]> git.proxmox.com Git - qemu.git/blob - cpus.c
cpu: Move CPU_COMMON_THREAD into CPUState
[qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "qmp-commands.h"
34
35 #include "qemu-thread.h"
36 #include "cpus.h"
37 #include "qtest.h"
38 #include "main-loop.h"
39
40 #ifndef _WIN32
41 #include "compatfd.h"
42 #endif
43
44 #ifdef CONFIG_LINUX
45
46 #include <sys/prctl.h>
47
48 #ifndef PR_MCE_KILL
49 #define PR_MCE_KILL 33
50 #endif
51
52 #ifndef PR_MCE_KILL_SET
53 #define PR_MCE_KILL_SET 1
54 #endif
55
56 #ifndef PR_MCE_KILL_EARLY
57 #define PR_MCE_KILL_EARLY 1
58 #endif
59
60 #endif /* CONFIG_LINUX */
61
62 static CPUArchState *next_cpu;
63
64 static bool cpu_thread_is_idle(CPUArchState *env)
65 {
66 if (env->stop || env->queued_work_first) {
67 return false;
68 }
69 if (env->stopped || !runstate_is_running()) {
70 return true;
71 }
72 if (!env->halted || qemu_cpu_has_work(env) || kvm_irqchip_in_kernel()) {
73 return false;
74 }
75 return true;
76 }
77
78 static bool all_cpu_threads_idle(void)
79 {
80 CPUArchState *env;
81
82 for (env = first_cpu; env != NULL; env = env->next_cpu) {
83 if (!cpu_thread_is_idle(env)) {
84 return false;
85 }
86 }
87 return true;
88 }
89
90 /***********************************************************/
91 /* guest cycle counter */
92
93 /* Conversion factor from emulated instructions to virtual clock ticks. */
94 static int icount_time_shift;
95 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
96 #define MAX_ICOUNT_SHIFT 10
97 /* Compensate for varying guest execution speed. */
98 static int64_t qemu_icount_bias;
99 static QEMUTimer *icount_rt_timer;
100 static QEMUTimer *icount_vm_timer;
101 static QEMUTimer *icount_warp_timer;
102 static int64_t vm_clock_warp_start;
103 static int64_t qemu_icount;
104
105 typedef struct TimersState {
106 int64_t cpu_ticks_prev;
107 int64_t cpu_ticks_offset;
108 int64_t cpu_clock_offset;
109 int32_t cpu_ticks_enabled;
110 int64_t dummy;
111 } TimersState;
112
113 TimersState timers_state;
114
115 /* Return the virtual CPU time, based on the instruction counter. */
116 int64_t cpu_get_icount(void)
117 {
118 int64_t icount;
119 CPUArchState *env = cpu_single_env;
120
121 icount = qemu_icount;
122 if (env) {
123 if (!can_do_io(env)) {
124 fprintf(stderr, "Bad clock read\n");
125 }
126 icount -= (env->icount_decr.u16.low + env->icount_extra);
127 }
128 return qemu_icount_bias + (icount << icount_time_shift);
129 }
130
131 /* return the host CPU cycle counter and handle stop/restart */
132 int64_t cpu_get_ticks(void)
133 {
134 if (use_icount) {
135 return cpu_get_icount();
136 }
137 if (!timers_state.cpu_ticks_enabled) {
138 return timers_state.cpu_ticks_offset;
139 } else {
140 int64_t ticks;
141 ticks = cpu_get_real_ticks();
142 if (timers_state.cpu_ticks_prev > ticks) {
143 /* Note: non increasing ticks may happen if the host uses
144 software suspend */
145 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
146 }
147 timers_state.cpu_ticks_prev = ticks;
148 return ticks + timers_state.cpu_ticks_offset;
149 }
150 }
151
152 /* return the host CPU monotonic timer and handle stop/restart */
153 int64_t cpu_get_clock(void)
154 {
155 int64_t ti;
156 if (!timers_state.cpu_ticks_enabled) {
157 return timers_state.cpu_clock_offset;
158 } else {
159 ti = get_clock();
160 return ti + timers_state.cpu_clock_offset;
161 }
162 }
163
164 /* enable cpu_get_ticks() */
165 void cpu_enable_ticks(void)
166 {
167 if (!timers_state.cpu_ticks_enabled) {
168 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
169 timers_state.cpu_clock_offset -= get_clock();
170 timers_state.cpu_ticks_enabled = 1;
171 }
172 }
173
174 /* disable cpu_get_ticks() : the clock is stopped. You must not call
175 cpu_get_ticks() after that. */
176 void cpu_disable_ticks(void)
177 {
178 if (timers_state.cpu_ticks_enabled) {
179 timers_state.cpu_ticks_offset = cpu_get_ticks();
180 timers_state.cpu_clock_offset = cpu_get_clock();
181 timers_state.cpu_ticks_enabled = 0;
182 }
183 }
184
185 /* Correlation between real and virtual time is always going to be
186 fairly approximate, so ignore small variation.
