]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - drivers/crypto/bcm/cipher.c
block: Cleanup license notice
[mirror_ubuntu-disco-kernel.git] / drivers / crypto / bcm / cipher.c
1 /*
2 * Copyright 2016 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License, version 2, as
6 * published by the Free Software Foundation (the "GPL").
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License version 2 (GPLv2) for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * version 2 (GPLv2) along with this source code.
15 */
16
17 #include <linux/err.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25 #include <linux/crypto.h>
26 #include <linux/kthread.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/sched.h>
29 #include <linux/of_address.h>
30 #include <linux/of_device.h>
31 #include <linux/io.h>
32 #include <linux/bitops.h>
33
34 #include <crypto/algapi.h>
35 #include <crypto/aead.h>
36 #include <crypto/internal/aead.h>
37 #include <crypto/aes.h>
38 #include <crypto/des.h>
39 #include <crypto/hmac.h>
40 #include <crypto/sha.h>
41 #include <crypto/md5.h>
42 #include <crypto/authenc.h>
43 #include <crypto/skcipher.h>
44 #include <crypto/hash.h>
45 #include <crypto/sha3.h>
46
47 #include "util.h"
48 #include "cipher.h"
49 #include "spu.h"
50 #include "spum.h"
51 #include "spu2.h"
52
53 /* ================= Device Structure ================== */
54
55 struct device_private iproc_priv;
56
57 /* ==================== Parameters ===================== */
58
59 int flow_debug_logging;
60 module_param(flow_debug_logging, int, 0644);
61 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
62
63 int packet_debug_logging;
64 module_param(packet_debug_logging, int, 0644);
65 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
66
67 int debug_logging_sleep;
68 module_param(debug_logging_sleep, int, 0644);
69 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
70
71 /*
72 * The value of these module parameters is used to set the priority for each
73 * algo type when this driver registers algos with the kernel crypto API.
74 * To use a priority other than the default, set the priority in the insmod or
75 * modprobe. Changing the module priority after init time has no effect.
76 *
77 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
78 * algos, but more preferred than generic software algos.
79 */
80 static int cipher_pri = 150;
81 module_param(cipher_pri, int, 0644);
82 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
83
84 static int hash_pri = 100;
85 module_param(hash_pri, int, 0644);
86 MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
87
88 static int aead_pri = 150;
89 module_param(aead_pri, int, 0644);
90 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
91
92 /* A type 3 BCM header, expected to precede the SPU header for SPU-M.
93 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
94 * 0x60 - ring 0
95 * 0x68 - ring 1
96 * 0x70 - ring 2
97 * 0x78 - ring 3
98 */
99 char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
100 /*
101 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
102 * is set dynamically after reading SPU type from device tree.
103 */
104 #define BCM_HDR_LEN iproc_priv.bcm_hdr_len
105
106 /* min and max time to sleep before retrying when mbox queue is full. usec */
107 #define MBOX_SLEEP_MIN 800
108 #define MBOX_SLEEP_MAX 1000
109
110 /**
111 * select_channel() - Select a SPU channel to handle a crypto request. Selects
112 * channel in round robin order.
113 *
114 * Return: channel index
115 */
116 static u8 select_channel(void)
117 {
118 u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
119
120 return chan_idx % iproc_priv.spu.num_chan;
121 }
122
123 /**
124 * spu_ablkcipher_rx_sg_create() - Build up the scatterlist of buffers used to
125 * receive a SPU response message for an ablkcipher request. Includes buffers to
126 * catch SPU message headers and the response data.
127 * @mssg: mailbox message containing the receive sg
128 * @rctx: crypto request context
129 * @rx_frag_num: number of scatterlist elements required to hold the
130 * SPU response message
131 * @chunksize: Number of bytes of response data expected
132 * @stat_pad_len: Number of bytes required to pad the STAT field to
133 * a 4-byte boundary
134 *
135 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
136 * when the request completes, whether the request is handled successfully or
137 * there is an error.
138 *
139 * Returns:
140 * 0 if successful
141 * < 0 if an error
142 */
143 static int
144 spu_ablkcipher_rx_sg_create(struct brcm_message *mssg,
145 struct iproc_reqctx_s *rctx,
146 u8 rx_frag_num,
147 unsigned int chunksize, u32 stat_pad_len)
148 {
149 struct spu_hw *spu = &iproc_priv.spu;
150 struct scatterlist *sg; /* used to build sgs in mbox message */
151 struct iproc_ctx_s *ctx = rctx->ctx;
152 u32 datalen; /* Number of bytes of response data expected */
153
154 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
155 rctx->gfp);
156 if (!mssg->spu.dst)
157 return -ENOMEM;
158
159 sg = mssg->spu.dst;
160 sg_init_table(sg, rx_frag_num);
161 /* Space for SPU message header */
162 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
163
164 /* If XTS tweak in payload, add buffer to receive encrypted tweak */
165 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
166 spu->spu_xts_tweak_in_payload())
167 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
168 SPU_XTS_TWEAK_SIZE);
169
170 /* Copy in each dst sg entry from request, up to chunksize */
171 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
172 rctx->dst_nents, chunksize);
173 if (datalen < chunksize) {
174 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
175 __func__, chunksize, datalen);
176 return -EFAULT;
177 }
178
179 if (ctx->cipher.alg == CIPHER_ALG_RC4)
180 /* Add buffer to catch 260-byte SUPDT field for RC4 */
181 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN);
182
183 if (stat_pad_len)
184 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
185
186 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
187 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
188
189 return 0;
190 }
191
192 /**
193 * spu_ablkcipher_tx_sg_create() - Build up the scatterlist of buffers used to
194 * send a SPU request message for an ablkcipher request. Includes SPU message
195 * headers and the request data.
196 * @mssg: mailbox message containing the transmit sg
197 * @rctx: crypto request context
198 * @tx_frag_num: number of scatterlist elements required to construct the
199 * SPU request message
200 * @chunksize: Number of bytes of request data
201 * @pad_len: Number of pad bytes
202 *
203 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
204 * when the request completes, whether the request is handled successfully or
205 * there is an error.
206 *
207 * Returns:
208 * 0 if successful
209 * < 0 if an error
210 */
211 static int
212 spu_ablkcipher_tx_sg_create(struct brcm_message *mssg,
213 struct iproc_reqctx_s *rctx,
214 u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
215 {
216 struct spu_hw *spu = &iproc_priv.spu;
217 struct scatterlist *sg; /* used to build sgs in mbox message */
218 struct iproc_ctx_s *ctx = rctx->ctx;
219 u32 datalen; /* Number of bytes of response data expected */
220 u32 stat_len;
221
222 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
223 rctx->gfp);
224 if (unlikely(!mssg->spu.src))
225 return -ENOMEM;
226
227 sg = mssg->spu.src;
228 sg_init_table(sg, tx_frag_num);
229
230 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
231 BCM_HDR_LEN + ctx->spu_req_hdr_len);
232
233 /* if XTS tweak in payload, copy from IV (where crypto API puts it) */
234 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
235 spu->spu_xts_tweak_in_payload())
236 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
237
238 /* Copy in each src sg entry from request, up to chunksize */
239 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
240 rctx->src_nents, chunksize);
241 if (unlikely(datalen < chunksize)) {
242 pr_err("%s(): failed to copy src sg to mbox msg",
243 __func__);
244 return -EFAULT;
245 }
246
247 if (pad_len)
248 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
249
250 stat_len = spu->spu_tx_status_len();
251 if (stat_len) {
252 memset(rctx->msg_buf.tx_stat, 0, stat_len);
253 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
254 }
255 return 0;
256 }
257
258 static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
259 u8 chan_idx)
260 {
261 int err;
262 int retry_cnt = 0;
263 struct device *dev = &(iproc_priv.pdev->dev);
264
265 err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
266 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
267 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
268 /*
269 * Mailbox queue is full. Since MAY_SLEEP is set, assume
270 * not in atomic context and we can wait and try again.
271 */
272 retry_cnt++;
273 usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
274 err = mbox_send_message(iproc_priv.mbox[chan_idx],
275 mssg);
276 atomic_inc(&iproc_priv.mb_no_spc);
277 }
278 }
279 if (err < 0) {
280 atomic_inc(&iproc_priv.mb_send_fail);
281 return err;
282 }
283
284 /* Check error returned by mailbox controller */
285 err = mssg->error;
286 if (unlikely(err < 0)) {
287 dev_err(dev, "message error %d", err);
288 /* Signal txdone for mailbox channel */
289 }
290
291 /* Signal txdone for mailbox channel */
292 mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
293 return err;
294 }
295
296 /**
297 * handle_ablkcipher_req() - Submit as much of a block cipher request as fits in
298 * a single SPU request message, starting at the current position in the request
299 * data.
300 * @rctx: Crypto request context
301 *
302 * This may be called on the crypto API thread, or, when a request is so large
303 * it must be broken into multiple SPU messages, on the thread used to invoke
304 * the response callback. When requests are broken into multiple SPU
305 * messages, we assume subsequent messages depend on previous results, and
306 * thus always wait for previous results before submitting the next message.
307 * Because requests are submitted in lock step like this, there is no need
308 * to synchronize access to request data structures.
309 *
310 * Return: -EINPROGRESS: request has been accepted and result will be returned
311 * asynchronously
312 * Any other value indicates an error
313 */
314 static int handle_ablkcipher_req(struct iproc_reqctx_s *rctx)
315 {
316 struct spu_hw *spu = &iproc_priv.spu;
317 struct crypto_async_request *areq = rctx->parent;
318 struct ablkcipher_request *req =
319 container_of(areq, struct ablkcipher_request, base);
320 struct iproc_ctx_s *ctx = rctx->ctx;
321 struct spu_cipher_parms cipher_parms;
322 int err = 0;
323 unsigned int chunksize = 0; /* Num bytes of request to submit */
324 int remaining = 0; /* Bytes of request still to process */
325 int chunk_start; /* Beginning of data for current SPU msg */
326
327 /* IV or ctr value to use in this SPU msg */
328 u8 local_iv_ctr[MAX_IV_SIZE];
329 u32 stat_pad_len; /* num bytes to align status field */
330 u32 pad_len; /* total length of all padding */
331 bool update_key = false;
332 struct brcm_message *mssg; /* mailbox message */
333
334 /* number of entries in src and dst sg in mailbox message. */
335 u8 rx_frag_num = 2; /* response header and STATUS */
336 u8 tx_frag_num = 1; /* request header */
337
338 flow_log("%s\n", __func__);
339
340 cipher_parms.alg = ctx->cipher.alg;
341 cipher_parms.mode = ctx->cipher.mode;
342 cipher_parms.type = ctx->cipher_type;
343 cipher_parms.key_len = ctx->enckeylen;
344 cipher_parms.key_buf = ctx->enckey;
345 cipher_parms.iv_buf = local_iv_ctr;
346 cipher_parms.iv_len = rctx->iv_ctr_len;
347
348 mssg = &rctx->mb_mssg;
349 chunk_start = rctx->src_sent;
350 remaining = rctx->total_todo - chunk_start;
351
352 /* determine the chunk we are breaking off and update the indexes */
353 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
354 (remaining > ctx->max_payload))
355 chunksize = ctx->max_payload;
356 else
357 chunksize = remaining;
358
359 rctx->src_sent += chunksize;
360 rctx->total_sent = rctx->src_sent;
361
362 /* Count number of sg entries to be included in this request */
363 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
364 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
365
366 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
367 rctx->is_encrypt && chunk_start)
368 /*
369 * Encrypting non-first first chunk. Copy last block of
370 * previous result to IV for this chunk.
371 */
372 sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
373 rctx->iv_ctr_len,
374 chunk_start - rctx->iv_ctr_len);
375
376 if (rctx->iv_ctr_len) {
377 /* get our local copy of the iv */
378 __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
379 rctx->iv_ctr_len);
380
381 /* generate the next IV if possible */
382 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
383 !rctx->is_encrypt) {
384 /*
385 * CBC Decrypt: next IV is the last ciphertext block in
386 * this chunk
387 */
388 sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
389 rctx->iv_ctr_len,
390 rctx->src_sent - rctx->iv_ctr_len);
391 } else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
392 /*
393 * The SPU hardware increments the counter once for
394 * each AES block of 16 bytes. So update the counter
395 * for the next chunk, if there is one. Note that for
396 * this chunk, the counter has already been copied to
397 * local_iv_ctr. We can assume a block size of 16,
398 * because we only support CTR mode for AES, not for
399 * any other cipher alg.
400 */
401 add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
402 }
403 }
404
405 if (ctx->cipher.alg == CIPHER_ALG_RC4) {
406 rx_frag_num++;
407 if (chunk_start) {
408 /*
409 * for non-first RC4 chunks, use SUPDT from previous
410 * response as key for this chunk.
411 */
412 cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak;
413 update_key = true;
414 cipher_parms.type = CIPHER_TYPE_UPDT;
415 } else if (!rctx->is_encrypt) {
416 /*
417 * First RC4 chunk. For decrypt, key in pre-built msg
418 * header may have been changed if encrypt required
419 * multiple chunks. So revert the key to the
420 * ctx->enckey value.
421 */
422 update_key = true;
423 cipher_parms.type = CIPHER_TYPE_INIT;
424 }
425 }
426
427 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
428 flow_log("max_payload infinite\n");
429 else
430 flow_log("max_payload %u\n", ctx->max_payload);
431
432 flow_log("sent:%u start:%u remains:%u size:%u\n",
433 rctx->src_sent, chunk_start, remaining, chunksize);
434
435 /* Copy SPU header template created at setkey time */
436 memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
437 sizeof(rctx->msg_buf.bcm_spu_req_hdr));
438
439 /*
440 * Pass SUPDT field as key. Key field in finish() call is only used
441 * when update_key has been set above for RC4. Will be ignored in
442 * all other cases.
443 */
444 spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
445 ctx->spu_req_hdr_len, !(rctx->is_encrypt),
446 &cipher_parms, update_key, chunksize);
447
448 atomic64_add(chunksize, &iproc_priv.bytes_out);
449
450 stat_pad_len = spu->spu_wordalign_padlen(chunksize);
451 if (stat_pad_len)
452 rx_frag_num++;
453 pad_len = stat_pad_len;
454 if (pad_len) {
455 tx_frag_num++;
456 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
457 0, ctx->auth.alg, ctx->auth.mode,
458 rctx->total_sent, stat_pad_len);
459 }
460
461 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
462 ctx->spu_req_hdr_len);
463 packet_log("payload:\n");
464 dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
465 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
466
467 /*
468 * Build mailbox message containing SPU request msg and rx buffers
469 * to catch response message
470 */
471 memset(mssg, 0, sizeof(*mssg));
472 mssg->type = BRCM_MESSAGE_SPU;
473 mssg->ctx = rctx; /* Will be returned in response */
474
475 /* Create rx scatterlist to catch result */
476 rx_frag_num += rctx->dst_nents;
477
478 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
479 spu->spu_xts_tweak_in_payload())
480 rx_frag_num++; /* extra sg to insert tweak */
481
482 err = spu_ablkcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
483 stat_pad_len);
484 if (err)
485 return err;
486
487 /* Create tx scatterlist containing SPU request message */
488 tx_frag_num += rctx->src_nents;
489 if (spu->spu_tx_status_len())
490 tx_frag_num++;
491
492 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
493 spu->spu_xts_tweak_in_payload())
494 tx_frag_num++; /* extra sg to insert tweak */
495
496 err = spu_ablkcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
497 pad_len);
498 if (err)
499 return err;
500
501 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
502 if (unlikely(err < 0))
503 return err;
504
505 return -EINPROGRESS;
506 }
507
508 /**
509 * handle_ablkcipher_resp() - Process a block cipher SPU response. Updates the
510 * total received count for the request and updates global stats.
