426 void qemu_main_loop_start(void)
427 {
428 qemu_system_ready = 1;
429 qemu_cond_broadcast(&qemu_system_cond);
430 }
431
432 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
433 {
434 struct qemu_work_item wi;
435
436 if (qemu_cpu_self(env)) {
437 func(data);
438 return;
439 }
440
441 wi.func = func;
442 wi.data = data;
443 if (!env->queued_work_first)
444 env->queued_work_first = &wi;
445 else
446 env->queued_work_last->next = &wi;
447 env->queued_work_last = &wi;
448 wi.next = NULL;
449 wi.done = false;
450
451 qemu_cpu_kick(env);
452 while (!wi.done) {
453 CPUState *self_env = cpu_single_env;
454
455 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
456 cpu_single_env = self_env;
457 }
458 }
459
460 static void flush_queued_work(CPUState *env)
461 {
462 struct qemu_work_item *wi;
463
464 if (!env->queued_work_first)
465 return;
466
467 while ((wi = env->queued_work_first)) {
468 env->queued_work_first = wi->next;
469 wi->func(wi->data);
470 wi->done = true;
471 }
472 env->queued_work_last = NULL;
473 qemu_cond_broadcast(&qemu_work_cond);
474 }
475
476 static void qemu_wait_io_event_common(CPUState *env)
477 {
478 if (env->stop) {
479 env->stop = 0;
480 env->stopped = 1;
481 qemu_cond_signal(&qemu_pause_cond);
482 }
483 flush_queued_work(env);
484 env->thread_kicked = false;
485 }
486
487 static void qemu_tcg_wait_io_event(void)
488 {
489 CPUState *env;
490
491 while (!any_cpu_has_work())
492 qemu_cond_timedwait(tcg_halt_cond, &qemu_global_mutex, 1000);
493
494 qemu_mutex_unlock(&qemu_global_mutex);
495
496 /*
497 * Users of qemu_global_mutex can be starved, having no chance
498 * to acquire it since this path will get to it first.
499 * So use another lock to provide fairness.
500 */
501 qemu_mutex_lock(&qemu_fair_mutex);
502 qemu_mutex_unlock(&qemu_fair_mutex);
503
504 qemu_mutex_lock(&qemu_global_mutex);
505
506 for (env = first_cpu; env != NULL; env = env->next_cpu) {
507 qemu_wait_io_event_common(env);
508 }
509 }
510
511 static void sigbus_reraise(void)
512 {
513 sigset_t set;
514 struct sigaction action;
515
516 memset(&action, 0, sizeof(action));
517 action.sa_handler = SIG_DFL;
518 if (!sigaction(SIGBUS, &action, NULL)) {
519 raise(SIGBUS);
520 sigemptyset(&set);
521 sigaddset(&set, SIGBUS);
522 sigprocmask(SIG_UNBLOCK, &set, NULL);
523 }
524 perror("Failed to re-raise SIGBUS!\n");
525 abort();
526 }
527
528 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
529 void *ctx)
530 {
531 #if defined(TARGET_I386)
532 if (kvm_on_sigbus(siginfo->ssi_code, (void *)(intptr_t)siginfo->ssi_addr))
533 #endif
534 sigbus_reraise();
535 }
536
537 static void qemu_kvm_eat_signal(CPUState *env, int timeout)
538 {
539 struct timespec ts;
540 int r, e;
541 siginfo_t siginfo;
542 sigset_t waitset;
543 sigset_t chkset;
544
545 ts.tv_sec = timeout / 1000;
546 ts.tv_nsec = (timeout % 1000) * 1000000;
547
548 sigemptyset(&waitset);
549 sigaddset(&waitset, SIG_IPI);
550 sigaddset(&waitset, SIGBUS);
551
552 do {
553 qemu_mutex_unlock(&qemu_global_mutex);
554
555 r = sigtimedwait(&waitset, &siginfo, &ts);
556 e = errno;
557
558 qemu_mutex_lock(&qemu_global_mutex);
559
560 if (r == -1 && !(e == EAGAIN || e == EINTR)) {
561 fprintf(stderr, "sigtimedwait: %s\n", strerror(e));
562 exit(1);
563 }
564
565 switch (r) {
566 case SIGBUS:
567 #ifdef TARGET_I386
568 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr))
569 #endif