187 When the guest is idle real and virtual time will be aligned in
188 the IO wait loop. */
189 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
190
191 static void icount_adjust(void)
192 {
193 int64_t cur_time;
194 int64_t cur_icount;
195 int64_t delta;
196 static int64_t last_delta;
197 /* If the VM is not running, then do nothing. */
198 if (!runstate_is_running()) {
199 return;
200 }
201 cur_time = cpu_get_clock();
202 cur_icount = qemu_get_clock_ns(vm_clock);
203 delta = cur_icount - cur_time;
204 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
205 if (delta > 0
206 && last_delta + ICOUNT_WOBBLE < delta * 2
207 && icount_time_shift > 0) {
208 /* The guest is getting too far ahead. Slow time down. */
209 icount_time_shift--;
210 }
211 if (delta < 0
212 && last_delta - ICOUNT_WOBBLE > delta * 2
213 && icount_time_shift < MAX_ICOUNT_SHIFT) {
214 /* The guest is getting too far behind. Speed time up. */
215 icount_time_shift++;
216 }
217 last_delta = delta;
218 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
219 }
220
221 static void icount_adjust_rt(void *opaque)
222 {
223 qemu_mod_timer(icount_rt_timer,
224 qemu_get_clock_ms(rt_clock) + 1000);
225 icount_adjust();
226 }
227
228 static void icount_adjust_vm(void *opaque)
229 {
230 qemu_mod_timer(icount_vm_timer,
231 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
232 icount_adjust();
233 }
234
235 static int64_t qemu_icount_round(int64_t count)
236 {
237 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
238 }
239
240 static void icount_warp_rt(void *opaque)
241 {
242 if (vm_clock_warp_start == -1) {
243 return;
244 }
245
246 if (runstate_is_running()) {
247 int64_t clock = qemu_get_clock_ns(rt_clock);
248 int64_t warp_delta = clock - vm_clock_warp_start;
249 if (use_icount == 1) {
250 qemu_icount_bias += warp_delta;
251 } else {
252 /*
253 * In adaptive mode, do not let the vm_clock run too
254 * far ahead of real time.
255 */
256 int64_t cur_time = cpu_get_clock();
257 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
258 int64_t delta = cur_time - cur_icount;
259 qemu_icount_bias += MIN(warp_delta, delta);
260 }
261 if (qemu_clock_expired(vm_clock)) {
262 qemu_notify_event();
263 }
264 }
265 vm_clock_warp_start = -1;
266 }
267
268 void qtest_clock_warp(int64_t dest)
269 {
270 int64_t clock = qemu_get_clock_ns(vm_clock);
271 assert(qtest_enabled());
272 while (clock < dest) {
273 int64_t deadline = qemu_clock_deadline(vm_clock);
274 int64_t warp = MIN(dest - clock, deadline);
275 qemu_icount_bias += warp;
276 qemu_run_timers(vm_clock);
277 clock = qemu_get_clock_ns(vm_clock);
278 }
279 qemu_notify_event();
280 }
281
282 void qemu_clock_warp(QEMUClock *clock)
283 {
284 int64_t deadline;
285
286 /*
287 * There are too many global variables to make the "warp" behavior
288 * applicable to other clocks. But a clock argument removes the
289 * need for if statements all over the place.
290 */
291 if (clock != vm_clock || !use_icount) {
292 return;
293 }
294
295 /*
296 * If the CPUs have been sleeping, advance the vm_clock timer now. This
297 * ensures that the deadline for the timer is computed correctly below.
298 * This also makes sure that the insn counter is synchronized before the
299 * CPU starts running, in case the CPU is woken by an event other than
300 * the earliest vm_clock timer.
301 */
302 icount_warp_rt(NULL);
303 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
304 qemu_del_timer(icount_warp_timer);
305 return;
306 }
307
308 if (qtest_enabled()) {
309 /* When testing, qtest commands advance icount. */
310 return;
311 }
312
313 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
314 deadline = qemu_clock_deadline(vm_clock);
315 if (deadline > 0) {
316 /*
317 * Ensure the vm_clock proceeds even when the virtual CPU goes to
318 * sleep. Otherwise, the CPU might be waiting for a future timer
319 * interrupt to wake it up, but the interrupt never comes because
320 * the vCPU isn't running any insns and thus doesn't advance the
321 * vm_clock.