511 * @rctx: Crypto request context
512 */
513 static void handle_ablkcipher_resp(struct iproc_reqctx_s *rctx)
514 {
515 struct spu_hw *spu = &iproc_priv.spu;
516 #ifdef DEBUG
517 struct crypto_async_request *areq = rctx->parent;
518 struct ablkcipher_request *req = ablkcipher_request_cast(areq);
519 #endif
520 struct iproc_ctx_s *ctx = rctx->ctx;
521 u32 payload_len;
522
523 /* See how much data was returned */
524 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
525
526 /*
527 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
528 * encrypted tweak ("i") value; we don't count those.
529 */
530 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
531 spu->spu_xts_tweak_in_payload() &&
532 (payload_len >= SPU_XTS_TWEAK_SIZE))
533 payload_len -= SPU_XTS_TWEAK_SIZE;
534
535 atomic64_add(payload_len, &iproc_priv.bytes_in);
536
537 flow_log("%s() offset: %u, bd_len: %u BD:\n",
538 __func__, rctx->total_received, payload_len);
539
540 dump_sg(req->dst, rctx->total_received, payload_len);
541 if (ctx->cipher.alg == CIPHER_ALG_RC4)
542 packet_dump(" supdt ", rctx->msg_buf.c.supdt_tweak,
543 SPU_SUPDT_LEN);
544
545 rctx->total_received += payload_len;
546 if (rctx->total_received == rctx->total_todo) {
547 atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
548 atomic_inc(
549 &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
550 }
551 }
552
553 /**
554 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
555 * receive a SPU response message for an ahash request.
556 * @mssg: mailbox message containing the receive sg
557 * @rctx: crypto request context
558 * @rx_frag_num: number of scatterlist elements required to hold the
559 * SPU response message
560 * @digestsize: length of hash digest, in bytes
561 * @stat_pad_len: Number of bytes required to pad the STAT field to
562 * a 4-byte boundary
563 *
564 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
565 * when the request completes, whether the request is handled successfully or
566 * there is an error.
567 *
568 * Return:
569 * 0 if successful
570 * < 0 if an error
571 */
572 static int
573 spu_ahash_rx_sg_create(struct brcm_message *mssg,
574 struct iproc_reqctx_s *rctx,
575 u8 rx_frag_num, unsigned int digestsize,
576 u32 stat_pad_len)
577 {
578 struct spu_hw *spu = &iproc_priv.spu;
579 struct scatterlist *sg; /* used to build sgs in mbox message */
580 struct iproc_ctx_s *ctx = rctx->ctx;
581
582 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
583 rctx->gfp);
584 if (!mssg->spu.dst)
585 return -ENOMEM;
586
587 sg = mssg->spu.dst;
588 sg_init_table(sg, rx_frag_num);
589 /* Space for SPU message header */
590 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
591
592 /* Space for digest */
593 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
594
595 if (stat_pad_len)
596 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
597
598 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
599 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
600 return 0;
601 }
602
603 /**
604 * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send
605 * a SPU request message for an ahash request. Includes SPU message headers and
606 * the request data.
607 * @mssg: mailbox message containing the transmit sg
608 * @rctx: crypto request context
609 * @tx_frag_num: number of scatterlist elements required to construct the
610 * SPU request message
611 * @spu_hdr_len: length in bytes of SPU message header
612 * @hash_carry_len: Number of bytes of data carried over from previous req
613 * @new_data_len: Number of bytes of new request data
614 * @pad_len: Number of pad bytes
615 *
616 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
617 * when the request completes, whether the request is handled successfully or
618 * there is an error.
619 *
620 * Return:
621 * 0 if successful
622 * < 0 if an error
623 */
624 static int
625 spu_ahash_tx_sg_create(struct brcm_message *mssg,
626 struct iproc_reqctx_s *rctx,
627 u8 tx_frag_num,
628 u32 spu_hdr_len,
629 unsigned int hash_carry_len,
630 unsigned int new_data_len, u32 pad_len)
631 {
632 struct spu_hw *spu = &iproc_priv.spu;
633 struct scatterlist *sg; /* used to build sgs in mbox message */
634 u32 datalen; /* Number of bytes of response data expected */
635 u32 stat_len;
636
637 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
638 rctx->gfp);
639 if (!mssg->spu.src)
640 return -ENOMEM;
641
642 sg = mssg->spu.src;
643 sg_init_table(sg, tx_frag_num);
644
645 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
646 BCM_HDR_LEN + spu_hdr_len);
647
648 if (hash_carry_len)
649 sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
650
651 if (new_data_len) {
652 /* Copy in each src sg entry from request, up to chunksize */
653 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
654 rctx->src_nents, new_data_len);
655 if (datalen < new_data_len) {
656 pr_err("%s(): failed to copy src sg to mbox msg",
657 __func__);
658 return -EFAULT;
659 }
660 }
661
662 if (pad_len)
663 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
664
665 stat_len = spu->spu_tx_status_len();
666 if (stat_len) {
667 memset(rctx->msg_buf.tx_stat, 0, stat_len);
668 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
669 }
670
671 return 0;
672 }
673
674 /**
675 * handle_ahash_req() - Process an asynchronous hash request from the crypto
676 * API.
677 * @rctx: Crypto request context
678 *
679 * Builds a SPU request message embedded in a mailbox message and submits the
680 * mailbox message on a selected mailbox channel. The SPU request message is
681 * constructed as a scatterlist, including entries from the crypto API's
682 * src scatterlist to avoid copying the data to be hashed. This function is
683 * called either on the thread from the crypto API, or, in the case that the
684 * crypto API request is too large to fit in a single SPU request message,
685 * on the thread that invokes the receive callback with a response message.
686 * Because some operations require the response from one chunk before the next
687 * chunk can be submitted, we always wait for the response for the previous
688 * chunk before submitting the next chunk. Because requests are submitted in
689 * lock step like this, there is no need to synchronize access to request data
690 * structures.
691 *
692 * Return:
693 * -EINPROGRESS: request has been submitted to SPU and response will be
694 * returned asynchronously
695 * -EAGAIN: non-final request included a small amount of data, which for
696 * efficiency we did not submit to the SPU, but instead stored
697 * to be submitted to the SPU with the next part of the request
698 * other: an error code
699 */
700 static int handle_ahash_req(struct iproc_reqctx_s *rctx)
701 {
702 struct spu_hw *spu = &iproc_priv.spu;
703 struct crypto_async_request *areq = rctx->parent;
704 struct ahash_request *req = ahash_request_cast(areq);
705 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
706 struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
707 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
708 struct iproc_ctx_s *ctx = rctx->ctx;
709
710 /* number of bytes still to be hashed in this req */
711 unsigned int nbytes_to_hash = 0;
712 int err = 0;
713 unsigned int chunksize = 0; /* length of hash carry + new data */
714 /*
715 * length of new data, not from hash carry, to be submitted in
716 * this hw request
717 */
718 unsigned int new_data_len;
719
720 unsigned int chunk_start = 0;
721 u32 db_size; /* Length of data field, incl gcm and hash padding */
722 int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
723 u32 data_pad_len = 0; /* length of GCM/CCM padding */
724 u32 stat_pad_len = 0; /* length of padding to align STATUS word */
725 struct brcm_message *mssg; /* mailbox message */
726 struct spu_request_opts req_opts;
727 struct spu_cipher_parms cipher_parms;
728 struct spu_hash_parms hash_parms;
729 struct spu_aead_parms aead_parms;
730 unsigned int local_nbuf;
731 u32 spu_hdr_len;
732 unsigned int digestsize;
733 u16 rem = 0;
734
735 /*
736 * number of entries in src and dst sg. Always includes SPU msg header.
737 * rx always includes a buffer to catch digest and STATUS.
738 */
739 u8 rx_frag_num = 3;
740 u8 tx_frag_num = 1;
741
742 flow_log("total_todo %u, total_sent %u\n",
743 rctx->total_todo, rctx->total_sent);
744
745 memset(&req_opts, 0, sizeof(req_opts));
746 memset(&cipher_parms, 0, sizeof(cipher_parms));
747 memset(&hash_parms, 0, sizeof(hash_parms));
748 memset(&aead_parms, 0, sizeof(aead_parms));
749
750 req_opts.bd_suppress = true;
751 hash_parms.alg = ctx->auth.alg;
752 hash_parms.mode = ctx->auth.mode;
753 hash_parms.type = HASH_TYPE_NONE;
754 hash_parms.key_buf = (u8 *)ctx->authkey;
755 hash_parms.key_len = ctx->authkeylen;
756
757 /*
758 * For hash algorithms below assignment looks bit odd but
759 * it's needed for AES-XCBC and AES-CMAC hash algorithms
760 * to differentiate between 128, 192, 256 bit key values.
761 * Based on the key values, hash algorithm is selected.
762 * For example for 128 bit key, hash algorithm is AES-128.
763 */
764 cipher_parms.type = ctx->cipher_type;
765
766 mssg = &rctx->mb_mssg;
767 chunk_start = rctx->src_sent;
768
769 /*
770 * Compute the amount remaining to hash. This may include data
771 * carried over from previous requests.
772 */
773 nbytes_to_hash = rctx->total_todo - rctx->total_sent;
774 chunksize = nbytes_to_hash;
775 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
776 (chunksize > ctx->max_payload))
777 chunksize = ctx->max_payload;
778
779 /*
780 * If this is not a final request and the request data is not a multiple
781 * of a full block, then simply park the extra data and prefix it to the
782 * data for the next request.
783 */
784 if (!rctx->is_final) {
785 u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
786 u16 new_len; /* len of data to add to hash carry */
787
788 rem = chunksize % blocksize; /* remainder */
789 if (rem) {
790 /* chunksize not a multiple of blocksize */
791 chunksize -= rem;
792 if (chunksize == 0) {
793 /* Don't have a full block to submit to hw */
794 new_len = rem - rctx->hash_carry_len;
795 sg_copy_part_to_buf(req->src, dest, new_len,
796 rctx->src_sent);
797 rctx->hash_carry_len = rem;
798 flow_log("Exiting with hash carry len: %u\n",
799 rctx->hash_carry_len);
800 packet_dump(" buf: ",
801 rctx->hash_carry,
802 rctx->hash_carry_len);
803 return -EAGAIN;
804 }
805 }
806 }
807
808 /* if we have hash carry, then prefix it to the data in this request */
809 local_nbuf = rctx->hash_carry_len;
810 rctx->hash_carry_len = 0;
811 if (local_nbuf)
812 tx_frag_num++;
813 new_data_len = chunksize - local_nbuf;
814
815 /* Count number of sg entries to be used in this request */
816 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
817 new_data_len);
818
819 /* AES hashing keeps key size in type field, so need to copy it here */
820 if (hash_parms.alg == HASH_ALG_AES)
821 hash_parms.type = (enum hash_type)cipher_parms.type;
822 else
823 hash_parms.type = spu->spu_hash_type(rctx->total_sent);
824
825 digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
826 hash_parms.type);
827 hash_parms.digestsize = digestsize;
828
829 /* update the indexes */
830 rctx->total_sent += chunksize;
831 /* if you sent a prebuf then that wasn't from this req->src */
832 rctx->src_sent += new_data_len;
833
834 if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
835 hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
836 hash_parms.mode,
837 chunksize,
838 blocksize);
839
840 /*
841 * If a non-first chunk, then include the digest returned from the
842 * previous chunk so that hw can add to it (except for AES types).
843 */
844 if ((hash_parms.type == HASH_TYPE_UPDT) &&
845 (hash_parms.alg != HASH_ALG_AES)) {
846 hash_parms.key_buf = rctx->incr_hash;
847 hash_parms.key_len = digestsize;
848 }
849
850 atomic64_add(chunksize, &iproc_priv.bytes_out);
851
852 flow_log("%s() final: %u nbuf: %u ",
853 __func__, rctx->is_final, local_nbuf);
854
855 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
856 flow_log("max_payload infinite\n");
857 else
858 flow_log("max_payload %u\n", ctx->max_payload);
859
860 flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
861
862 /* Prepend SPU header with type 3 BCM header */
863 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
864
865 hash_parms.prebuf_len = local_nbuf;
866 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
867 BCM_HDR_LEN,
868 &req_opts, &cipher_parms,
869 &hash_parms, &aead_parms,
870 new_data_len);
871
872 if (spu_hdr_len == 0) {
873 pr_err("Failed to create SPU request header\n");
874 return -EFAULT;
875 }
876
877 /*
878 * Determine total length of padding required. Put all padding in one
879 * buffer.
880 */
881 data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
882 db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
883 0, 0, hash_parms.pad_len);
884 if (spu->spu_tx_status_len())
885 stat_pad_len = spu->spu_wordalign_padlen(db_size);
886 if (stat_pad_len)
887 rx_frag_num++;
888 pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
889 if (pad_len) {
890 tx_frag_num++;
891 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
892 hash_parms.pad_len, ctx->auth.alg,
893 ctx->auth.mode, rctx->total_sent,
894 stat_pad_len);
895 }
896
897 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
898 spu_hdr_len);
899 packet_dump(" prebuf: ", rctx->hash_carry, local_nbuf);
900 flow_log("Data:\n");
901 dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
902 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
903
904 /*
905 * Build mailbox message containing SPU request msg and rx buffers
906 * to catch response message
907 */
908 memset(mssg, 0, sizeof(*mssg));
909 mssg->type = BRCM_MESSAGE_SPU;
910 mssg->ctx = rctx; /* Will be returned in response */
911
912 /* Create rx scatterlist to catch result */
913 err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
914 stat_pad_len);
915 if (err)
916 return err;
917
918 /* Create tx scatterlist containing SPU request message */
919 tx_frag_num += rctx->src_nents;
920 if (spu->spu_tx_status_len())
921 tx_frag_num++;
922 err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
923 local_nbuf, new_data_len, pad_len);
924 if (err)
925 return err;
926
927 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
928 if (unlikely(err < 0))
929 return err;
930
931 return -EINPROGRESS;
932 }
933
934 /**
935 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
936 * for an HMAC request.
937 * @req: The HMAC request from the crypto API
938 * @ctx: The session context
939 *
940 * Return: 0 if synchronous hash operation successful
941 * -EINVAL if the hash algo is unrecognized
942 * any other value indicates an error
943 */
944 static int spu_hmac_outer_hash(struct ahash_request *req,
945 struct iproc_ctx_s *ctx)
946 {
947 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
948 unsigned int blocksize =
949 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
950 int rc;
951
952 switch (ctx->auth.alg) {
953 case HASH_ALG_MD5:
954 rc = do_shash("md5", req->result, ctx->opad, blocksize,
955 req->result, ctx->digestsize, NULL, 0);
956 break;
957 case HASH_ALG_SHA1:
958 rc = do_shash("sha1", req->result, ctx->opad, blocksize,
959 req->result, ctx->digestsize, NULL, 0);
960 break;
961 case HASH_ALG_SHA224:
962 rc = do_shash("sha224", req->result, ctx->opad, blocksize,
963 req->result, ctx->digestsize, NULL, 0);
964 break;
965 case HASH_ALG_SHA256:
966 rc = do_shash("sha256", req->result, ctx->opad, blocksize,
967 req->result, ctx->digestsize, NULL, 0);
968 break;
969 case HASH_ALG_SHA384:
970 rc = do_shash("sha384", req->result, ctx->opad, blocksize,
971 req->result, ctx->digestsize, NULL, 0);
972 break;
973 case HASH_ALG_SHA512:
974 rc = do_shash("sha512", req->result, ctx->opad, blocksize,
975 req->result, ctx->digestsize, NULL, 0);
976 break;
977 default:
978 pr_err("%s() Error : unknown hmac type\n", __func__);
979 rc = -EINVAL;
980 }
981 return rc;
982 }
983
984 /**
985 * ahash_req_done() - Process a hash result from the SPU hardware.