570 sigbus_reraise();
571 break;
572 default:
573 break;
574 }
575
576 r = sigpending(&chkset);
577 if (r == -1) {
578 fprintf(stderr, "sigpending: %s\n", strerror(e));
579 exit(1);
580 }
581 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
582 }
583
584 static void qemu_kvm_wait_io_event(CPUState *env)
585 {
586 while (!cpu_has_work(env))
587 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
588
589 qemu_kvm_eat_signal(env, 0);
590 qemu_wait_io_event_common(env);
591 }
592
593 static int qemu_cpu_exec(CPUState *env);
594
595 static void *kvm_cpu_thread_fn(void *arg)
596 {
597 CPUState *env = arg;
598
599 qemu_mutex_lock(&qemu_global_mutex);
600 qemu_thread_self(env->thread);
601 if (kvm_enabled())
602 kvm_init_vcpu(env);
603
604 kvm_init_ipi(env);
605
606 /* signal CPU creation */
607 env->created = 1;
608 qemu_cond_signal(&qemu_cpu_cond);
609
610 /* and wait for machine initialization */
611 while (!qemu_system_ready)
612 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
613
614 while (1) {
615 if (cpu_can_run(env))
616 qemu_cpu_exec(env);
617 qemu_kvm_wait_io_event(env);
618 }
619
620 return NULL;
621 }
622
623 static void *tcg_cpu_thread_fn(void *arg)
624 {
625 CPUState *env = arg;
626
627 tcg_init_ipi();
628 qemu_thread_self(env->thread);
629
630 /* signal CPU creation */
631 qemu_mutex_lock(&qemu_global_mutex);
632 for (env = first_cpu; env != NULL; env = env->next_cpu)
633 env->created = 1;
634 qemu_cond_signal(&qemu_cpu_cond);
635
636 /* and wait for machine initialization */
637 while (!qemu_system_ready)
638 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
639
640 while (1) {
641 cpu_exec_all();
642 qemu_tcg_wait_io_event();
643 }
644
645 return NULL;
646 }
647
648 void qemu_cpu_kick(void *_env)
649 {
650 CPUState *env = _env;
651 qemu_cond_broadcast(env->halt_cond);
652 if (!env->thread_kicked) {
653 qemu_thread_signal(env->thread, SIG_IPI);
654 env->thread_kicked = true;
655 }
656 }
657
658 int qemu_cpu_self(void *_env)
659 {
660 CPUState *env = _env;
661 QemuThread this;
662
663 qemu_thread_self(&this);
664
665 return qemu_thread_equal(&this, env->thread);
666 }
667
668 static void cpu_signal(int sig)
669 {
670 if (cpu_single_env)
671 cpu_exit(cpu_single_env);
672 exit_request = 1;
673 }
674
675 static void tcg_init_ipi(void)
676 {
677 sigset_t set;
678 struct sigaction sigact;
679
680 memset(&sigact, 0, sizeof(sigact));
681 sigact.sa_handler = cpu_signal;
682 sigaction(SIG_IPI, &sigact, NULL);
683
684 sigemptyset(&set);
685 sigaddset(&set, SIG_IPI);
686 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
687 }
688
689 static void dummy_signal(int sig)
690 {
691 }
692
693 static void kvm_init_ipi(CPUState *env)
694 {
695 int r;
696 sigset_t set;
697 struct sigaction sigact;
698
699 memset(&sigact, 0, sizeof(sigact));
700 sigact.sa_handler = dummy_signal;
701 sigaction(SIG_IPI, &sigact, NULL);
702
703 pthread_sigmask(SIG_BLOCK, NULL, &set);
704 sigdelset(&set, SIG_IPI);
705 sigdelset(&set, SIGBUS);
706 r = kvm_set_signal_mask(env, &set);
707 if (r) {
708 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(r));
709 exit(1);
710 }
711 }
712
713 static sigset_t block_io_signals(void)
714 {
715 sigset_t set;
716 struct sigaction action;
717
718 /* SIGUSR2 used by posix-aio-compat.c */
719 sigemptyset(&set);
720 sigaddset(&set, SIGUSR2);
721 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
722