322 *
323 * An extreme solution for this problem would be to never let VCPUs
324 * sleep in icount mode if there is a pending vm_clock timer; rather
325 * time could just advance to the next vm_clock event. Instead, we
326 * do stop VCPUs and only advance vm_clock after some "real" time,
327 * (related to the time left until the next event) has passed. This
328 * rt_clock timer will do this. This avoids that the warps are too
329 * visible externally---for example, you will not be sending network
330 * packets continuously instead of every 100ms.
331 */
332 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
333 } else {
334 qemu_notify_event();
335 }
336 }
337
338 static const VMStateDescription vmstate_timers = {
339 .name = "timer",
340 .version_id = 2,
341 .minimum_version_id = 1,
342 .minimum_version_id_old = 1,
343 .fields = (VMStateField[]) {
344 VMSTATE_INT64(cpu_ticks_offset, TimersState),
345 VMSTATE_INT64(dummy, TimersState),
346 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
347 VMSTATE_END_OF_LIST()
348 }
349 };
350
351 void configure_icount(const char *option)
352 {
353 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
354 if (!option) {
355 return;
356 }
357
358 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
359 if (strcmp(option, "auto") != 0) {
360 icount_time_shift = strtol(option, NULL, 0);
361 use_icount = 1;
362 return;
363 }
364
365 use_icount = 2;
366
367 /* 125MIPS seems a reasonable initial guess at the guest speed.
368 It will be corrected fairly quickly anyway. */
369 icount_time_shift = 3;
370
371 /* Have both realtime and virtual time triggers for speed adjustment.
372 The realtime trigger catches emulated time passing too slowly,
373 the virtual time trigger catches emulated time passing too fast.
374 Realtime triggers occur even when idle, so use them less frequently
375 than VM triggers. */
376 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
377 qemu_mod_timer(icount_rt_timer,
378 qemu_get_clock_ms(rt_clock) + 1000);
379 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
380 qemu_mod_timer(icount_vm_timer,
381 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
382 }
383
384 /***********************************************************/
385 void hw_error(const char *fmt, ...)
386 {
387 va_list ap;
388 CPUArchState *env;
389
390 va_start(ap, fmt);
391 fprintf(stderr, "qemu: hardware error: ");
392 vfprintf(stderr, fmt, ap);
393 fprintf(stderr, "\n");
394 for(env = first_cpu; env != NULL; env = env->next_cpu) {
395 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
396 #ifdef TARGET_I386
397 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
398 #else
399 cpu_dump_state(env, stderr, fprintf, 0);
400 #endif
401 }
402 va_end(ap);
403 abort();
404 }
405
406 void cpu_synchronize_all_states(void)
407 {
408 CPUArchState *cpu;
409
410 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
411 cpu_synchronize_state(cpu);
412 }
413 }
414
415 void cpu_synchronize_all_post_reset(void)
416 {
417 CPUArchState *cpu;
418
419 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
420 cpu_synchronize_post_reset(cpu);
421 }
422 }
423
424 void cpu_synchronize_all_post_init(void)
425 {
426 CPUArchState *cpu;
427
428 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
429 cpu_synchronize_post_init(cpu);
430 }
431 }
432
433 int cpu_is_stopped(CPUArchState *env)
434 {
435 return !runstate_is_running() || env->stopped;
436 }
437
438 static void do_vm_stop(RunState state)
439 {
440 if (runstate_is_running()) {
441 cpu_disable_ticks();
442 pause_all_vcpus();
443 runstate_set(state);
444 vm_state_notify(0, state);
445 bdrv_drain_all();
446 bdrv_flush_all();
447 monitor_protocol_event(QEVENT_STOP, NULL);
448 }
449 }
450
451 static int cpu_can_run(CPUArchState *env)
452 {
453 if (env->stop) {
454 return 0;
455 }
456 if (env->stopped || !runstate_is_running()) {
457 return 0;
458 }
459 return 1;
460 }
461
462 static void cpu_handle_guest_debug(CPUArchState *env)
463 {