986 * @rctx: Crypto request context
987 *
988 * Return: 0 if successful
989 * < 0 if an error
990 */
991 static int ahash_req_done(struct iproc_reqctx_s *rctx)
992 {
993 struct spu_hw *spu = &iproc_priv.spu;
994 struct crypto_async_request *areq = rctx->parent;
995 struct ahash_request *req = ahash_request_cast(areq);
996 struct iproc_ctx_s *ctx = rctx->ctx;
997 int err;
998
999 memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
1000
1001 if (spu->spu_type == SPU_TYPE_SPUM) {
1002 /* byte swap the output from the UPDT function to network byte
1003 * order
1004 */
1005 if (ctx->auth.alg == HASH_ALG_MD5) {
1006 __swab32s((u32 *)req->result);
1007 __swab32s(((u32 *)req->result) + 1);
1008 __swab32s(((u32 *)req->result) + 2);
1009 __swab32s(((u32 *)req->result) + 3);
1010 __swab32s(((u32 *)req->result) + 4);
1011 }
1012 }
1013
1014 flow_dump(" digest ", req->result, ctx->digestsize);
1015
1016 /* if this an HMAC then do the outer hash */
1017 if (rctx->is_sw_hmac) {
1018 err = spu_hmac_outer_hash(req, ctx);
1019 if (err < 0)
1020 return err;
1021 flow_dump(" hmac: ", req->result, ctx->digestsize);
1022 }
1023
1024 if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
1025 atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
1026 atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
1027 } else {
1028 atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
1029 atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
1030 }
1031
1032 return 0;
1033 }
1034
1035 /**
1036 * handle_ahash_resp() - Process a SPU response message for a hash request.
1037 * Checks if the entire crypto API request has been processed, and if so,
1038 * invokes post processing on the result.
1039 * @rctx: Crypto request context
1040 */
1041 static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
1042 {
1043 struct iproc_ctx_s *ctx = rctx->ctx;
1044 #ifdef DEBUG
1045 struct crypto_async_request *areq = rctx->parent;
1046 struct ahash_request *req = ahash_request_cast(areq);
1047 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1048 unsigned int blocksize =
1049 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1050 #endif
1051 /*
1052 * Save hash to use as input to next op if incremental. Might be copying
1053 * too much, but that's easier than figuring out actual digest size here
1054 */
1055 memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1056
1057 flow_log("%s() blocksize:%u digestsize:%u\n",
1058 __func__, blocksize, ctx->digestsize);
1059
1060 atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1061
1062 if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1063 ahash_req_done(rctx);
1064 }
1065
1066 /**
1067 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1068 * a SPU response message for an AEAD request. Includes buffers to catch SPU
1069 * message headers and the response data.
1070 * @mssg: mailbox message containing the receive sg
1071 * @rctx: crypto request context
1072 * @rx_frag_num: number of scatterlist elements required to hold the
1073 * SPU response message
1074 * @assoc_len: Length of associated data included in the crypto request
1075 * @ret_iv_len: Length of IV returned in response
1076 * @resp_len: Number of bytes of response data expected to be written to
1077 * dst buffer from crypto API
1078 * @digestsize: Length of hash digest, in bytes
1079 * @stat_pad_len: Number of bytes required to pad the STAT field to
1080 * a 4-byte boundary
1081 *
1082 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1083 * when the request completes, whether the request is handled successfully or
1084 * there is an error.
1085 *
1086 * Returns:
1087 * 0 if successful
1088 * < 0 if an error
1089 */
1090 static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1091 struct aead_request *req,
1092 struct iproc_reqctx_s *rctx,
1093 u8 rx_frag_num,
1094 unsigned int assoc_len,
1095 u32 ret_iv_len, unsigned int resp_len,
1096 unsigned int digestsize, u32 stat_pad_len)
1097 {
1098 struct spu_hw *spu = &iproc_priv.spu;
1099 struct scatterlist *sg; /* used to build sgs in mbox message */
1100 struct iproc_ctx_s *ctx = rctx->ctx;
1101 u32 datalen; /* Number of bytes of response data expected */
1102 u32 assoc_buf_len;
1103 u8 data_padlen = 0;
1104
1105 if (ctx->is_rfc4543) {
1106 /* RFC4543: only pad after data, not after AAD */
1107 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1108 assoc_len + resp_len);
1109 assoc_buf_len = assoc_len;
1110 } else {
1111 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1112 resp_len);
1113 assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1114 assoc_len, ret_iv_len,
1115 rctx->is_encrypt);
1116 }
1117
1118 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1119 /* ICV (after data) must be in the next 32-bit word for CCM */
1120 data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1121 resp_len +
1122 data_padlen);
1123
1124 if (data_padlen)
1125 /* have to catch gcm pad in separate buffer */
1126 rx_frag_num++;
1127
1128 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1129 rctx->gfp);
1130 if (!mssg->spu.dst)
1131 return -ENOMEM;
1132
1133 sg = mssg->spu.dst;
1134 sg_init_table(sg, rx_frag_num);
1135
1136 /* Space for SPU message header */
1137 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1138
1139 if (assoc_buf_len) {
1140 /*
1141 * Don't write directly to req->dst, because SPU may pad the
1142 * assoc data in the response
1143 */
1144 memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1145 sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1146 }
1147
1148 if (resp_len) {
1149 /*
1150 * Copy in each dst sg entry from request, up to chunksize.
1151 * dst sg catches just the data. digest caught in separate buf.
1152 */
1153 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1154 rctx->dst_nents, resp_len);
1155 if (datalen < (resp_len)) {
1156 pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1157 __func__, resp_len, datalen);
1158 return -EFAULT;
1159 }
1160 }
1161
1162 /* If GCM/CCM data is padded, catch padding in separate buffer */
1163 if (data_padlen) {
1164 memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1165 sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1166 }
1167
1168 /* Always catch ICV in separate buffer */
1169 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1170
1171 flow_log("stat_pad_len %u\n", stat_pad_len);
1172 if (stat_pad_len) {
1173 memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1174 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1175 }
1176
1177 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1178 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1179
1180 return 0;
1181 }
1182
1183 /**
1184 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1185 * SPU request message for an AEAD request. Includes SPU message headers and the
1186 * request data.
1187 * @mssg: mailbox message containing the transmit sg
1188 * @rctx: crypto request context
1189 * @tx_frag_num: number of scatterlist elements required to construct the
1190 * SPU request message
1191 * @spu_hdr_len: length of SPU message header in bytes
1192 * @assoc: crypto API associated data scatterlist
1193 * @assoc_len: length of associated data
1194 * @assoc_nents: number of scatterlist entries containing assoc data
1195 * @aead_iv_len: length of AEAD IV, if included
1196 * @chunksize: Number of bytes of request data
1197 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1198 * @pad_len: Number of pad bytes
1199 * @incl_icv: If true, write separate ICV buffer after data and
1200 * any padding
1201 *
1202 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1203 * when the request completes, whether the request is handled successfully or
1204 * there is an error.
1205 *
1206 * Return:
1207 * 0 if successful
1208 * < 0 if an error
1209 */
1210 static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1211 struct iproc_reqctx_s *rctx,
1212 u8 tx_frag_num,
1213 u32 spu_hdr_len,
1214 struct scatterlist *assoc,
1215 unsigned int assoc_len,
1216 int assoc_nents,
1217 unsigned int aead_iv_len,
1218 unsigned int chunksize,
1219 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1220 {
1221 struct spu_hw *spu = &iproc_priv.spu;
1222 struct scatterlist *sg; /* used to build sgs in mbox message */
1223 struct scatterlist *assoc_sg = assoc;
1224 struct iproc_ctx_s *ctx = rctx->ctx;
1225 u32 datalen; /* Number of bytes of data to write */
1226 u32 written; /* Number of bytes of data written */
1227 u32 assoc_offset = 0;
1228 u32 stat_len;
1229
1230 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1231 rctx->gfp);
1232 if (!mssg->spu.src)
1233 return -ENOMEM;
1234
1235 sg = mssg->spu.src;
1236 sg_init_table(sg, tx_frag_num);
1237
1238 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1239 BCM_HDR_LEN + spu_hdr_len);
1240
1241 if (assoc_len) {
1242 /* Copy in each associated data sg entry from request */
1243 written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1244 assoc_nents, assoc_len);
1245 if (written < assoc_len) {
1246 pr_err("%s(): failed to copy assoc sg to mbox msg",
1247 __func__);
1248 return -EFAULT;
1249 }
1250 }
1251
1252 if (aead_iv_len)
1253 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1254
1255 if (aad_pad_len) {
1256 memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1257 sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1258 }
1259
1260 datalen = chunksize;
1261 if ((chunksize > ctx->digestsize) && incl_icv)
1262 datalen -= ctx->digestsize;
1263 if (datalen) {
1264 /* For aead, a single msg should consume the entire src sg */
1265 written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1266 rctx->src_nents, datalen);
1267 if (written < datalen) {
1268 pr_err("%s(): failed to copy src sg to mbox msg",
1269 __func__);
1270 return -EFAULT;
1271 }
1272 }
1273
1274 if (pad_len) {
1275 memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1276 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1277 }
1278
1279 if (incl_icv)
1280 sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1281
1282 stat_len = spu->spu_tx_status_len();
1283 if (stat_len) {
1284 memset(rctx->msg_buf.tx_stat, 0, stat_len);
1285 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1286 }
1287 return 0;
1288 }
1289
1290 /**
1291 * handle_aead_req() - Submit a SPU request message for the next chunk of the
1292 * current AEAD request.
1293 * @rctx: Crypto request context
1294 *
1295 * Unlike other operation types, we assume the length of the request fits in
1296 * a single SPU request message. aead_enqueue() makes sure this is true.
1297 * Comments for other op types regarding threads applies here as well.
1298 *
1299 * Unlike incremental hash ops, where the spu returns the entire hash for
1300 * truncated algs like sha-224, the SPU returns just the truncated hash in
1301 * response to aead requests. So digestsize is always ctx->digestsize here.
1302 *
1303 * Return: -EINPROGRESS: crypto request has been accepted and result will be
1304 * returned asynchronously
1305 * Any other value indicates an error
1306 */
1307 static int handle_aead_req(struct iproc_reqctx_s *rctx)
1308 {
1309 struct spu_hw *spu = &iproc_priv.spu;
1310 struct crypto_async_request *areq = rctx->parent;
1311 struct aead_request *req = container_of(areq,
1312 struct aead_request, base);
1313 struct iproc_ctx_s *ctx = rctx->ctx;
1314 int err;
1315 unsigned int chunksize;
1316 unsigned int resp_len;
1317 u32 spu_hdr_len;
1318 u32 db_size;
1319 u32 stat_pad_len;
1320 u32 pad_len;
1321 struct brcm_message *mssg; /* mailbox message */
1322 struct spu_request_opts req_opts;
1323 struct spu_cipher_parms cipher_parms;
1324 struct spu_hash_parms hash_parms;
1325 struct spu_aead_parms aead_parms;
1326 int assoc_nents = 0;
1327 bool incl_icv = false;
1328 unsigned int digestsize = ctx->digestsize;
1329
1330 /* number of entries in src and dst sg. Always includes SPU msg header.
1331 */
1332 u8 rx_frag_num = 2; /* and STATUS */
1333 u8 tx_frag_num = 1;
1334
1335 /* doing the whole thing at once */
1336 chunksize = rctx->total_todo;
1337
1338 flow_log("%s: chunksize %u\n", __func__, chunksize);
1339
1340 memset(&req_opts, 0, sizeof(req_opts));
1341 memset(&hash_parms, 0, sizeof(hash_parms));
1342 memset(&aead_parms, 0, sizeof(aead_parms));
1343
1344 req_opts.is_inbound = !(rctx->is_encrypt);
1345 req_opts.auth_first = ctx->auth_first;
1346 req_opts.is_aead = true;
1347 req_opts.is_esp = ctx->is_esp;
1348
1349 cipher_parms.alg = ctx->cipher.alg;
1350 cipher_parms.mode = ctx->cipher.mode;
1351 cipher_parms.type = ctx->cipher_type;
1352 cipher_parms.key_buf = ctx->enckey;
1353 cipher_parms.key_len = ctx->enckeylen;
1354 cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1355 cipher_parms.iv_len = rctx->iv_ctr_len;
1356
1357 hash_parms.alg = ctx->auth.alg;
1358 hash_parms.mode = ctx->auth.mode;
1359 hash_parms.type = HASH_TYPE_NONE;
1360 hash_parms.key_buf = (u8 *)ctx->authkey;
1361 hash_parms.key_len = ctx->authkeylen;
1362 hash_parms.digestsize = digestsize;
1363
1364 if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1365 (ctx->authkeylen < SHA224_DIGEST_SIZE))
1366 hash_parms.key_len = SHA224_DIGEST_SIZE;
1367
1368 aead_parms.assoc_size = req->assoclen;
1369 if (ctx->is_esp && !ctx->is_rfc4543) {
1370 /*
1371 * 8-byte IV is included assoc data in request. SPU2
1372 * expects AAD to include just SPI and seqno. So
1373 * subtract off the IV len.
1374 */
1375 aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
1376
1377 if (rctx->is_encrypt) {
1378 aead_parms.return_iv = true;
1379 aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
1380 aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1381 }
1382 } else {
1383 aead_parms.ret_iv_len = 0;
1384 }
1385
1386 /*
1387 * Count number of sg entries from the crypto API request that are to
1388 * be included in this mailbox message. For dst sg, don't count space
1389 * for digest. Digest gets caught in a separate buffer and copied back
1390 * to dst sg when processing response.
1391 */
1392 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1393 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1394 if (aead_parms.assoc_size)
1395 assoc_nents = spu_sg_count(rctx->assoc, 0,
1396 aead_parms.assoc_size);
1397
1398 mssg = &rctx->mb_mssg;
1399
1400 rctx->total_sent = chunksize;
1401 rctx->src_sent = chunksize;
1402 if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1403 aead_parms.assoc_size,
1404 aead_parms.ret_iv_len,
1405 rctx->is_encrypt))
1406 rx_frag_num++;
1407
1408 aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1409 rctx->iv_ctr_len);
1410
1411 if (ctx->auth.alg == HASH_ALG_AES)
1412 hash_parms.type = (enum hash_type)ctx->cipher_type;
1413
1414 /* General case AAD padding (CCM and RFC4543 special cases below) */
1415 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1416 aead_parms.assoc_size);
1417
1418 /* General case data padding (CCM decrypt special case below) */
1419 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1420 chunksize);
1421
1422 if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1423 /*
1424 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1425 * 128-bit aligned
1426 */
1427 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1428 ctx->cipher.mode,
1429 aead_parms.assoc_size + 2);
1430
1431 /*
1432 * And when decrypting CCM, need to pad without including
1433 * size of ICV which is tacked on to end of chunk
1434 */
1435 if (!rctx->is_encrypt)
1436 aead_parms.data_pad_len =
1437 spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1438 chunksize - digestsize);
1439
1440 /* CCM also requires software to rewrite portions of IV: */
1441 spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1442 chunksize, rctx->is_encrypt,
1443 ctx->is_esp);
1444 }
1445
1446 if (ctx->is_rfc4543) {
1447 /*
1448 * RFC4543: data is included in AAD, so don't pad after AAD
1449 * and pad data based on both AAD + data size
1450 */
1451 aead_parms.aad_pad_len = 0;
1452 if (!rctx->is_encrypt)
1453 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1454 ctx->cipher.mode,
1455 aead_parms.assoc_size + chunksize -
1456 digestsize);
1457 else
1458 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1459 ctx->cipher.mode,
1460 aead_parms.assoc_size + chunksize);
1461
1462 req_opts.is_rfc4543 = true;
1463 }
1464
1465 if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1466 incl_icv = true;
1467 tx_frag_num++;
1468 /* Copy ICV from end of src scatterlist to digest buf */
1469 sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1470 req->assoclen + rctx->total_sent -
1471 digestsize);
1472 }
1473
1474 atomic64_add(chunksize, &iproc_priv.bytes_out);
1475
1476 flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1477
1478 /* Prepend SPU header with type 3 BCM header */
1479 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1480
1481 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1482 BCM_HDR_LEN, &req_opts,
1483 &cipher_parms, &hash_parms,
1484 &aead_parms, chunksize);
1485
1486 /* Determine total length of padding. Put all padding in one buffer. */
1487 db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1488 chunksize, aead_parms.aad_pad_len,
1489 aead_parms.data_pad_len, 0);
1490
1491 stat_pad_len = spu->spu_wordalign_padlen(db_size);
1492
1493 if (stat_pad_len)
1494 rx_frag_num++;
1495 pad_len = aead_parms.data_pad_len + stat_pad_len;
1496 if (pad_len) {
1497 tx_frag_num++;
1498 spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1499 aead_parms.data_pad_len, 0,
1500 ctx->auth.alg, ctx->auth.mode,
1501 rctx->total_sent, stat_pad_len);
1502 }
1503
1504 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1505 spu_hdr_len);
1506 dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1507 packet_dump(" aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1508 packet_log("BD:\n");
1509 dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1510 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1511
1512 /*
1513 * Build mailbox message containing SPU request msg and rx buffers
1514 * to catch response message
1515 */
1516 memset(mssg, 0, sizeof(*mssg));
1517 mssg->type = BRCM_MESSAGE_SPU;
1518 mssg->ctx = rctx; /* Will be returned in response */
1519
1520 /* Create rx scatterlist to catch result */
1521 rx_frag_num += rctx->dst_nents;
1522 resp_len = chunksize;
1523
1524 /*
1525 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1526 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1527 * sends entire digest back.