723 sigemptyset(&set);
724 sigaddset(&set, SIGIO);
725 sigaddset(&set, SIGALRM);
726 sigaddset(&set, SIG_IPI);
727 sigaddset(&set, SIGBUS);
728 pthread_sigmask(SIG_BLOCK, &set, NULL);
729
730 memset(&action, 0, sizeof(action));
731 action.sa_flags = SA_SIGINFO;
732 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
733 sigaction(SIGBUS, &action, NULL);
734 prctl(PR_MCE_KILL, 1, 1, 0, 0);
735
736 return set;
737 }
738
739 void qemu_mutex_lock_iothread(void)
740 {
741 if (kvm_enabled()) {
742 qemu_mutex_lock(&qemu_global_mutex);
743 } else {
744 qemu_mutex_lock(&qemu_fair_mutex);
745 if (qemu_mutex_trylock(&qemu_global_mutex)) {
746 qemu_thread_signal(tcg_cpu_thread, SIG_IPI);
747 qemu_mutex_lock(&qemu_global_mutex);
748 }
749 qemu_mutex_unlock(&qemu_fair_mutex);
750 }
751 }
752
753 void qemu_mutex_unlock_iothread(void)
754 {
755 qemu_mutex_unlock(&qemu_global_mutex);
756 }
757
758 static int all_vcpus_paused(void)
759 {
760 CPUState *penv = first_cpu;
761
762 while (penv) {
763 if (!penv->stopped)
764 return 0;
765 penv = (CPUState *)penv->next_cpu;
766 }
767
768 return 1;
769 }
770
771 void pause_all_vcpus(void)
772 {
773 CPUState *penv = first_cpu;
774
775 while (penv) {
776 penv->stop = 1;
777 qemu_cpu_kick(penv);
778 penv = (CPUState *)penv->next_cpu;
779 }
780
781 while (!all_vcpus_paused()) {
782 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
783 penv = first_cpu;
784 while (penv) {
785 qemu_cpu_kick(penv);
786 penv = (CPUState *)penv->next_cpu;
787 }
788 }
789 }
790
791 void resume_all_vcpus(void)
792 {
793 CPUState *penv = first_cpu;
794
795 while (penv) {
796 penv->stop = 0;
797 penv->stopped = 0;
798 qemu_cpu_kick(penv);
799 penv = (CPUState *)penv->next_cpu;
800 }
801 }
802
803 static void tcg_init_vcpu(void *_env)
804 {
805 CPUState *env = _env;
806 /* share a single thread for all cpus with TCG */
807 if (!tcg_cpu_thread) {
808 env->thread = qemu_mallocz(sizeof(QemuThread));
809 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
810 qemu_cond_init(env->halt_cond);
811 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
812 while (env->created == 0)
813 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
814 tcg_cpu_thread = env->thread;
815 tcg_halt_cond = env->halt_cond;
816 } else {
817 env->thread = tcg_cpu_thread;
818 env->halt_cond = tcg_halt_cond;
819 }
820 }
821
822 static void kvm_start_vcpu(CPUState *env)
823 {
824 env->thread = qemu_mallocz(sizeof(QemuThread));
825 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
826 qemu_cond_init(env->halt_cond);
827 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
828 while (env->created == 0)
829 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
830 }
831
832 void qemu_init_vcpu(void *_env)
833 {
834 CPUState *env = _env;
835
836 env->nr_cores = smp_cores;
837 env->nr_threads = smp_threads;
838 if (kvm_enabled())
839 kvm_start_vcpu(env);
840 else
841 tcg_init_vcpu(env);
842 }
843
844 void qemu_notify_event(void)
845 {
846 qemu_event_increment();
847 }
848
849 static void qemu_system_vmstop_request(int reason)
850 {
851 vmstop_requested = reason;
852 qemu_notify_event();
853 }
854
855 void vm_stop(int reason)
856 {
857 QemuThread me;
858 qemu_thread_self(&me);
859
860 if (!qemu_thread_equal(&me, &io_thread)) {
861 qemu_system_vmstop_request(reason);
862 /*
863 * FIXME: should not return to device code in case
864 * vm_stop() has been requested.