464 gdb_set_stop_cpu(env);
465 qemu_system_debug_request();
466 env->stopped = 1;
467 }
468
469 static void cpu_signal(int sig)
470 {
471 if (cpu_single_env) {
472 cpu_exit(cpu_single_env);
473 }
474 exit_request = 1;
475 }
476
477 #ifdef CONFIG_LINUX
478 static void sigbus_reraise(void)
479 {
480 sigset_t set;
481 struct sigaction action;
482
483 memset(&action, 0, sizeof(action));
484 action.sa_handler = SIG_DFL;
485 if (!sigaction(SIGBUS, &action, NULL)) {
486 raise(SIGBUS);
487 sigemptyset(&set);
488 sigaddset(&set, SIGBUS);
489 sigprocmask(SIG_UNBLOCK, &set, NULL);
490 }
491 perror("Failed to re-raise SIGBUS!\n");
492 abort();
493 }
494
495 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
496 void *ctx)
497 {
498 if (kvm_on_sigbus(siginfo->ssi_code,
499 (void *)(intptr_t)siginfo->ssi_addr)) {
500 sigbus_reraise();
501 }
502 }
503
504 static void qemu_init_sigbus(void)
505 {
506 struct sigaction action;
507
508 memset(&action, 0, sizeof(action));
509 action.sa_flags = SA_SIGINFO;
510 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
511 sigaction(SIGBUS, &action, NULL);
512
513 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
514 }
515
516 static void qemu_kvm_eat_signals(CPUArchState *env)
517 {
518 struct timespec ts = { 0, 0 };
519 siginfo_t siginfo;
520 sigset_t waitset;
521 sigset_t chkset;
522 int r;
523
524 sigemptyset(&waitset);
525 sigaddset(&waitset, SIG_IPI);
526 sigaddset(&waitset, SIGBUS);
527
528 do {
529 r = sigtimedwait(&waitset, &siginfo, &ts);
530 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
531 perror("sigtimedwait");
532 exit(1);
533 }
534
535 switch (r) {
536 case SIGBUS:
537 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
538 sigbus_reraise();
539 }
540 break;
541 default:
542 break;
543 }
544
545 r = sigpending(&chkset);
546 if (r == -1) {
547 perror("sigpending");
548 exit(1);
549 }
550 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
551 }
552
553 #else /* !CONFIG_LINUX */
554
555 static void qemu_init_sigbus(void)
556 {
557 }
558
559 static void qemu_kvm_eat_signals(CPUArchState *env)
560 {
561 }
562 #endif /* !CONFIG_LINUX */
563
564 #ifndef _WIN32
565 static void dummy_signal(int sig)
566 {
567 }
568
569 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
570 {
571 int r;
572 sigset_t set;
573 struct sigaction sigact;
574
575 memset(&sigact, 0, sizeof(sigact));
576 sigact.sa_handler = dummy_signal;
577 sigaction(SIG_IPI, &sigact, NULL);
578
579 pthread_sigmask(SIG_BLOCK, NULL, &set);
580 sigdelset(&set, SIG_IPI);
581 sigdelset(&set, SIGBUS);
582 r = kvm_set_signal_mask(env, &set);
583 if (r) {
584 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
585 exit(1);
586 }
587 }
588
589 static void qemu_tcg_init_cpu_signals(void)
590 {
591 sigset_t set;
592 struct sigaction sigact;
593
594 memset(&sigact, 0, sizeof(sigact));
595 sigact.sa_handler = cpu_signal;
596 sigaction(SIG_IPI, &sigact, NULL);
597
598 sigemptyset(&set);
599 sigaddset(&set, SIG_IPI);
600 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
601 }
602
603 #else /* _WIN32 */
604 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
605 {
606 abort();
607 }
608
609 static void qemu_tcg_init_cpu_signals(void)
610 {
611 }
612 #endif /* _WIN32 */
613
614 QemuMutex qemu_global_mutex;
615 static QemuCond qemu_io_proceeded_cond;
616 static bool iothread_requesting_mutex;
617
618 static QemuThread io_thread;
619
620 static QemuThread *tcg_cpu_thread;
621 static QemuCond *tcg_halt_cond;
622
623 /* cpu creation */
624 static QemuCond qemu_cpu_cond;
625 /* system init */
626 static QemuCond qemu_pause_cond;
627 static QemuCond qemu_work_cond;
628
629 void qemu_init_cpu_loop(void)
630 {
631 qemu_init_sigbus();
632 qemu_cond_init(&qemu_cpu_cond);
633 qemu_cond_init(&qemu_pause_cond);
634 qemu_cond_init(&qemu_work_cond);
635 qemu_cond_init(&qemu_io_proceeded_cond);
636 qemu_mutex_init(&qemu_global_mutex);
637
638 qemu_thread_get_self(&io_thread);
639 }
640
641 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data)