1528 */
1529 rx_frag_num++;
1530
1531 if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1532 (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1533 /*
1534 * Input is ciphertxt plus ICV, but ICV not incl
1535 * in output.
1536 */
1537 resp_len -= ctx->digestsize;
1538 if (resp_len == 0)
1539 /* no rx frags to catch output data */
1540 rx_frag_num -= rctx->dst_nents;
1541 }
1542
1543 err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1544 aead_parms.assoc_size,
1545 aead_parms.ret_iv_len, resp_len, digestsize,
1546 stat_pad_len);
1547 if (err)
1548 return err;
1549
1550 /* Create tx scatterlist containing SPU request message */
1551 tx_frag_num += rctx->src_nents;
1552 tx_frag_num += assoc_nents;
1553 if (aead_parms.aad_pad_len)
1554 tx_frag_num++;
1555 if (aead_parms.iv_len)
1556 tx_frag_num++;
1557 if (spu->spu_tx_status_len())
1558 tx_frag_num++;
1559 err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1560 rctx->assoc, aead_parms.assoc_size,
1561 assoc_nents, aead_parms.iv_len, chunksize,
1562 aead_parms.aad_pad_len, pad_len, incl_icv);
1563 if (err)
1564 return err;
1565
1566 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1567 if (unlikely(err < 0))
1568 return err;
1569
1570 return -EINPROGRESS;
1571 }
1572
1573 /**
1574 * handle_aead_resp() - Process a SPU response message for an AEAD request.
1575 * @rctx: Crypto request context
1576 */
1577 static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1578 {
1579 struct spu_hw *spu = &iproc_priv.spu;
1580 struct crypto_async_request *areq = rctx->parent;
1581 struct aead_request *req = container_of(areq,
1582 struct aead_request, base);
1583 struct iproc_ctx_s *ctx = rctx->ctx;
1584 u32 payload_len;
1585 unsigned int icv_offset;
1586 u32 result_len;
1587
1588 /* See how much data was returned */
1589 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1590 flow_log("payload_len %u\n", payload_len);
1591
1592 /* only count payload */
1593 atomic64_add(payload_len, &iproc_priv.bytes_in);
1594
1595 if (req->assoclen)
1596 packet_dump(" assoc_data ", rctx->msg_buf.a.resp_aad,
1597 req->assoclen);
1598
1599 /*
1600 * Copy the ICV back to the destination
1601 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1602 * API doesn't expect ICV in dst buffer.
1603 */
1604 result_len = req->cryptlen;
1605 if (rctx->is_encrypt) {
1606 icv_offset = req->assoclen + rctx->total_sent;
1607 packet_dump(" ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1608 flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1609 sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1610 ctx->digestsize, icv_offset);
1611 result_len += ctx->digestsize;
1612 }
1613
1614 packet_log("response data: ");
1615 dump_sg(req->dst, req->assoclen, result_len);
1616
1617 atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1618 if (ctx->cipher.alg == CIPHER_ALG_AES) {
1619 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1620 atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1621 else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1622 atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1623 else
1624 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1625 } else {
1626 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1627 }
1628 }
1629
1630 /**
1631 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1632 * @rctx: request context
1633 *
1634 * Mailbox scatterlists are allocated for each chunk. So free them after
1635 * processing each chunk.
1636 */
1637 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1638 {
1639 /* mailbox message used to tx request */
1640 struct brcm_message *mssg = &rctx->mb_mssg;
1641
1642 kfree(mssg->spu.src);
1643 kfree(mssg->spu.dst);
1644 memset(mssg, 0, sizeof(struct brcm_message));
1645 }
1646
1647 /**
1648 * finish_req() - Used to invoke the complete callback from the requester when
1649 * a request has been handled asynchronously.
1650 * @rctx: Request context
1651 * @err: Indicates whether the request was successful or not
1652 *
1653 * Ensures that cleanup has been done for request
1654 */
1655 static void finish_req(struct iproc_reqctx_s *rctx, int err)
1656 {
1657 struct crypto_async_request *areq = rctx->parent;
1658
1659 flow_log("%s() err:%d\n\n", __func__, err);
1660
1661 /* No harm done if already called */
1662 spu_chunk_cleanup(rctx);
1663
1664 if (areq)
1665 areq->complete(areq, err);
1666 }
1667
1668 /**
1669 * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1670 * @cl: mailbox client structure for SPU driver
1671 * @msg: mailbox message containing SPU response
1672 */
1673 static void spu_rx_callback(struct mbox_client *cl, void *msg)
1674 {
1675 struct spu_hw *spu = &iproc_priv.spu;
1676 struct brcm_message *mssg = msg;
1677 struct iproc_reqctx_s *rctx;
1678 struct iproc_ctx_s *ctx;
1679 struct crypto_async_request *areq;
1680 int err = 0;
1681
1682 rctx = mssg->ctx;
1683 if (unlikely(!rctx)) {
1684 /* This is fatal */
1685 pr_err("%s(): no request context", __func__);
1686 err = -EFAULT;
1687 goto cb_finish;
1688 }
1689 areq = rctx->parent;
1690 ctx = rctx->ctx;
1691
1692 /* process the SPU status */
1693 err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1694 if (err != 0) {
1695 if (err == SPU_INVALID_ICV)
1696 atomic_inc(&iproc_priv.bad_icv);
1697 err = -EBADMSG;
1698 goto cb_finish;
1699 }
1700
1701 /* Process the SPU response message */
1702 switch (rctx->ctx->alg->type) {
1703 case CRYPTO_ALG_TYPE_ABLKCIPHER:
1704 handle_ablkcipher_resp(rctx);
1705 break;
1706 case CRYPTO_ALG_TYPE_AHASH:
1707 handle_ahash_resp(rctx);
1708 break;
1709 case CRYPTO_ALG_TYPE_AEAD:
1710 handle_aead_resp(rctx);
1711 break;
1712 default:
1713 err = -EINVAL;
1714 goto cb_finish;
1715 }
1716
1717 /*
1718 * If this response does not complete the request, then send the next
1719 * request chunk.
1720 */
1721 if (rctx->total_sent < rctx->total_todo) {
1722 /* Deallocate anything specific to previous chunk */
1723 spu_chunk_cleanup(rctx);
1724
1725 switch (rctx->ctx->alg->type) {
1726 case CRYPTO_ALG_TYPE_ABLKCIPHER:
1727 err = handle_ablkcipher_req(rctx);
1728 break;
1729 case CRYPTO_ALG_TYPE_AHASH:
1730 err = handle_ahash_req(rctx);
1731 if (err == -EAGAIN)
1732 /*
1733 * we saved data in hash carry, but tell crypto
1734 * API we successfully completed request.
1735 */
1736 err = 0;
1737 break;
1738 case CRYPTO_ALG_TYPE_AEAD:
1739 err = handle_aead_req(rctx);
1740 break;
1741 default:
1742 err = -EINVAL;
1743 }
1744
1745 if (err == -EINPROGRESS)
1746 /* Successfully submitted request for next chunk */
1747 return;
1748 }
1749
1750 cb_finish:
1751 finish_req(rctx, err);
1752 }
1753
1754 /* ==================== Kernel Cryptographic API ==================== */
1755
1756 /**
1757 * ablkcipher_enqueue() - Handle ablkcipher encrypt or decrypt request.
1758 * @req: Crypto API request
1759 * @encrypt: true if encrypting; false if decrypting
1760 *
1761 * Return: -EINPROGRESS if request accepted and result will be returned
1762 * asynchronously
1763 * < 0 if an error
1764 */
1765 static int ablkcipher_enqueue(struct ablkcipher_request *req, bool encrypt)
1766 {
1767 struct iproc_reqctx_s *rctx = ablkcipher_request_ctx(req);
1768 struct iproc_ctx_s *ctx =
1769 crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1770 int err;
1771
1772 flow_log("%s() enc:%u\n", __func__, encrypt);
1773
1774 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1775 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1776 rctx->parent = &req->base;
1777 rctx->is_encrypt = encrypt;
1778 rctx->bd_suppress = false;
1779 rctx->total_todo = req->nbytes;
1780 rctx->src_sent = 0;
1781 rctx->total_sent = 0;
1782 rctx->total_received = 0;
1783 rctx->ctx = ctx;
1784
1785 /* Initialize current position in src and dst scatterlists */
1786 rctx->src_sg = req->src;
1787 rctx->src_nents = 0;
1788 rctx->src_skip = 0;
1789 rctx->dst_sg = req->dst;
1790 rctx->dst_nents = 0;
1791 rctx->dst_skip = 0;
1792
1793 if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1794 ctx->cipher.mode == CIPHER_MODE_CTR ||
1795 ctx->cipher.mode == CIPHER_MODE_OFB ||
1796 ctx->cipher.mode == CIPHER_MODE_XTS ||
1797 ctx->cipher.mode == CIPHER_MODE_GCM ||
1798 ctx->cipher.mode == CIPHER_MODE_CCM) {
1799 rctx->iv_ctr_len =
1800 crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
1801 memcpy(rctx->msg_buf.iv_ctr, req->info, rctx->iv_ctr_len);
1802 } else {
1803 rctx->iv_ctr_len = 0;
1804 }
1805
1806 /* Choose a SPU to process this request */
1807 rctx->chan_idx = select_channel();
1808 err = handle_ablkcipher_req(rctx);
1809 if (err != -EINPROGRESS)
1810 /* synchronous result */
1811 spu_chunk_cleanup(rctx);
1812
1813 return err;
1814 }
1815
1816 static int des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1817 unsigned int keylen)
1818 {
1819 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1820 u32 tmp[DES_EXPKEY_WORDS];
1821
1822 if (keylen == DES_KEY_SIZE) {
1823 if (des_ekey(tmp, key) == 0) {
1824 if (crypto_ablkcipher_get_flags(cipher) &
1825 CRYPTO_TFM_REQ_WEAK_KEY) {
1826 u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
1827
1828 crypto_ablkcipher_set_flags(cipher, flags);
1829 return -EINVAL;
1830 }
1831 }
1832
1833 ctx->cipher_type = CIPHER_TYPE_DES;
1834 } else {
1835 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1836 return -EINVAL;
1837 }
1838 return 0;
1839 }
1840
1841 static int threedes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1842 unsigned int keylen)
1843 {
1844 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1845
1846 if (keylen == (DES_KEY_SIZE * 3)) {
1847 const u32 *K = (const u32 *)key;
1848 u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED;
1849
1850 if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
1851 !((K[2] ^ K[4]) | (K[3] ^ K[5]))) {
1852 crypto_ablkcipher_set_flags(cipher, flags);
1853 return -EINVAL;
1854 }
1855
1856 ctx->cipher_type = CIPHER_TYPE_3DES;
1857 } else {
1858 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1859 return -EINVAL;
1860 }
1861 return 0;
1862 }
1863
1864 static int aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1865 unsigned int keylen)
1866 {
1867 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1868
1869 if (ctx->cipher.mode == CIPHER_MODE_XTS)
1870 /* XTS includes two keys of equal length */
1871 keylen = keylen / 2;
1872
1873 switch (keylen) {
1874 case AES_KEYSIZE_128:
1875 ctx->cipher_type = CIPHER_TYPE_AES128;
1876 break;
1877 case AES_KEYSIZE_192:
1878 ctx->cipher_type = CIPHER_TYPE_AES192;
1879 break;
1880 case AES_KEYSIZE_256:
1881 ctx->cipher_type = CIPHER_TYPE_AES256;
1882 break;
1883 default:
1884 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1885 return -EINVAL;
1886 }
1887 WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1888 ((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1889 return 0;
1890 }
1891
1892 static int rc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1893 unsigned int keylen)
1894 {
1895 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1896 int i;
1897
1898 ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE;
1899
1900 ctx->enckey[0] = 0x00; /* 0x00 */
1901 ctx->enckey[1] = 0x00; /* i */
1902 ctx->enckey[2] = 0x00; /* 0x00 */
1903 ctx->enckey[3] = 0x00; /* j */
1904 for (i = 0; i < ARC4_MAX_KEY_SIZE; i++)
1905 ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen];
1906
1907 ctx->cipher_type = CIPHER_TYPE_INIT;
1908
1909 return 0;
1910 }
1911
1912 static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1913 unsigned int keylen)
1914 {
1915 struct spu_hw *spu = &iproc_priv.spu;
1916 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1917 struct spu_cipher_parms cipher_parms;
1918 u32 alloc_len = 0;
1919 int err;
1920
1921 flow_log("ablkcipher_setkey() keylen: %d\n", keylen);
1922 flow_dump(" key: ", key, keylen);
1923
1924 switch (ctx->cipher.alg) {
1925 case CIPHER_ALG_DES:
1926 err = des_setkey(cipher, key, keylen);
1927 break;
1928 case CIPHER_ALG_3DES:
1929 err = threedes_setkey(cipher, key, keylen);
1930 break;
1931 case CIPHER_ALG_AES:
1932 err = aes_setkey(cipher, key, keylen);
1933 break;
1934 case CIPHER_ALG_RC4:
1935 err = rc4_setkey(cipher, key, keylen);
1936 break;
1937 default:
1938 pr_err("%s() Error: unknown cipher alg\n", __func__);
1939 err = -EINVAL;
1940 }
1941 if (err)
1942 return err;
1943
1944 /* RC4 already populated ctx->enkey */
1945 if (ctx->cipher.alg != CIPHER_ALG_RC4) {
1946 memcpy(ctx->enckey, key, keylen);
1947 ctx->enckeylen = keylen;
1948 }
1949 /* SPU needs XTS keys in the reverse order the crypto API presents */
1950 if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1951 (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1952 unsigned int xts_keylen = keylen / 2;
1953
1954 memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1955 memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1956 }
1957
1958 if (spu->spu_type == SPU_TYPE_SPUM)
1959 alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1960 else if (spu->spu_type == SPU_TYPE_SPU2)
1961 alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1962 memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1963 cipher_parms.iv_buf = NULL;
1964 cipher_parms.iv_len = crypto_ablkcipher_ivsize(cipher);
1965 flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1966
1967 cipher_parms.alg = ctx->cipher.alg;
1968 cipher_parms.mode = ctx->cipher.mode;
1969 cipher_parms.type = ctx->cipher_type;
1970 cipher_parms.key_buf = ctx->enckey;
1971 cipher_parms.key_len = ctx->enckeylen;
1972
1973 /* Prepend SPU request message with BCM header */
1974 memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1975 ctx->spu_req_hdr_len =
1976 spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1977 &cipher_parms);
1978
1979 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1980 ctx->enckeylen,
1981 false);
1982
1983 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1984
1985 return 0;
1986 }
1987
1988 static int ablkcipher_encrypt(struct ablkcipher_request *req)
1989 {
1990 flow_log("ablkcipher_encrypt() nbytes:%u\n", req->nbytes);
1991
1992 return ablkcipher_enqueue(req, true);
1993 }
1994
1995 static int ablkcipher_decrypt(struct ablkcipher_request *req)
1996 {
1997 flow_log("ablkcipher_decrypt() nbytes:%u\n", req->nbytes);
1998 return ablkcipher_enqueue(req, false);
1999 }
2000
2001 static int ahash_enqueue(struct ahash_request *req)
2002 {
2003 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2004 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2005 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2006 int err = 0;
2007 const char *alg_name;
2008
2009 flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
2010
2011 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2012 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2013 rctx->parent = &req->base;
2014 rctx->ctx = ctx;
2015 rctx->bd_suppress = true;
2016 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2017
2018 /* Initialize position in src scatterlist */
2019 rctx->src_sg = req->src;
2020 rctx->src_skip = 0;
2021 rctx->src_nents = 0;
2022 rctx->dst_sg = NULL;
2023 rctx->dst_skip = 0;
2024 rctx->dst_nents = 0;
2025
2026 /* SPU2 hardware does not compute hash of zero length data */
2027 if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
2028 (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
2029 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2030 flow_log("Doing %sfinal %s zero-len hash request in software\n",
2031 rctx->is_final ? "" : "non-", alg_name);
2032 err = do_shash((unsigned char *)alg_name, req->result,
2033 NULL, 0, NULL, 0, ctx->authkey,
2034 ctx->authkeylen);
2035 if (err < 0)
2036 flow_log("Hash request failed with error %d\n", err);
2037 return err;
2038 }
2039 /* Choose a SPU to process this request */
2040 rctx->chan_idx = select_channel();
2041
2042 err = handle_ahash_req(rctx);
2043 if (err != -EINPROGRESS)
2044 /* synchronous result */
2045 spu_chunk_cleanup(rctx);
2046
2047 if (err == -EAGAIN)
2048 /*
2049 * we saved data in hash carry, but tell crypto API
2050 * we successfully completed request.