865 */
866 if (cpu_single_env) {
867 cpu_exit(cpu_single_env);
868 cpu_single_env->stop = 1;
869 }
870 return;
871 }
872 do_vm_stop(reason);
873 }
874
875 #endif
876
877 static int qemu_cpu_exec(CPUState *env)
878 {
879 int ret;
880 #ifdef CONFIG_PROFILER
881 int64_t ti;
882 #endif
883
884 #ifdef CONFIG_PROFILER
885 ti = profile_getclock();
886 #endif
887 if (use_icount) {
888 int64_t count;
889 int decr;
890 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
891 env->icount_decr.u16.low = 0;
892 env->icount_extra = 0;
893 count = qemu_icount_round (qemu_next_deadline());
894 qemu_icount += count;
895 decr = (count > 0xffff) ? 0xffff : count;
896 count -= decr;
897 env->icount_decr.u16.low = decr;
898 env->icount_extra = count;
899 }
900 ret = cpu_exec(env);
901 #ifdef CONFIG_PROFILER
902 qemu_time += profile_getclock() - ti;
903 #endif
904 if (use_icount) {
905 /* Fold pending instructions back into the
906 instruction counter, and clear the interrupt flag. */
907 qemu_icount -= (env->icount_decr.u16.low
908 + env->icount_extra);
909 env->icount_decr.u32 = 0;
910 env->icount_extra = 0;
911 }
912 return ret;
913 }
914
915 bool cpu_exec_all(void)
916 {
917 if (next_cpu == NULL)
918 next_cpu = first_cpu;
919 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
920 CPUState *env = next_cpu;
921
922 qemu_clock_enable(vm_clock,
923 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
924
925 if (qemu_alarm_pending())
926 break;
927 if (cpu_can_run(env)) {
928 if (qemu_cpu_exec(env) == EXCP_DEBUG) {
929 break;
930 }
931 } else if (env->stop) {
932 break;
933 }
934 }
935 exit_request = 0;
936 return any_cpu_has_work();
937 }
938
939 void set_numa_modes(void)
940 {
941 CPUState *env;
942 int i;
943
944 for (env = first_cpu; env != NULL; env = env->next_cpu) {
945 for (i = 0; i < nb_numa_nodes; i++) {
946 if (node_cpumask[i] & (1 << env->cpu_index)) {
947 env->numa_node = i;
948 }
949 }
950 }
951 }
952
953 void set_cpu_log(const char *optarg)
954 {
955 int mask;
956 const CPULogItem *item;
957
958 mask = cpu_str_to_log_mask(optarg);
959 if (!mask) {
960 printf("Log items (comma separated):\n");
961 for (item = cpu_log_items; item->mask != 0; item++) {
962 printf("%-10s %s\n", item->name, item->help);
963 }
964 exit(1);
965 }
966 cpu_set_log(mask);
967 }
968
969 /* Return the virtual CPU time, based on the instruction counter. */
970 int64_t cpu_get_icount(void)
971 {
972 int64_t icount;
973 CPUState *env = cpu_single_env;;
974
975 icount = qemu_icount;
976 if (env) {
977 if (!can_do_io(env)) {
978 fprintf(stderr, "Bad clock read\n");
979 }
980 icount -= (env->icount_decr.u16.low + env->icount_extra);
981 }
982 return qemu_icount_bias + (icount << icount_time_shift);
983 }
984
985 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
986 {
987 /* XXX: implement xxx_cpu_list for targets that still miss it */
988 #if defined(cpu_list_id)
989 cpu_list_id(f, cpu_fprintf, optarg);
990 #elif defined(cpu_list)
991 cpu_list(f, cpu_fprintf); /* deprecated */
992 #endif
993 }