642 {
643 struct qemu_work_item wi;
644
645 if (qemu_cpu_is_self(env)) {
646 func(data);
647 return;
648 }
649
650 wi.func = func;
651 wi.data = data;
652 if (!env->queued_work_first) {
653 env->queued_work_first = &wi;
654 } else {
655 env->queued_work_last->next = &wi;
656 }
657 env->queued_work_last = &wi;
658 wi.next = NULL;
659 wi.done = false;
660
661 qemu_cpu_kick(env);
662 while (!wi.done) {
663 CPUArchState *self_env = cpu_single_env;
664
665 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
666 cpu_single_env = self_env;
667 }
668 }
669
670 static void flush_queued_work(CPUArchState *env)
671 {
672 struct qemu_work_item *wi;
673
674 if (!env->queued_work_first) {
675 return;
676 }
677
678 while ((wi = env->queued_work_first)) {
679 env->queued_work_first = wi->next;
680 wi->func(wi->data);
681 wi->done = true;
682 }
683 env->queued_work_last = NULL;
684 qemu_cond_broadcast(&qemu_work_cond);
685 }
686
687 static void qemu_wait_io_event_common(CPUArchState *env)
688 {
689 if (env->stop) {
690 env->stop = 0;
691 env->stopped = 1;
692 qemu_cond_signal(&qemu_pause_cond);
693 }
694 flush_queued_work(env);
695 env->thread_kicked = false;
696 }
697
698 static void qemu_tcg_wait_io_event(void)
699 {
700 CPUArchState *env;
701
702 while (all_cpu_threads_idle()) {
703 /* Start accounting real time to the virtual clock if the CPUs
704 are idle. */
705 qemu_clock_warp(vm_clock);
706 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
707 }
708
709 while (iothread_requesting_mutex) {
710 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
711 }
712
713 for (env = first_cpu; env != NULL; env = env->next_cpu) {
714 qemu_wait_io_event_common(env);
715 }
716 }
717
718 static void qemu_kvm_wait_io_event(CPUArchState *env)
719 {
720 while (cpu_thread_is_idle(env)) {
721 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
722 }
723
724 qemu_kvm_eat_signals(env);
725 qemu_wait_io_event_common(env);
726 }
727
728 static void *qemu_kvm_cpu_thread_fn(void *arg)
729 {
730 CPUArchState *env = arg;
731 int r;
732
733 qemu_mutex_lock(&qemu_global_mutex);
734 qemu_thread_get_self(env->thread);
735 env->thread_id = qemu_get_thread_id();
736 cpu_single_env = env;
737
738 r = kvm_init_vcpu(env);
739 if (r < 0) {
740 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
741 exit(1);
742 }
743
744 qemu_kvm_init_cpu_signals(env);
745
746 /* signal CPU creation */
747 env->created = 1;
748 qemu_cond_signal(&qemu_cpu_cond);
749
750 while (1) {
751 if (cpu_can_run(env)) {
752 r = kvm_cpu_exec(env);
753 if (r == EXCP_DEBUG) {
754 cpu_handle_guest_debug(env);
755 }
756 }
757 qemu_kvm_wait_io_event(env);
758 }
759
760 return NULL;
761 }
762
763 static void *qemu_dummy_cpu_thread_fn(void *arg)
764 {
765 #ifdef _WIN32
766 fprintf(stderr, "qtest is not supported under Windows\n");
767 exit(1);
768 #else
769 CPUArchState *env = arg;
770 sigset_t waitset;
771 int r;
772
773 qemu_mutex_lock_iothread();
774 qemu_thread_get_self(env->thread);
775 env->thread_id = qemu_get_thread_id();
776
777 sigemptyset(&waitset);
778 sigaddset(&waitset, SIG_IPI);
779
780 /* signal CPU creation */
781 env->created = 1;
782 qemu_cond_signal(&qemu_cpu_cond);
783
784 cpu_single_env = env;
785 while (1) {
786 cpu_single_env = NULL;
787 qemu_mutex_unlock_iothread();
788 do {
789 int sig;
790 r = sigwait(&waitset, &sig);
791 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
792 if (r == -1) {
793 perror("sigwait");
794 exit(1);
795 }
796 qemu_mutex_lock_iothread();
797 cpu_single_env = env;
798 qemu_wait_io_event_common(env);
799 }
800
801 return NULL;
802 #endif
803 }
804
805 static void tcg_exec_all(void);
806
807 static void *qemu_tcg_cpu_thread_fn(void *arg)
808 {
809 CPUArchState *env = arg;
810
811 qemu_tcg_init_cpu_signals();
812 qemu_thread_get_self(env->thread);
813
814 /* signal CPU creation */
815 qemu_mutex_lock(&qemu_global_mutex);
816 for (env = first_cpu; env != NULL; env = env->next_cpu) {
817 env->thread_id = qemu_get_thread_id();