2051 */
2052 err = 0;
2053
2054 return err;
2055 }
2056
2057 static int __ahash_init(struct ahash_request *req)
2058 {
2059 struct spu_hw *spu = &iproc_priv.spu;
2060 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2061 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2062 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2063
2064 flow_log("%s()\n", __func__);
2065
2066 /* Initialize the context */
2067 rctx->hash_carry_len = 0;
2068 rctx->is_final = 0;
2069
2070 rctx->total_todo = 0;
2071 rctx->src_sent = 0;
2072 rctx->total_sent = 0;
2073 rctx->total_received = 0;
2074
2075 ctx->digestsize = crypto_ahash_digestsize(tfm);
2076 /* If we add a hash whose digest is larger, catch it here. */
2077 WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
2078
2079 rctx->is_sw_hmac = false;
2080
2081 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
2082 true);
2083
2084 return 0;
2085 }
2086
2087 /**
2088 * spu_no_incr_hash() - Determine whether incremental hashing is supported.
2089 * @ctx: Crypto session context
2090 *
2091 * SPU-2 does not support incremental hashing (we'll have to revisit and
2092 * condition based on chip revision or device tree entry if future versions do
2093 * support incremental hash)
2094 *
2095 * SPU-M also doesn't support incremental hashing of AES-XCBC
2096 *
2097 * Return: true if incremental hashing is not supported
2098 * false otherwise
2099 */
2100 bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2101 {
2102 struct spu_hw *spu = &iproc_priv.spu;
2103
2104 if (spu->spu_type == SPU_TYPE_SPU2)
2105 return true;
2106
2107 if ((ctx->auth.alg == HASH_ALG_AES) &&
2108 (ctx->auth.mode == HASH_MODE_XCBC))
2109 return true;
2110
2111 /* Otherwise, incremental hashing is supported */
2112 return false;
2113 }
2114
2115 static int ahash_init(struct ahash_request *req)
2116 {
2117 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2118 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2119 const char *alg_name;
2120 struct crypto_shash *hash;
2121 int ret;
2122 gfp_t gfp;
2123
2124 if (spu_no_incr_hash(ctx)) {
2125 /*
2126 * If we get an incremental hashing request and it's not
2127 * supported by the hardware, we need to handle it in software
2128 * by calling synchronous hash functions.
2129 */
2130 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2131 hash = crypto_alloc_shash(alg_name, 0, 0);
2132 if (IS_ERR(hash)) {
2133 ret = PTR_ERR(hash);
2134 goto err;
2135 }
2136
2137 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2138 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2139 ctx->shash = kmalloc(sizeof(*ctx->shash) +
2140 crypto_shash_descsize(hash), gfp);
2141 if (!ctx->shash) {
2142 ret = -ENOMEM;
2143 goto err_hash;
2144 }
2145 ctx->shash->tfm = hash;
2146 ctx->shash->flags = 0;
2147
2148 /* Set the key using data we already have from setkey */
2149 if (ctx->authkeylen > 0) {
2150 ret = crypto_shash_setkey(hash, ctx->authkey,
2151 ctx->authkeylen);
2152 if (ret)
2153 goto err_shash;
2154 }
2155
2156 /* Initialize hash w/ this key and other params */
2157 ret = crypto_shash_init(ctx->shash);
2158 if (ret)
2159 goto err_shash;
2160 } else {
2161 /* Otherwise call the internal function which uses SPU hw */
2162 ret = __ahash_init(req);
2163 }
2164
2165 return ret;
2166
2167 err_shash:
2168 kfree(ctx->shash);
2169 err_hash:
2170 crypto_free_shash(hash);
2171 err:
2172 return ret;
2173 }
2174
2175 static int __ahash_update(struct ahash_request *req)
2176 {
2177 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2178
2179 flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2180
2181 if (!req->nbytes)
2182 return 0;
2183 rctx->total_todo += req->nbytes;
2184 rctx->src_sent = 0;
2185
2186 return ahash_enqueue(req);
2187 }
2188
2189 static int ahash_update(struct ahash_request *req)
2190 {
2191 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2192 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2193 u8 *tmpbuf;
2194 int ret;
2195 int nents;
2196 gfp_t gfp;
2197
2198 if (spu_no_incr_hash(ctx)) {
2199 /*
2200 * If we get an incremental hashing request and it's not
2201 * supported by the hardware, we need to handle it in software
2202 * by calling synchronous hash functions.
2203 */
2204 if (req->src)
2205 nents = sg_nents(req->src);
2206 else
2207 return -EINVAL;
2208
2209 /* Copy data from req scatterlist to tmp buffer */
2210 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2211 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2212 tmpbuf = kmalloc(req->nbytes, gfp);
2213 if (!tmpbuf)
2214 return -ENOMEM;
2215
2216 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2217 req->nbytes) {
2218 kfree(tmpbuf);
2219 return -EINVAL;
2220 }
2221
2222 /* Call synchronous update */
2223 ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2224 kfree(tmpbuf);
2225 } else {
2226 /* Otherwise call the internal function which uses SPU hw */
2227 ret = __ahash_update(req);
2228 }
2229
2230 return ret;
2231 }
2232
2233 static int __ahash_final(struct ahash_request *req)
2234 {
2235 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2236
2237 flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2238
2239 rctx->is_final = 1;
2240
2241 return ahash_enqueue(req);
2242 }
2243
2244 static int ahash_final(struct ahash_request *req)
2245 {
2246 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2247 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2248 int ret;
2249
2250 if (spu_no_incr_hash(ctx)) {
2251 /*
2252 * If we get an incremental hashing request and it's not
2253 * supported by the hardware, we need to handle it in software
2254 * by calling synchronous hash functions.
2255 */
2256 ret = crypto_shash_final(ctx->shash, req->result);
2257
2258 /* Done with hash, can deallocate it now */
2259 crypto_free_shash(ctx->shash->tfm);
2260 kfree(ctx->shash);
2261
2262 } else {
2263 /* Otherwise call the internal function which uses SPU hw */
2264 ret = __ahash_final(req);
2265 }
2266
2267 return ret;
2268 }
2269
2270 static int __ahash_finup(struct ahash_request *req)
2271 {
2272 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2273
2274 flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2275
2276 rctx->total_todo += req->nbytes;
2277 rctx->src_sent = 0;
2278 rctx->is_final = 1;
2279
2280 return ahash_enqueue(req);
2281 }
2282
2283 static int ahash_finup(struct ahash_request *req)
2284 {
2285 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2286 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2287 u8 *tmpbuf;
2288 int ret;
2289 int nents;
2290 gfp_t gfp;
2291
2292 if (spu_no_incr_hash(ctx)) {
2293 /*
2294 * If we get an incremental hashing request and it's not
2295 * supported by the hardware, we need to handle it in software
2296 * by calling synchronous hash functions.
2297 */
2298 if (req->src) {
2299 nents = sg_nents(req->src);
2300 } else {
2301 ret = -EINVAL;
2302 goto ahash_finup_exit;
2303 }
2304
2305 /* Copy data from req scatterlist to tmp buffer */
2306 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2307 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2308 tmpbuf = kmalloc(req->nbytes, gfp);
2309 if (!tmpbuf) {
2310 ret = -ENOMEM;
2311 goto ahash_finup_exit;
2312 }
2313
2314 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2315 req->nbytes) {
2316 ret = -EINVAL;
2317 goto ahash_finup_free;
2318 }
2319
2320 /* Call synchronous update */
2321 ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2322 req->result);
2323 } else {
2324 /* Otherwise call the internal function which uses SPU hw */
2325 return __ahash_finup(req);
2326 }
2327 ahash_finup_free:
2328 kfree(tmpbuf);
2329
2330 ahash_finup_exit:
2331 /* Done with hash, can deallocate it now */
2332 crypto_free_shash(ctx->shash->tfm);
2333 kfree(ctx->shash);
2334 return ret;
2335 }
2336
2337 static int ahash_digest(struct ahash_request *req)
2338 {
2339 int err = 0;
2340
2341 flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2342
2343 /* whole thing at once */
2344 err = __ahash_init(req);
2345 if (!err)
2346 err = __ahash_finup(req);
2347
2348 return err;
2349 }
2350
2351 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2352 unsigned int keylen)
2353 {
2354 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2355
2356 flow_log("%s() ahash:%p key:%p keylen:%u\n",
2357 __func__, ahash, key, keylen);
2358 flow_dump(" key: ", key, keylen);
2359
2360 if (ctx->auth.alg == HASH_ALG_AES) {
2361 switch (keylen) {
2362 case AES_KEYSIZE_128:
2363 ctx->cipher_type = CIPHER_TYPE_AES128;
2364 break;
2365 case AES_KEYSIZE_192:
2366 ctx->cipher_type = CIPHER_TYPE_AES192;
2367 break;
2368 case AES_KEYSIZE_256:
2369 ctx->cipher_type = CIPHER_TYPE_AES256;
2370 break;
2371 default:
2372 pr_err("%s() Error: Invalid key length\n", __func__);
2373 return -EINVAL;
2374 }
2375 } else {
2376 pr_err("%s() Error: unknown hash alg\n", __func__);
2377 return -EINVAL;
2378 }
2379 memcpy(ctx->authkey, key, keylen);
2380 ctx->authkeylen = keylen;
2381
2382 return 0;
2383 }
2384
2385 static int ahash_export(struct ahash_request *req, void *out)
2386 {
2387 const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2388 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2389
2390 spu_exp->total_todo = rctx->total_todo;
2391 spu_exp->total_sent = rctx->total_sent;
2392 spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2393 memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2394 spu_exp->hash_carry_len = rctx->hash_carry_len;
2395 memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2396
2397 return 0;
2398 }
2399
2400 static int ahash_import(struct ahash_request *req, const void *in)
2401 {
2402 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2403 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2404
2405 rctx->total_todo = spu_exp->total_todo;
2406 rctx->total_sent = spu_exp->total_sent;
2407 rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2408 memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2409 rctx->hash_carry_len = spu_exp->hash_carry_len;
2410 memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2411
2412 return 0;
2413 }
2414
2415 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2416 unsigned int keylen)
2417 {
2418 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2419 unsigned int blocksize =
2420 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2421 unsigned int digestsize = crypto_ahash_digestsize(ahash);
2422 unsigned int index;
2423 int rc;
2424
2425 flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2426 __func__, ahash, key, keylen, blocksize, digestsize);
2427 flow_dump(" key: ", key, keylen);
2428
2429 if (keylen > blocksize) {
2430 switch (ctx->auth.alg) {
2431 case HASH_ALG_MD5:
2432 rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2433 0, NULL, 0);
2434 break;
2435 case HASH_ALG_SHA1:
2436 rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2437 0, NULL, 0);
2438 break;
2439 case HASH_ALG_SHA224:
2440 rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2441 0, NULL, 0);
2442 break;
2443 case HASH_ALG_SHA256:
2444 rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2445 0, NULL, 0);
2446 break;
2447 case HASH_ALG_SHA384:
2448 rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2449 0, NULL, 0);
2450 break;
2451 case HASH_ALG_SHA512:
2452 rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2453 0, NULL, 0);
2454 break;
2455 case HASH_ALG_SHA3_224:
2456 rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2457 NULL, 0, NULL, 0);
2458 break;
2459 case HASH_ALG_SHA3_256:
2460 rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2461 NULL, 0, NULL, 0);
2462 break;
2463 case HASH_ALG_SHA3_384:
2464 rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2465 NULL, 0, NULL, 0);
2466 break;
2467 case HASH_ALG_SHA3_512:
2468 rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2469 NULL, 0, NULL, 0);
2470 break;
2471 default:
2472 pr_err("%s() Error: unknown hash alg\n", __func__);
2473 return -EINVAL;
2474 }
2475 if (rc < 0) {
2476 pr_err("%s() Error %d computing shash for %s\n",
2477 __func__, rc, hash_alg_name[ctx->auth.alg]);
2478 return rc;
2479 }
2480 ctx->authkeylen = digestsize;
2481
2482 flow_log(" keylen > digestsize... hashed\n");
2483 flow_dump(" newkey: ", ctx->authkey, ctx->authkeylen);
2484 } else {
2485 memcpy(ctx->authkey, key, keylen);
2486 ctx->authkeylen = keylen;
2487 }
2488
2489 /*
2490 * Full HMAC operation in SPUM is not verified,
2491 * So keeping the generation of IPAD, OPAD and
2492 * outer hashing in software.
2493 */
2494 if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2495 memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2496 memset(ctx->ipad + ctx->authkeylen, 0,
2497 blocksize - ctx->authkeylen);
2498 ctx->authkeylen = 0;
2499 memcpy(ctx->opad, ctx->ipad, blocksize);
2500
2501 for (index = 0; index < blocksize; index++) {
2502 ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2503 ctx->opad[index] ^= HMAC_OPAD_VALUE;
2504 }
2505
2506 flow_dump(" ipad: ", ctx->ipad, blocksize);
2507 flow_dump(" opad: ", ctx->opad, blocksize);
2508 }
2509 ctx->digestsize = digestsize;
2510 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2511
2512 return 0;
2513 }
2514
2515 static int ahash_hmac_init(struct ahash_request *req)
2516 {
2517 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2518 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2519 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2520 unsigned int blocksize =
2521 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2522
2523 flow_log("ahash_hmac_init()\n");
2524
2525 /* init the context as a hash */
2526 ahash_init(req);
2527
2528 if (!spu_no_incr_hash(ctx)) {
2529 /* SPU-M can do incr hashing but needs sw for outer HMAC */
2530 rctx->is_sw_hmac = true;
2531 ctx->auth.mode = HASH_MODE_HASH;
2532 /* start with a prepended ipad */
2533 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2534 rctx->hash_carry_len = blocksize;
2535 rctx->total_todo += blocksize;
2536 }
2537
2538 return 0;
2539 }
2540
2541 static int ahash_hmac_update(struct ahash_request *req)
2542 {
2543 flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2544
2545 if (!req->nbytes)
2546 return 0;
2547
2548 return ahash_update(req);
2549 }
2550
2551 static int ahash_hmac_final(struct ahash_request *req)
2552 {
2553 flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2554
2555 return ahash_final(req);
2556 }
2557
2558 static int ahash_hmac_finup(struct ahash_request *req)
2559 {
2560 flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2561
2562 return ahash_finup(req);
2563 }
2564
2565 static int ahash_hmac_digest(struct ahash_request *req)
2566 {
2567 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2568 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2569 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2570 unsigned int blocksize =
2571 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2572
2573 flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2574
2575 /* Perform initialization and then call finup */
2576 __ahash_init(req);
2577
2578 if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2579 /*
2580 * SPU2 supports full HMAC implementation in the
2581 * hardware, need not to generate IPAD, OPAD and
2582 * outer hash in software.