818 env->created = 1;
819 }
820 qemu_cond_signal(&qemu_cpu_cond);
821
822 /* wait for initial kick-off after machine start */
823 while (first_cpu->stopped) {
824 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
825
826 /* process any pending work */
827 for (env = first_cpu; env != NULL; env = env->next_cpu) {
828 qemu_wait_io_event_common(env);
829 }
830 }
831
832 while (1) {
833 tcg_exec_all();
834 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
835 qemu_notify_event();
836 }
837 qemu_tcg_wait_io_event();
838 }
839
840 return NULL;
841 }
842
843 static void qemu_cpu_kick_thread(CPUArchState *env)
844 {
845 #ifndef _WIN32
846 int err;
847
848 err = pthread_kill(env->thread->thread, SIG_IPI);
849 if (err) {
850 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
851 exit(1);
852 }
853 #else /* _WIN32 */
854 if (!qemu_cpu_is_self(env)) {
855 CPUState *cpu = ENV_GET_CPU(env);
856 SuspendThread(cpu->hThread);
857 cpu_signal(0);
858 ResumeThread(cpu->hThread);
859 }
860 #endif
861 }
862
863 void qemu_cpu_kick(void *_env)
864 {
865 CPUArchState *env = _env;
866
867 qemu_cond_broadcast(env->halt_cond);
868 if (!tcg_enabled() && !env->thread_kicked) {
869 qemu_cpu_kick_thread(env);
870 env->thread_kicked = true;
871 }
872 }
873
874 void qemu_cpu_kick_self(void)
875 {
876 #ifndef _WIN32
877 assert(cpu_single_env);
878
879 if (!cpu_single_env->thread_kicked) {
880 qemu_cpu_kick_thread(cpu_single_env);
881 cpu_single_env->thread_kicked = true;
882 }
883 #else
884 abort();
885 #endif
886 }
887
888 int qemu_cpu_is_self(void *_env)
889 {
890 CPUArchState *env = _env;
891
892 return qemu_thread_is_self(env->thread);
893 }
894
895 void qemu_mutex_lock_iothread(void)
896 {
897 if (!tcg_enabled()) {
898 qemu_mutex_lock(&qemu_global_mutex);
899 } else {
900 iothread_requesting_mutex = true;
901 if (qemu_mutex_trylock(&qemu_global_mutex)) {
902 qemu_cpu_kick_thread(first_cpu);
903 qemu_mutex_lock(&qemu_global_mutex);
904 }
905 iothread_requesting_mutex = false;
906 qemu_cond_broadcast(&qemu_io_proceeded_cond);
907 }
908 }
909
910 void qemu_mutex_unlock_iothread(void)
911 {
912 qemu_mutex_unlock(&qemu_global_mutex);
913 }
914
915 static int all_vcpus_paused(void)
916 {
917 CPUArchState *penv = first_cpu;
918
919 while (penv) {
920 if (!penv->stopped) {
921 return 0;
922 }
923 penv = penv->next_cpu;
924 }
925
926 return 1;
927 }
928
929 void pause_all_vcpus(void)
930 {
931 CPUArchState *penv = first_cpu;
932
933 qemu_clock_enable(vm_clock, false);
934 while (penv) {
935 penv->stop = 1;
936 qemu_cpu_kick(penv);
937 penv = penv->next_cpu;
938 }
939
940 if (!qemu_thread_is_self(&io_thread)) {
941 cpu_stop_current();
942 if (!kvm_enabled()) {
943 while (penv) {
944 penv->stop = 0;
945 penv->stopped = 1;
946 penv = penv->next_cpu;
947 }
948 return;
949 }
950 }
951
952 while (!all_vcpus_paused()) {
953 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
954 penv = first_cpu;
955 while (penv) {
956 qemu_cpu_kick(penv);
957 penv = penv->next_cpu;
958 }
959 }
960 }
961
962 void resume_all_vcpus(void)
963 {
964 CPUArchState *penv = first_cpu;
965
966 qemu_clock_enable(vm_clock, true);
967 while (penv) {
968 penv->stop = 0;
969 penv->stopped = 0;
970 qemu_cpu_kick(penv);
971 penv = penv->next_cpu;
972 }
973 }
974
975 static void qemu_tcg_init_vcpu(void *_env)
976 {
977 CPUArchState *env = _env;
978 #ifdef _WIN32
979 CPUState *cpu = ENV_GET_CPU(env);
980 #endif
981
982 /* share a single thread for all cpus with TCG */
983 if (!tcg_cpu_thread) {
984 env->thread = g_malloc0(sizeof(QemuThread));
985 env->halt_cond = g_malloc0(sizeof(QemuCond));
986 qemu_cond_init(env->halt_cond);
987 tcg_halt_cond = env->halt_cond;
988 qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env,
989 QEMU_THREAD_JOINABLE);
990 #ifdef _WIN32
991 cpu->hThread = qemu_thread_get_handle(env->thread);
992 #endif
993 while (env->created == 0) {
994 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
995 }
996 tcg_cpu_thread = env->thread;
997 } else {
998 env->thread = tcg_cpu_thread;
999 env->halt_cond = tcg_halt_cond;
1000 }
1001 }
1002
1003 static void qemu_kvm_start_vcpu(CPUArchState *env)
1004 {
1005 env->thread = g_malloc0(sizeof(QemuThread));
1006 env->halt_cond = g_malloc0(sizeof(QemuCond));
1007 qemu_cond_init(env->halt_cond);
1008 qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env,
1009 QEMU_THREAD_JOINABLE);
1010 while (env->created == 0) {
1011 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1012 }
1013 }
1014
1015 static void qemu_dummy_start_vcpu(CPUArchState *env)
1016 {
1017 env->thread = g_malloc0(sizeof(QemuThread));
1018 env->halt_cond = g_malloc0(sizeof(QemuCond));
1019 qemu_cond_init(env->halt_cond);
1020 qemu_thread_create(env->thread, qemu_dummy_cpu_thread_fn, env,
1021 QEMU_THREAD_JOINABLE);
1022 while (env->created == 0) {
1023 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1024 }
1025 }
1026
1027 void qemu_init_vcpu(void *_env)
1028 {
1029 CPUArchState *env = _env;
1030
1031 env->nr_cores = smp_cores;
1032 env->nr_threads = smp_threads;
1033 env->stopped = 1;
1034 if (kvm_enabled()) {
1035 qemu_kvm_start_vcpu(env);
1036 } else if (tcg_enabled()) {
1037 qemu_tcg_init_vcpu(env);
1038 } else {
1039 qemu_dummy_start_vcpu(env);
1040 }
1041 }
1042
1043 void cpu_stop_current(void)
1044 {
1045 if (cpu_single_env) {
1046 cpu_single_env->stop = 0;
1047 cpu_single_env->stopped = 1;
1048 cpu_exit(cpu_single_env);
1049 qemu_cond_signal(&qemu_pause_cond);
1050 }
1051 }
1052
1053 void vm_stop(RunState state)
1054 {
1055 if (!qemu_thread_is_self(&io_thread)) {
1056 qemu_system_vmstop_request(state);
1057 /*
1058 * FIXME: should not return to device code in case
1059 * vm_stop() has been requested.
1060 */
1061 cpu_stop_current();
1062 return;
1063 }
1064 do_vm_stop(state);
1065 }
1066
1067 /* does a state transition even if the VM is already stopped,
1068 current state is forgotten forever */
1069 void vm_stop_force_state(RunState state)
1070 {
1071 if (runstate_is_running()) {
1072 vm_stop(state);
1073 } else {
1074 runstate_set(state);
1075 }
1076 }
1077
1078 static int tcg_cpu_exec(CPUArchState *env)
1079 {
1080 int ret;
1081 #ifdef CONFIG_PROFILER
1082 int64_t ti;
1083 #endif
1084
1085 #ifdef CONFIG_PROFILER
1086 ti = profile_getclock();
1087 #endif
1088 if (use_icount) {
1089 int64_t count;
1090 int decr;
1091 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1092 env->icount_decr.u16.low = 0;
1093 env->icount_extra = 0;
1094 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1095 qemu_icount += count;
1096 decr = (count > 0xffff) ? 0xffff : count;
1097 count -= decr;
1098 env->icount_decr.u16.low = decr;
1099 env->icount_extra = count;
1100 }
1101 ret = cpu_exec(env);
1102 #ifdef CONFIG_PROFILER
1103 qemu_time += profile_getclock() - ti;
1104 #endif
1105 if (use_icount) {
1106 /* Fold pending instructions back into the
1107 instruction counter, and clear the interrupt flag. */
1108 qemu_icount -= (env->icount_decr.u16.low
1109 + env->icount_extra);
1110 env->icount_decr.u32 = 0;
1111 env->icount_extra = 0;
1112 }
1113 return ret;
1114 }
1115
1116 static void tcg_exec_all(void)
1117 {
1118 int r;
1119
1120 /* Account partial waits to the vm_clock. */
1121 qemu_clock_warp(vm_clock);
1122
1123 if (next_cpu == NULL) {
1124 next_cpu = first_cpu;
1125 }
1126 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1127 CPUArchState *env = next_cpu;
1128
1129 qemu_clock_enable(vm_clock,
1130 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1131
1132 if (cpu_can_run(env)) {
1133 r = tcg_cpu_exec(env);
1134 if (r == EXCP_DEBUG) {
1135 cpu_handle_guest_debug(env);
1136 break;
1137 }
1138 } else if (env->stop || env->stopped) {
1139 break;
1140 }
1141 }
1142 exit_request = 0;
1143 }
1144
1145 void set_numa_modes(void)
1146 {
1147 CPUArchState *env;
1148 int i;
1149
1150 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1151 for (i = 0; i < nb_numa_nodes; i++) {
1152 if (node_cpumask[i] & (1 << env->cpu_index)) {
1153 env->numa_node = i;