2583 * Only for hash key len > hash block size, SPU2
2584 * expects to perform hashing on the key, shorten
2585 * it to digest size and feed it as hash key.
2586 */
2587 rctx->is_sw_hmac = false;
2588 ctx->auth.mode = HASH_MODE_HMAC;
2589 } else {
2590 rctx->is_sw_hmac = true;
2591 ctx->auth.mode = HASH_MODE_HASH;
2592 /* start with a prepended ipad */
2593 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2594 rctx->hash_carry_len = blocksize;
2595 rctx->total_todo += blocksize;
2596 }
2597
2598 return __ahash_finup(req);
2599 }
2600
2601 /* aead helpers */
2602
2603 static int aead_need_fallback(struct aead_request *req)
2604 {
2605 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2606 struct spu_hw *spu = &iproc_priv.spu;
2607 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2608 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2609 u32 payload_len;
2610
2611 /*
2612 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2613 * and AAD are both 0 bytes long. So use fallback in this case.
2614 */
2615 if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2616 (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2617 (req->assoclen == 0)) {
2618 if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2619 (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2620 flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2621 return 1;
2622 }
2623 }
2624
2625 /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2626 if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2627 (spu->spu_type == SPU_TYPE_SPUM) &&
2628 (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2629 (ctx->digestsize != 16)) {
2630 flow_log("%s() AES CCM needs fallback for digest size %d\n",
2631 __func__, ctx->digestsize);
2632 return 1;
2633 }
2634
2635 /*
2636 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2637 * when AAD size is 0
2638 */
2639 if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2640 (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2641 (req->assoclen == 0)) {
2642 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2643 __func__);
2644 return 1;
2645 }
2646
2647 payload_len = req->cryptlen;
2648 if (spu->spu_type == SPU_TYPE_SPUM)
2649 payload_len += req->assoclen;
2650
2651 flow_log("%s() payload len: %u\n", __func__, payload_len);
2652
2653 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2654 return 0;
2655 else
2656 return payload_len > ctx->max_payload;
2657 }
2658
2659 static void aead_complete(struct crypto_async_request *areq, int err)
2660 {
2661 struct aead_request *req =
2662 container_of(areq, struct aead_request, base);
2663 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2664 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2665
2666 flow_log("%s() err:%d\n", __func__, err);
2667
2668 areq->tfm = crypto_aead_tfm(aead);
2669
2670 areq->complete = rctx->old_complete;
2671 areq->data = rctx->old_data;
2672
2673 areq->complete(areq, err);
2674 }
2675
2676 static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2677 {
2678 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2679 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2680 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2681 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2682 int err;
2683 u32 req_flags;
2684
2685 flow_log("%s() enc:%u\n", __func__, is_encrypt);
2686
2687 if (ctx->fallback_cipher) {
2688 /* Store the cipher tfm and then use the fallback tfm */
2689 rctx->old_tfm = tfm;
2690 aead_request_set_tfm(req, ctx->fallback_cipher);
2691 /*
2692 * Save the callback and chain ourselves in, so we can restore
2693 * the tfm
2694 */
2695 rctx->old_complete = req->base.complete;
2696 rctx->old_data = req->base.data;
2697 req_flags = aead_request_flags(req);
2698 aead_request_set_callback(req, req_flags, aead_complete, req);
2699 err = is_encrypt ? crypto_aead_encrypt(req) :
2700 crypto_aead_decrypt(req);
2701
2702 if (err == 0) {
2703 /*
2704 * fallback was synchronous (did not return
2705 * -EINPROGRESS). So restore request state here.
2706 */
2707 aead_request_set_callback(req, req_flags,
2708 rctx->old_complete, req);
2709 req->base.data = rctx->old_data;
2710 aead_request_set_tfm(req, aead);
2711 flow_log("%s() fallback completed successfully\n\n",
2712 __func__);
2713 }
2714 } else {
2715 err = -EINVAL;
2716 }
2717
2718 return err;
2719 }
2720
2721 static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2722 {
2723 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2724 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2725 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2726 int err;
2727
2728 flow_log("%s() enc:%u\n", __func__, is_encrypt);
2729
2730 if (req->assoclen > MAX_ASSOC_SIZE) {
2731 pr_err
2732 ("%s() Error: associated data too long. (%u > %u bytes)\n",
2733 __func__, req->assoclen, MAX_ASSOC_SIZE);
2734 return -EINVAL;
2735 }
2736
2737 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2738 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2739 rctx->parent = &req->base;
2740 rctx->is_encrypt = is_encrypt;
2741 rctx->bd_suppress = false;
2742 rctx->total_todo = req->cryptlen;
2743 rctx->src_sent = 0;
2744 rctx->total_sent = 0;
2745 rctx->total_received = 0;
2746 rctx->is_sw_hmac = false;
2747 rctx->ctx = ctx;
2748 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2749
2750 /* assoc data is at start of src sg */
2751 rctx->assoc = req->src;
2752
2753 /*
2754 * Init current position in src scatterlist to be after assoc data.
2755 * src_skip set to buffer offset where data begins. (Assoc data could
2756 * end in the middle of a buffer.)
2757 */
2758 if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2759 &rctx->src_skip) < 0) {
2760 pr_err("%s() Error: Unable to find start of src data\n",
2761 __func__);
2762 return -EINVAL;
2763 }
2764
2765 rctx->src_nents = 0;
2766 rctx->dst_nents = 0;
2767 if (req->dst == req->src) {
2768 rctx->dst_sg = rctx->src_sg;
2769 rctx->dst_skip = rctx->src_skip;
2770 } else {
2771 /*
2772 * Expect req->dst to have room for assoc data followed by
2773 * output data and ICV, if encrypt. So initialize dst_sg
2774 * to point beyond assoc len offset.
2775 */
2776 if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2777 &rctx->dst_skip) < 0) {
2778 pr_err("%s() Error: Unable to find start of dst data\n",
2779 __func__);
2780 return -EINVAL;
2781 }
2782 }
2783
2784 if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2785 ctx->cipher.mode == CIPHER_MODE_CTR ||
2786 ctx->cipher.mode == CIPHER_MODE_OFB ||
2787 ctx->cipher.mode == CIPHER_MODE_XTS ||
2788 ctx->cipher.mode == CIPHER_MODE_GCM) {
2789 rctx->iv_ctr_len =
2790 ctx->salt_len +
2791 crypto_aead_ivsize(crypto_aead_reqtfm(req));
2792 } else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2793 rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2794 } else {
2795 rctx->iv_ctr_len = 0;
2796 }
2797
2798 rctx->hash_carry_len = 0;
2799
2800 flow_log(" src sg: %p\n", req->src);
2801 flow_log(" rctx->src_sg: %p, src_skip %u\n",
2802 rctx->src_sg, rctx->src_skip);
2803 flow_log(" assoc: %p, assoclen %u\n", rctx->assoc, req->assoclen);
2804 flow_log(" dst sg: %p\n", req->dst);
2805 flow_log(" rctx->dst_sg: %p, dst_skip %u\n",
2806 rctx->dst_sg, rctx->dst_skip);
2807 flow_log(" iv_ctr_len:%u\n", rctx->iv_ctr_len);
2808 flow_dump(" iv: ", req->iv, rctx->iv_ctr_len);
2809 flow_log(" authkeylen:%u\n", ctx->authkeylen);
2810 flow_log(" is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2811
2812 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2813 flow_log(" max_payload infinite");
2814 else
2815 flow_log(" max_payload: %u\n", ctx->max_payload);
2816
2817 if (unlikely(aead_need_fallback(req)))
2818 return aead_do_fallback(req, is_encrypt);
2819
2820 /*
2821 * Do memory allocations for request after fallback check, because if we
2822 * do fallback, we won't call finish_req() to dealloc.
2823 */
2824 if (rctx->iv_ctr_len) {
2825 if (ctx->salt_len)
2826 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2827 ctx->salt, ctx->salt_len);
2828 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2829 req->iv,
2830 rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2831 }
2832
2833 rctx->chan_idx = select_channel();
2834 err = handle_aead_req(rctx);
2835 if (err != -EINPROGRESS)
2836 /* synchronous result */
2837 spu_chunk_cleanup(rctx);
2838
2839 return err;
2840 }
2841
2842 static int aead_authenc_setkey(struct crypto_aead *cipher,
2843 const u8 *key, unsigned int keylen)
2844 {
2845 struct spu_hw *spu = &iproc_priv.spu;
2846 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2847 struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2848 struct rtattr *rta = (void *)key;
2849 struct crypto_authenc_key_param *param;
2850 const u8 *origkey = key;
2851 const unsigned int origkeylen = keylen;
2852
2853 int ret = 0;
2854
2855 flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2856 keylen);
2857 flow_dump(" key: ", key, keylen);
2858
2859 if (!RTA_OK(rta, keylen))
2860 goto badkey;
2861 if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
2862 goto badkey;
2863 if (RTA_PAYLOAD(rta) < sizeof(*param))
2864 goto badkey;
2865
2866 param = RTA_DATA(rta);
2867 ctx->enckeylen = be32_to_cpu(param->enckeylen);
2868
2869 key += RTA_ALIGN(rta->rta_len);
2870 keylen -= RTA_ALIGN(rta->rta_len);
2871
2872 if (keylen < ctx->enckeylen)
2873 goto badkey;
2874 if (ctx->enckeylen > MAX_KEY_SIZE)
2875 goto badkey;
2876
2877 ctx->authkeylen = keylen - ctx->enckeylen;
2878
2879 if (ctx->authkeylen > MAX_KEY_SIZE)
2880 goto badkey;
2881
2882 memcpy(ctx->enckey, key + ctx->authkeylen, ctx->enckeylen);
2883 /* May end up padding auth key. So make sure it's zeroed. */
2884 memset(ctx->authkey, 0, sizeof(ctx->authkey));
2885 memcpy(ctx->authkey, key, ctx->authkeylen);
2886
2887 switch (ctx->alg->cipher_info.alg) {
2888 case CIPHER_ALG_DES:
2889 if (ctx->enckeylen == DES_KEY_SIZE) {
2890 u32 tmp[DES_EXPKEY_WORDS];
2891 u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
2892
2893 if (des_ekey(tmp, key) == 0) {
2894 if (crypto_aead_get_flags(cipher) &
2895 CRYPTO_TFM_REQ_WEAK_KEY) {
2896 crypto_aead_set_flags(cipher, flags);
2897 return -EINVAL;
2898 }
2899 }
2900
2901 ctx->cipher_type = CIPHER_TYPE_DES;
2902 } else {
2903 goto badkey;
2904 }
2905 break;
2906 case CIPHER_ALG_3DES:
2907 if (ctx->enckeylen == (DES_KEY_SIZE * 3)) {
2908 const u32 *K = (const u32 *)key;
2909 u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED;
2910
2911 if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
2912 !((K[2] ^ K[4]) | (K[3] ^ K[5]))) {
2913 crypto_aead_set_flags(cipher, flags);
2914 return -EINVAL;
2915 }
2916
2917 ctx->cipher_type = CIPHER_TYPE_3DES;
2918 } else {
2919 crypto_aead_set_flags(cipher,
2920 CRYPTO_TFM_RES_BAD_KEY_LEN);
2921 return -EINVAL;
2922 }
2923 break;
2924 case CIPHER_ALG_AES:
2925 switch (ctx->enckeylen) {
2926 case AES_KEYSIZE_128:
2927 ctx->cipher_type = CIPHER_TYPE_AES128;
2928 break;
2929 case AES_KEYSIZE_192:
2930 ctx->cipher_type = CIPHER_TYPE_AES192;
2931 break;
2932 case AES_KEYSIZE_256:
2933 ctx->cipher_type = CIPHER_TYPE_AES256;
2934 break;
2935 default:
2936 goto badkey;
2937 }
2938 break;
2939 case CIPHER_ALG_RC4:
2940 ctx->cipher_type = CIPHER_TYPE_INIT;
2941 break;
2942 default:
2943 pr_err("%s() Error: Unknown cipher alg\n", __func__);
2944 return -EINVAL;
2945 }
2946
2947 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2948 ctx->authkeylen);
2949 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen);
2950 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen);
2951
2952 /* setkey the fallback just in case we needto use it */
2953 if (ctx->fallback_cipher) {
2954 flow_log(" running fallback setkey()\n");
2955
2956 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2957 ctx->fallback_cipher->base.crt_flags |=
2958 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2959 ret =
2960 crypto_aead_setkey(ctx->fallback_cipher, origkey,
2961 origkeylen);
2962 if (ret) {
2963 flow_log(" fallback setkey() returned:%d\n", ret);
2964 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
2965 tfm->crt_flags |=
2966 (ctx->fallback_cipher->base.crt_flags &
2967 CRYPTO_TFM_RES_MASK);
2968 }
2969 }
2970
2971 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2972 ctx->enckeylen,
2973 false);
2974
2975 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2976
2977 return ret;
2978
2979 badkey:
2980 ctx->enckeylen = 0;
2981 ctx->authkeylen = 0;
2982 ctx->digestsize = 0;
2983
2984 crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2985 return -EINVAL;
2986 }
2987
2988 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2989 const u8 *key, unsigned int keylen)
2990 {
2991 struct spu_hw *spu = &iproc_priv.spu;
2992 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2993 struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2994
2995 int ret = 0;
2996
2997 flow_log("%s() keylen:%u\n", __func__, keylen);
2998 flow_dump(" key: ", key, keylen);
2999
3000 if (!ctx->is_esp)
3001 ctx->digestsize = keylen;
3002
3003 ctx->enckeylen = keylen;
3004 ctx->authkeylen = 0;
3005 memcpy(ctx->enckey, key, ctx->enckeylen);
3006
3007 switch (ctx->enckeylen) {
3008 case AES_KEYSIZE_128:
3009 ctx->cipher_type = CIPHER_TYPE_AES128;
3010 break;
3011 case AES_KEYSIZE_192:
3012 ctx->cipher_type = CIPHER_TYPE_AES192;
3013 break;
3014 case AES_KEYSIZE_256:
3015 ctx->cipher_type = CIPHER_TYPE_AES256;
3016 break;
3017 default:
3018 goto badkey;
3019 }
3020
3021 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
3022 ctx->authkeylen);
3023 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen);
3024 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen);
3025
3026 /* setkey the fallback just in case we need to use it */
3027 if (ctx->fallback_cipher) {
3028 flow_log(" running fallback setkey()\n");
3029
3030 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
3031 ctx->fallback_cipher->base.crt_flags |=
3032 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
3033 ret = crypto_aead_setkey(ctx->fallback_cipher, key,
3034 keylen + ctx->salt_len);
3035 if (ret) {
3036 flow_log(" fallback setkey() returned:%d\n", ret);
3037 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
3038 tfm->crt_flags |=
3039 (ctx->fallback_cipher->base.crt_flags &
3040 CRYPTO_TFM_RES_MASK);
3041 }
3042 }
3043
3044 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
3045 ctx->enckeylen,
3046 false);
3047
3048 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
3049
3050 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
3051 ctx->authkeylen);
3052
3053 return ret;
3054
3055 badkey:
3056 ctx->enckeylen = 0;
3057 ctx->authkeylen = 0;
3058 ctx->digestsize = 0;
3059
3060 crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
3061 return -EINVAL;
3062 }
3063
3064 /**
3065 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
3066 * @cipher: AEAD structure
3067 * @key: Key followed by 4 bytes of salt
3068 * @keylen: Length of key plus salt, in bytes
3069 *
3070 * Extracts salt from key and stores it to be prepended to IV on each request.