1154 }
1155 }
1156 }
1157 }
1158
1159 void set_cpu_log(const char *optarg)
1160 {
1161 int mask;
1162 const CPULogItem *item;
1163
1164 mask = cpu_str_to_log_mask(optarg);
1165 if (!mask) {
1166 printf("Log items (comma separated):\n");
1167 for (item = cpu_log_items; item->mask != 0; item++) {
1168 printf("%-10s %s\n", item->name, item->help);
1169 }
1170 exit(1);
1171 }
1172 cpu_set_log(mask);
1173 }
1174
1175 void set_cpu_log_filename(const char *optarg)
1176 {
1177 cpu_set_log_filename(optarg);
1178 }
1179
1180 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1181 {
1182 /* XXX: implement xxx_cpu_list for targets that still miss it */
1183 #if defined(cpu_list_id)
1184 cpu_list_id(f, cpu_fprintf, optarg);
1185 #elif defined(cpu_list)
1186 cpu_list(f, cpu_fprintf); /* deprecated */
1187 #endif
1188 }
1189
1190 CpuInfoList *qmp_query_cpus(Error **errp)
1191 {
1192 CpuInfoList *head = NULL, *cur_item = NULL;
1193 CPUArchState *env;
1194
1195 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1196 CpuInfoList *info;
1197
1198 cpu_synchronize_state(env);
1199
1200 info = g_malloc0(sizeof(*info));
1201 info->value = g_malloc0(sizeof(*info->value));
1202 info->value->CPU = env->cpu_index;
1203 info->value->current = (env == first_cpu);
1204 info->value->halted = env->halted;
1205 info->value->thread_id = env->thread_id;
1206 #if defined(TARGET_I386)
1207 info->value->has_pc = true;
1208 info->value->pc = env->eip + env->segs[R_CS].base;
1209 #elif defined(TARGET_PPC)
1210 info->value->has_nip = true;
1211 info->value->nip = env->nip;
1212 #elif defined(TARGET_SPARC)
1213 info->value->has_pc = true;
1214 info->value->pc = env->pc;
1215 info->value->has_npc = true;
1216 info->value->npc = env->npc;
1217 #elif defined(TARGET_MIPS)
1218 info->value->has_PC = true;
1219 info->value->PC = env->active_tc.PC;
1220 #endif
1221
1222 /* XXX: waiting for the qapi to support GSList */
1223 if (!cur_item) {
1224 head = cur_item = info;
1225 } else {
1226 cur_item->next = info;
1227 cur_item = info;
1228 }
1229 }
1230
1231 return head;
1232 }
1233
1234 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1235 bool has_cpu, int64_t cpu_index, Error **errp)
1236 {
1237 FILE *f;
1238 uint32_t l;
1239 CPUArchState *env;
1240 uint8_t buf[1024];
1241
1242 if (!has_cpu) {
1243 cpu_index = 0;
1244 }
1245
1246 for (env = first_cpu; env; env = env->next_cpu) {
1247 if (cpu_index == env->cpu_index) {
1248 break;
1249 }
1250 }
1251
1252 if (env == NULL) {
1253 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1254 "a CPU number");
1255 return;
1256 }
1257
1258 f = fopen(filename, "wb");
1259 if (!f) {
1260 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1261 return;
1262 }
1263
1264 while (size != 0) {
1265 l = sizeof(buf);
1266 if (l > size)
1267 l = size;
1268 cpu_memory_rw_debug(env, addr, buf, l, 0);
1269 if (fwrite(buf, 1, l, f) != l) {
1270 error_set(errp, QERR_IO_ERROR);
1271 goto exit;
1272 }
1273 addr += l;
1274 size -= l;
1275 }
1276
1277 exit:
1278 fclose(f);
1279 }
1280
1281 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1282 Error **errp)
1283 {
1284 FILE *f;
1285 uint32_t l;
1286 uint8_t buf[1024];
1287
1288 f = fopen(filename, "wb");
1289 if (!f) {
1290 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1291 return;
1292 }
1293
1294 while (size != 0) {
1295 l = sizeof(buf);
1296 if (l > size)
1297 l = size;
1298 cpu_physical_memory_rw(addr, buf, l, 0);
1299 if (fwrite(buf, 1, l, f) != l) {
1300 error_set(errp, QERR_IO_ERROR);
1301 goto exit;
1302 }
1303 addr += l;
1304 size -= l;
1305 }
1306
1307 exit:
1308 fclose(f);
1309 }
1310
1311 void qmp_inject_nmi(Error **errp)
1312 {
1313 #if defined(TARGET_I386)
1314 CPUArchState *env;
1315
1316 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1317 if (!env->apic_state) {
1318 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1319 } else {
1320 apic_deliver_nmi(env->apic_state);
1321 }
1322 }
1323 #else
1324 error_set(errp, QERR_UNSUPPORTED);
1325 #endif
1326 }