3071 * Digest is always 16 bytes
3072 *
3073 * Return: Value from generic gcm setkey.
3074 */
3075 static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
3076 const u8 *key, unsigned int keylen)
3077 {
3078 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3079
3080 flow_log("%s\n", __func__);
3081 ctx->salt_len = GCM_ESP_SALT_SIZE;
3082 ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3083 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3084 keylen -= GCM_ESP_SALT_SIZE;
3085 ctx->digestsize = GCM_ESP_DIGESTSIZE;
3086 ctx->is_esp = true;
3087 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3088
3089 return aead_gcm_ccm_setkey(cipher, key, keylen);
3090 }
3091
3092 /**
3093 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
3094 * cipher: AEAD structure
3095 * key: Key followed by 4 bytes of salt
3096 * keylen: Length of key plus salt, in bytes
3097 *
3098 * Extracts salt from key and stores it to be prepended to IV on each request.
3099 * Digest is always 16 bytes
3100 *
3101 * Return: Value from generic gcm setkey.
3102 */
3103 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
3104 const u8 *key, unsigned int keylen)
3105 {
3106 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3107
3108 flow_log("%s\n", __func__);
3109 ctx->salt_len = GCM_ESP_SALT_SIZE;
3110 ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3111 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3112 keylen -= GCM_ESP_SALT_SIZE;
3113 ctx->digestsize = GCM_ESP_DIGESTSIZE;
3114 ctx->is_esp = true;
3115 ctx->is_rfc4543 = true;
3116 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3117
3118 return aead_gcm_ccm_setkey(cipher, key, keylen);
3119 }
3120
3121 /**
3122 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
3123 * @cipher: AEAD structure
3124 * @key: Key followed by 4 bytes of salt
3125 * @keylen: Length of key plus salt, in bytes
3126 *
3127 * Extracts salt from key and stores it to be prepended to IV on each request.
3128 * Digest is always 16 bytes
3129 *
3130 * Return: Value from generic ccm setkey.
3131 */
3132 static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
3133 const u8 *key, unsigned int keylen)
3134 {
3135 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3136
3137 flow_log("%s\n", __func__);
3138 ctx->salt_len = CCM_ESP_SALT_SIZE;
3139 ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3140 memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3141 keylen -= CCM_ESP_SALT_SIZE;
3142 ctx->is_esp = true;
3143 flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3144
3145 return aead_gcm_ccm_setkey(cipher, key, keylen);
3146 }
3147
3148 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3149 {
3150 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3151 int ret = 0;
3152
3153 flow_log("%s() authkeylen:%u authsize:%u\n",
3154 __func__, ctx->authkeylen, authsize);
3155
3156 ctx->digestsize = authsize;
3157
3158 /* setkey the fallback just in case we needto use it */
3159 if (ctx->fallback_cipher) {
3160 flow_log(" running fallback setauth()\n");
3161
3162 ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3163 if (ret)
3164 flow_log(" fallback setauth() returned:%d\n", ret);
3165 }
3166
3167 return ret;
3168 }
3169
3170 static int aead_encrypt(struct aead_request *req)
3171 {
3172 flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3173 req->cryptlen);
3174 dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3175 flow_log(" assoc_len:%u\n", req->assoclen);
3176
3177 return aead_enqueue(req, true);
3178 }
3179
3180 static int aead_decrypt(struct aead_request *req)
3181 {
3182 flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3183 dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3184 flow_log(" assoc_len:%u\n", req->assoclen);
3185
3186 return aead_enqueue(req, false);
3187 }
3188
3189 /* ==================== Supported Cipher Algorithms ==================== */
3190
3191 static struct iproc_alg_s driver_algs[] = {
3192 {
3193 .type = CRYPTO_ALG_TYPE_AEAD,
3194 .alg.aead = {
3195 .base = {
3196 .cra_name = "gcm(aes)",
3197 .cra_driver_name = "gcm-aes-iproc",
3198 .cra_blocksize = AES_BLOCK_SIZE,
3199 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3200 },
3201 .setkey = aead_gcm_ccm_setkey,
3202 .ivsize = GCM_AES_IV_SIZE,
3203 .maxauthsize = AES_BLOCK_SIZE,
3204 },
3205 .cipher_info = {
3206 .alg = CIPHER_ALG_AES,
3207 .mode = CIPHER_MODE_GCM,
3208 },
3209 .auth_info = {
3210 .alg = HASH_ALG_AES,
3211 .mode = HASH_MODE_GCM,
3212 },
3213 .auth_first = 0,
3214 },
3215 {
3216 .type = CRYPTO_ALG_TYPE_AEAD,
3217 .alg.aead = {
3218 .base = {
3219 .cra_name = "ccm(aes)",
3220 .cra_driver_name = "ccm-aes-iproc",
3221 .cra_blocksize = AES_BLOCK_SIZE,
3222 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3223 },
3224 .setkey = aead_gcm_ccm_setkey,
3225 .ivsize = CCM_AES_IV_SIZE,
3226 .maxauthsize = AES_BLOCK_SIZE,
3227 },
3228 .cipher_info = {
3229 .alg = CIPHER_ALG_AES,
3230 .mode = CIPHER_MODE_CCM,
3231 },
3232 .auth_info = {
3233 .alg = HASH_ALG_AES,
3234 .mode = HASH_MODE_CCM,
3235 },
3236 .auth_first = 0,
3237 },
3238 {
3239 .type = CRYPTO_ALG_TYPE_AEAD,
3240 .alg.aead = {
3241 .base = {
3242 .cra_name = "rfc4106(gcm(aes))",
3243 .cra_driver_name = "gcm-aes-esp-iproc",
3244 .cra_blocksize = AES_BLOCK_SIZE,
3245 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3246 },
3247 .setkey = aead_gcm_esp_setkey,
3248 .ivsize = GCM_RFC4106_IV_SIZE,
3249 .maxauthsize = AES_BLOCK_SIZE,
3250 },
3251 .cipher_info = {
3252 .alg = CIPHER_ALG_AES,
3253 .mode = CIPHER_MODE_GCM,
3254 },
3255 .auth_info = {
3256 .alg = HASH_ALG_AES,
3257 .mode = HASH_MODE_GCM,
3258 },
3259 .auth_first = 0,
3260 },
3261 {
3262 .type = CRYPTO_ALG_TYPE_AEAD,
3263 .alg.aead = {
3264 .base = {
3265 .cra_name = "rfc4309(ccm(aes))",
3266 .cra_driver_name = "ccm-aes-esp-iproc",
3267 .cra_blocksize = AES_BLOCK_SIZE,
3268 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3269 },
3270 .setkey = aead_ccm_esp_setkey,
3271 .ivsize = CCM_AES_IV_SIZE,
3272 .maxauthsize = AES_BLOCK_SIZE,
3273 },
3274 .cipher_info = {
3275 .alg = CIPHER_ALG_AES,
3276 .mode = CIPHER_MODE_CCM,
3277 },
3278 .auth_info = {
3279 .alg = HASH_ALG_AES,
3280 .mode = HASH_MODE_CCM,
3281 },
3282 .auth_first = 0,
3283 },
3284 {
3285 .type = CRYPTO_ALG_TYPE_AEAD,
3286 .alg.aead = {
3287 .base = {
3288 .cra_name = "rfc4543(gcm(aes))",
3289 .cra_driver_name = "gmac-aes-esp-iproc",
3290 .cra_blocksize = AES_BLOCK_SIZE,
3291 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3292 },
3293 .setkey = rfc4543_gcm_esp_setkey,
3294 .ivsize = GCM_RFC4106_IV_SIZE,
3295 .maxauthsize = AES_BLOCK_SIZE,
3296 },
3297 .cipher_info = {
3298 .alg = CIPHER_ALG_AES,
3299 .mode = CIPHER_MODE_GCM,
3300 },
3301 .auth_info = {
3302 .alg = HASH_ALG_AES,
3303 .mode = HASH_MODE_GCM,
3304 },
3305 .auth_first = 0,
3306 },
3307 {
3308 .type = CRYPTO_ALG_TYPE_AEAD,
3309 .alg.aead = {
3310 .base = {
3311 .cra_name = "authenc(hmac(md5),cbc(aes))",
3312 .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3313 .cra_blocksize = AES_BLOCK_SIZE,
3314 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3315 },
3316 .setkey = aead_authenc_setkey,
3317 .ivsize = AES_BLOCK_SIZE,
3318 .maxauthsize = MD5_DIGEST_SIZE,
3319 },
3320 .cipher_info = {
3321 .alg = CIPHER_ALG_AES,
3322 .mode = CIPHER_MODE_CBC,
3323 },
3324 .auth_info = {
3325 .alg = HASH_ALG_MD5,
3326 .mode = HASH_MODE_HMAC,
3327 },
3328 .auth_first = 0,
3329 },
3330 {
3331 .type = CRYPTO_ALG_TYPE_AEAD,
3332 .alg.aead = {
3333 .base = {
3334 .cra_name = "authenc(hmac(sha1),cbc(aes))",
3335 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3336 .cra_blocksize = AES_BLOCK_SIZE,
3337 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3338 },
3339 .setkey = aead_authenc_setkey,
3340 .ivsize = AES_BLOCK_SIZE,
3341 .maxauthsize = SHA1_DIGEST_SIZE,
3342 },
3343 .cipher_info = {
3344 .alg = CIPHER_ALG_AES,
3345 .mode = CIPHER_MODE_CBC,
3346 },
3347 .auth_info = {
3348 .alg = HASH_ALG_SHA1,
3349 .mode = HASH_MODE_HMAC,
3350 },
3351 .auth_first = 0,
3352 },
3353 {
3354 .type = CRYPTO_ALG_TYPE_AEAD,
3355 .alg.aead = {
3356 .base = {
3357 .cra_name = "authenc(hmac(sha256),cbc(aes))",
3358 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3359 .cra_blocksize = AES_BLOCK_SIZE,
3360 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3361 },
3362 .setkey = aead_authenc_setkey,
3363 .ivsize = AES_BLOCK_SIZE,
3364 .maxauthsize = SHA256_DIGEST_SIZE,
3365 },
3366 .cipher_info = {
3367 .alg = CIPHER_ALG_AES,
3368 .mode = CIPHER_MODE_CBC,
3369 },
3370 .auth_info = {
3371 .alg = HASH_ALG_SHA256,
3372 .mode = HASH_MODE_HMAC,
3373 },
3374 .auth_first = 0,
3375 },
3376 {
3377 .type = CRYPTO_ALG_TYPE_AEAD,
3378 .alg.aead = {
3379 .base = {
3380 .cra_name = "authenc(hmac(md5),cbc(des))",
3381 .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3382 .cra_blocksize = DES_BLOCK_SIZE,
3383 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3384 },
3385 .setkey = aead_authenc_setkey,
3386 .ivsize = DES_BLOCK_SIZE,
3387 .maxauthsize = MD5_DIGEST_SIZE,
3388 },
3389 .cipher_info = {
3390 .alg = CIPHER_ALG_DES,
3391 .mode = CIPHER_MODE_CBC,
3392 },
3393 .auth_info = {
3394 .alg = HASH_ALG_MD5,
3395 .mode = HASH_MODE_HMAC,
3396 },
3397 .auth_first = 0,
3398 },
3399 {
3400 .type = CRYPTO_ALG_TYPE_AEAD,
3401 .alg.aead = {
3402 .base = {
3403 .cra_name = "authenc(hmac(sha1),cbc(des))",
3404 .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3405 .cra_blocksize = DES_BLOCK_SIZE,
3406 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3407 },
3408 .setkey = aead_authenc_setkey,
3409 .ivsize = DES_BLOCK_SIZE,
3410 .maxauthsize = SHA1_DIGEST_SIZE,
3411 },
3412 .cipher_info = {
3413 .alg = CIPHER_ALG_DES,
3414 .mode = CIPHER_MODE_CBC,
3415 },
3416 .auth_info = {
3417 .alg = HASH_ALG_SHA1,
3418 .mode = HASH_MODE_HMAC,
3419 },
3420 .auth_first = 0,
3421 },
3422 {
3423 .type = CRYPTO_ALG_TYPE_AEAD,
3424 .alg.aead = {
3425 .base = {
3426 .cra_name = "authenc(hmac(sha224),cbc(des))",
3427 .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3428 .cra_blocksize = DES_BLOCK_SIZE,
3429 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3430 },
3431 .setkey = aead_authenc_setkey,
3432 .ivsize = DES_BLOCK_SIZE,
3433 .maxauthsize = SHA224_DIGEST_SIZE,
3434 },
3435 .cipher_info = {
3436 .alg = CIPHER_ALG_DES,
3437 .mode = CIPHER_MODE_CBC,
3438 },
3439 .auth_info = {
3440 .alg = HASH_ALG_SHA224,
3441 .mode = HASH_MODE_HMAC,
3442 },
3443 .auth_first = 0,
3444 },
3445 {
3446 .type = CRYPTO_ALG_TYPE_AEAD,
3447 .alg.aead = {
3448 .base = {
3449 .cra_name = "authenc(hmac(sha256),cbc(des))",
3450 .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3451 .cra_blocksize = DES_BLOCK_SIZE,
3452 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3453 },
3454 .setkey = aead_authenc_setkey,
3455 .ivsize = DES_BLOCK_SIZE,
3456 .maxauthsize = SHA256_DIGEST_SIZE,
3457 },
3458 .cipher_info = {
3459 .alg = CIPHER_ALG_DES,
3460 .mode = CIPHER_MODE_CBC,
3461 },
3462 .auth_info = {
3463 .alg = HASH_ALG_SHA256,
3464 .mode = HASH_MODE_HMAC,
3465 },
3466 .auth_first = 0,
3467 },
3468 {
3469 .type = CRYPTO_ALG_TYPE_AEAD,
3470 .alg.aead = {
3471 .base = {
3472 .cra_name = "authenc(hmac(sha384),cbc(des))",
3473 .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3474 .cra_blocksize = DES_BLOCK_SIZE,
3475 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3476 },
3477 .setkey = aead_authenc_setkey,
3478 .ivsize = DES_BLOCK_SIZE,
3479 .maxauthsize = SHA384_DIGEST_SIZE,
3480 },
3481 .cipher_info = {
3482 .alg = CIPHER_ALG_DES,
3483 .mode = CIPHER_MODE_CBC,
3484 },
3485 .auth_info = {
3486 .alg = HASH_ALG_SHA384,
3487 .mode = HASH_MODE_HMAC,
3488 },
3489 .auth_first = 0,
3490 },
3491 {
3492 .type = CRYPTO_ALG_TYPE_AEAD,
3493 .alg.aead = {
3494 .base = {
3495 .cra_name = "authenc(hmac(sha512),cbc(des))",
3496 .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3497 .cra_blocksize = DES_BLOCK_SIZE,
3498 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3499 },
3500 .setkey = aead_authenc_setkey,
3501 .ivsize = DES_BLOCK_SIZE,
3502 .maxauthsize = SHA512_DIGEST_SIZE,
3503 },
3504 .cipher_info = {
3505 .alg = CIPHER_ALG_DES,
3506 .mode = CIPHER_MODE_CBC,
3507 },
3508 .auth_info = {
3509 .alg = HASH_ALG_SHA512,
3510 .mode = HASH_MODE_HMAC,
3511 },
3512 .auth_first = 0,
3513 },
3514 {
3515 .type = CRYPTO_ALG_TYPE_AEAD,
3516 .alg.aead = {
3517 .base = {
3518 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3519 .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3520 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3521 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3522 },
3523 .setkey = aead_authenc_setkey,
3524 .ivsize = DES3_EDE_BLOCK_SIZE,
3525 .maxauthsize = MD5_DIGEST_SIZE,
3526 },
3527 .cipher_info = {
3528 .alg = CIPHER_ALG_3DES,
3529 .mode = CIPHER_MODE_CBC,
3530 },
3531 .auth_info = {
3532 .alg = HASH_ALG_MD5,
3533 .mode = HASH_MODE_HMAC,
3534 },
3535 .auth_first = 0,
3536 },
3537 {
3538 .type = CRYPTO_ALG_TYPE_AEAD,
3539 .alg.aead = {
3540 .base = {
3541 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3542 .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3543 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3544 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3545 },
3546 .setkey = aead_authenc_setkey,
3547 .ivsize = DES3_EDE_BLOCK_SIZE,
3548 .maxauthsize = SHA1_DIGEST_SIZE,
3549 },
3550 .cipher_info = {
3551 .alg = CIPHER_ALG_3DES,
3552 .mode = CIPHER_MODE_CBC,
3553 },
3554 .auth_info = {
3555 .alg = HASH_ALG_SHA1,
3556 .mode = HASH_MODE_HMAC,
3557 },
3558 .auth_first = 0,
3559 },
3560 {
3561 .type = CRYPTO_ALG_TYPE_AEAD,
3562 .alg.aead = {
3563 .base = {
3564 .cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3565 .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3566 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3567 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3568 },
3569 .setkey = aead_authenc_setkey,
3570 .ivsize = DES3_EDE_BLOCK_SIZE,
3571 .maxauthsize = SHA224_DIGEST_SIZE,
3572 },
3573 .cipher_info = {
3574 .alg = CIPHER_ALG_3DES,
3575 .mode = CIPHER_MODE_CBC,
3576 },
3577 .auth_info = {
3578 .alg = HASH_ALG_SHA224,
3579 .mode = HASH_MODE_HMAC,
3580 },
3581 .auth_first = 0,
3582 },
3583 {
3584 .type = CRYPTO_ALG_TYPE_AEAD,
3585 .alg.aead = {
3586 .base = {
3587 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3588 .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3589 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3590 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3591 },
3592 .setkey = aead_authenc_setkey,
3593 .ivsize = DES3_EDE_BLOCK_SIZE,
3594 .maxauthsize = SHA256_DIGEST_SIZE,
3595 },
3596 .cipher_info = {
3597 .alg = CIPHER_ALG_3DES,
3598 .mode = CIPHER_MODE_CBC,
3599 },
3600 .auth_info = {
3601 .alg = HASH_ALG_SHA256,
3602 .mode = HASH_MODE_HMAC,
3603 },
3604 .auth_first = 0,
3605 },
3606 {
3607 .type = CRYPTO_ALG_TYPE_AEAD,
3608 .alg.aead = {
3609 .base = {
3610 .cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3611 .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3612 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3613 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3614 },
3615 .setkey = aead_authenc_setkey,
3616 .ivsize = DES3_EDE_BLOCK_SIZE,
3617 .maxauthsize = SHA384_DIGEST_SIZE,
3618 },
3619 .cipher_info = {
3620 .alg = CIPHER_ALG_3DES,
3621 .mode = CIPHER_MODE_CBC,
3622 },
3623 .auth_info = {
3624 .alg = HASH_ALG_SHA384,
3625 .mode = HASH_MODE_HMAC,
3626 },
3627 .auth_first = 0,
3628 },
3629 {
3630 .type = CRYPTO_ALG_TYPE_AEAD,
3631 .alg.aead = {
3632 .base = {
3633 .cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3634 .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3635 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3636 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3637 },
3638 .setkey = aead_authenc_setkey,
3639 .ivsize = DES3_EDE_BLOCK_SIZE,
3640 .maxauthsize = SHA512_DIGEST_SIZE,
3641 },
3642 .cipher_info = {
3643 .alg = CIPHER_ALG_3DES,
3644 .mode = CIPHER_MODE_CBC,
3645 },
3646 .auth_info = {
3647 .alg = HASH_ALG_SHA512,
3648 .mode = HASH_MODE_HMAC,
3649 },
3650 .auth_first = 0,
3651 },
3652
3653 /* ABLKCIPHER algorithms. */
3654 {
3655 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3656 .alg.crypto = {
3657 .cra_name = "ecb(arc4)",
3658 .cra_driver_name = "ecb-arc4-iproc",
3659 .cra_blocksize = ARC4_BLOCK_SIZE,
3660 .cra_ablkcipher = {
3661 .min_keysize = ARC4_MIN_KEY_SIZE,
3662 .max_keysize = ARC4_MAX_KEY_SIZE,
3663 .ivsize = 0,
3664 }
3665 },
3666 .cipher_info = {
3667 .alg = CIPHER_ALG_RC4,
3668 .mode = CIPHER_MODE_NONE,
3669 },
3670 .auth_info = {
3671 .alg = HASH_ALG_NONE,
3672 .mode = HASH_MODE_NONE,
3673 },
3674 },
3675 {
3676 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3677 .alg.crypto = {
3678 .cra_name = "ofb(des)",
3679 .cra_driver_name = "ofb-des-iproc",
3680 .cra_blocksize = DES_BLOCK_SIZE,
3681 .cra_ablkcipher = {
3682 .min_keysize = DES_KEY_SIZE,
3683 .max_keysize = DES_KEY_SIZE,
3684 .ivsize = DES_BLOCK_SIZE,
3685 }
3686 },
3687 .cipher_info = {
3688 .alg = CIPHER_ALG_DES,
3689 .mode = CIPHER_MODE_OFB,
3690 },
3691 .auth_info = {
3692 .alg = HASH_ALG_NONE,
3693 .mode = HASH_MODE_NONE,
3694 },
3695 },
3696 {
3697 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3698 .alg.crypto = {
3699 .cra_name = "cbc(des)",
3700 .cra_driver_name = "cbc-des-iproc",
3701 .cra_blocksize = DES_BLOCK_SIZE,
3702 .cra_ablkcipher = {
3703 .min_keysize = DES_KEY_SIZE,
3704 .max_keysize = DES_KEY_SIZE,
3705 .ivsize = DES_BLOCK_SIZE,
3706 }
3707 },
3708 .cipher_info = {
3709 .alg = CIPHER_ALG_DES,
3710 .mode = CIPHER_MODE_CBC,
3711 },
3712 .auth_info = {
3713 .alg = HASH_ALG_NONE,
3714 .mode = HASH_MODE_NONE,
3715 },
3716 },
3717 {
3718 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3719 .alg.crypto = {
3720 .cra_name = "ecb(des)",
3721 .cra_driver_name = "ecb-des-iproc",
3722 .cra_blocksize = DES_BLOCK_SIZE,
3723 .cra_ablkcipher = {
3724 .min_keysize = DES_KEY_SIZE,
3725 .max_keysize = DES_KEY_SIZE,
3726 .ivsize = 0,
3727 }
3728 },
3729 .cipher_info = {
3730 .alg = CIPHER_ALG_DES,
3731 .mode = CIPHER_MODE_ECB,
3732 },
3733 .auth_info = {
3734 .alg = HASH_ALG_NONE,
3735 .mode = HASH_MODE_NONE,
3736 },
3737 },
3738 {
3739 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3740 .alg.crypto = {
3741 .cra_name = "ofb(des3_ede)",
3742 .cra_driver_name = "ofb-des3-iproc",
3743 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3744 .cra_ablkcipher = {
3745 .min_keysize = DES3_EDE_KEY_SIZE,
3746 .max_keysize = DES3_EDE_KEY_SIZE,
3747 .ivsize = DES3_EDE_BLOCK_SIZE,
3748 }
3749 },
3750 .cipher_info = {
3751 .alg = CIPHER_ALG_3DES,
3752 .mode = CIPHER_MODE_OFB,
3753 },
3754 .auth_info = {
3755 .alg = HASH_ALG_NONE,
3756 .mode = HASH_MODE_NONE,
3757 },
3758 },
3759 {
3760 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3761 .alg.crypto = {
3762 .cra_name = "cbc(des3_ede)",
3763 .cra_driver_name = "cbc-des3-iproc",
3764 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3765 .cra_ablkcipher = {
3766 .min_keysize = DES3_EDE_KEY_SIZE,
3767 .max_keysize = DES3_EDE_KEY_SIZE,
3768 .ivsize = DES3_EDE_BLOCK_SIZE,
3769 }
3770 },
3771 .cipher_info = {
3772 .alg = CIPHER_ALG_3DES,
3773 .mode = CIPHER_MODE_CBC,
3774 },
3775 .auth_info = {
3776 .alg = HASH_ALG_NONE,
3777 .mode = HASH_MODE_NONE,
3778 },
3779 },
3780 {
3781 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3782 .alg.crypto = {
3783 .cra_name = "ecb(des3_ede)",
3784 .cra_driver_name = "ecb-des3-iproc",
3785 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3786 .cra_ablkcipher = {
3787 .min_keysize = DES3_EDE_KEY_SIZE,
3788 .max_keysize = DES3_EDE_KEY_SIZE,
3789 .ivsize = 0,
3790 }
3791 },
3792 .cipher_info = {
3793 .alg = CIPHER_ALG_3DES,
3794 .mode = CIPHER_MODE_ECB,
3795 },
3796 .auth_info = {
3797 .alg = HASH_ALG_NONE,
3798 .mode = HASH_MODE_NONE,
3799 },
3800 },
3801 {
3802 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3803 .alg.crypto = {
3804 .cra_name = "ofb(aes)",
3805 .cra_driver_name = "ofb-aes-iproc",
3806 .cra_blocksize = AES_BLOCK_SIZE,
3807 .cra_ablkcipher = {
3808 .min_keysize = AES_MIN_KEY_SIZE,
3809 .max_keysize = AES_MAX_KEY_SIZE,
3810 .ivsize = AES_BLOCK_SIZE,
3811 }
3812 },
3813 .cipher_info = {
3814 .alg = CIPHER_ALG_AES,
3815 .mode = CIPHER_MODE_OFB,
3816 },
3817 .auth_info = {
3818 .alg = HASH_ALG_NONE,
3819 .mode = HASH_MODE_NONE,
3820 },
3821 },
3822 {
3823 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3824 .alg.crypto = {
3825 .cra_name = "cbc(aes)",
3826 .cra_driver_name = "cbc-aes-iproc",
3827 .cra_blocksize = AES_BLOCK_SIZE,
3828 .cra_ablkcipher = {
3829 .min_keysize = AES_MIN_KEY_SIZE,
3830 .max_keysize = AES_MAX_KEY_SIZE,
3831 .ivsize = AES_BLOCK_SIZE,
3832 }
3833 },
3834 .cipher_info = {
3835 .alg = CIPHER_ALG_AES,
3836 .mode = CIPHER_MODE_CBC,
3837 },
3838 .auth_info = {
3839 .alg = HASH_ALG_NONE,
3840 .mode = HASH_MODE_NONE,
3841 },
3842 },
3843 {
3844 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3845 .alg.crypto = {
3846 .cra_name = "ecb(aes)",
3847 .cra_driver_name = "ecb-aes-iproc",
3848 .cra_blocksize = AES_BLOCK_SIZE,
3849 .cra_ablkcipher = {
3850 .min_keysize = AES_MIN_KEY_SIZE,
3851 .max_keysize = AES_MAX_KEY_SIZE,
3852 .ivsize = 0,
3853 }
3854 },
3855 .cipher_info = {
3856 .alg = CIPHER_ALG_AES,
3857 .mode = CIPHER_MODE_ECB,
3858 },
3859 .auth_info = {
3860 .alg = HASH_ALG_NONE,
3861 .mode = HASH_MODE_NONE,
3862 },
3863 },
3864 {
3865 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3866 .alg.crypto = {
3867 .cra_name = "ctr(aes)",
3868 .cra_driver_name = "ctr-aes-iproc",
3869 .cra_blocksize = AES_BLOCK_SIZE,
3870 .cra_ablkcipher = {
3871 .min_keysize = AES_MIN_KEY_SIZE,
3872 .max_keysize = AES_MAX_KEY_SIZE,
3873 .ivsize = AES_BLOCK_SIZE,
3874 }
3875 },
3876 .cipher_info = {
3877 .alg = CIPHER_ALG_AES,
3878 .mode = CIPHER_MODE_CTR,
3879 },
3880 .auth_info = {
3881 .alg = HASH_ALG_NONE,
3882 .mode = HASH_MODE_NONE,
3883 },
3884 },
3885 {
3886 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3887 .alg.crypto = {
3888 .cra_name = "xts(aes)",
3889 .cra_driver_name = "xts-aes-iproc",
3890 .cra_blocksize = AES_BLOCK_SIZE,
3891 .cra_ablkcipher = {
3892 .min_keysize = 2 * AES_MIN_KEY_SIZE,
3893 .max_keysize = 2 * AES_MAX_KEY_SIZE,
3894 .ivsize = AES_BLOCK_SIZE,
3895 }
3896 },
3897 .cipher_info = {
3898 .alg = CIPHER_ALG_AES,
3899 .mode = CIPHER_MODE_XTS,
3900 },
3901 .auth_info = {
3902 .alg = HASH_ALG_NONE,
3903 .mode = HASH_MODE_NONE,
3904 },
3905 },
3906
3907 /* AHASH algorithms. */
3908 {
3909 .type = CRYPTO_ALG_TYPE_AHASH,
3910 .alg.hash = {
3911 .halg.digestsize = MD5_DIGEST_SIZE,
3912 .halg.base = {
3913 .cra_name = "md5",
3914 .cra_driver_name = "md5-iproc",
3915 .cra_blocksize = MD5_BLOCK_WORDS * 4,
3916 .cra_flags = CRYPTO_ALG_ASYNC,
3917 }
3918 },
3919 .cipher_info = {
3920 .alg = CIPHER_ALG_NONE,
3921 .mode = CIPHER_MODE_NONE,
3922 },
3923 .auth_info = {
3924 .alg = HASH_ALG_MD5,
3925 .mode = HASH_MODE_HASH,
3926 },
3927 },
3928 {
3929 .type = CRYPTO_ALG_TYPE_AHASH,
3930 .alg.hash = {
3931 .halg.digestsize = MD5_DIGEST_SIZE,
3932 .halg.base = {
3933 .cra_name = "hmac(md5)",
3934 .cra_driver_name = "hmac-md5-iproc",
3935 .cra_blocksize = MD5_BLOCK_WORDS * 4,
3936 }
3937 },
3938 .cipher_info = {
3939 .alg = CIPHER_ALG_NONE,
3940 .mode = CIPHER_MODE_NONE,
3941 },
3942 .auth_info = {
3943 .alg = HASH_ALG_MD5,
3944 .mode = HASH_MODE_HMAC,
3945 },
3946 },
3947 {.type = CRYPTO_ALG_TYPE_AHASH,
3948 .alg.hash = {
3949 .halg.digestsize = SHA1_DIGEST_SIZE,
3950 .halg.base = {
3951 .cra_name = "sha1",
3952 .cra_driver_name = "sha1-iproc",
3953 .cra_blocksize = SHA1_BLOCK_SIZE,
3954 }
3955 },
3956 .cipher_info = {
3957 .alg = CIPHER_ALG_NONE,
3958 .mode = CIPHER_MODE_NONE,
3959 },
3960 .auth_info = {
3961 .alg = HASH_ALG_SHA1,
3962 .mode = HASH_MODE_HASH,
3963 },
3964 },
3965 {.type = CRYPTO_ALG_TYPE_AHASH,
3966 .alg.hash = {
3967 .halg.digestsize = SHA1_DIGEST_SIZE,
3968 .halg.base = {
3969 .cra_name = "hmac(sha1)",
3970 .cra_driver_name = "hmac-sha1-iproc",
3971 .cra_blocksize = SHA1_BLOCK_SIZE,
3972 }
3973 },
3974 .cipher_info = {
3975 .alg = CIPHER_ALG_NONE,
3976 .mode = CIPHER_MODE_NONE,
3977 },
3978 .auth_info = {
3979 .alg = HASH_ALG_SHA1,
3980 .mode = HASH_MODE_HMAC,
3981 },
3982 },
3983 {.type = CRYPTO_ALG_TYPE_AHASH,
3984 .alg.hash = {
3985 .halg.digestsize = SHA224_DIGEST_SIZE,
3986 .halg.base = {
3987 .cra_name = "sha224",
3988 .cra_driver_name = "sha224-iproc",
3989 .cra_blocksize = SHA224_BLOCK_SIZE,
3990 }
3991 },
3992 .cipher_info = {
3993 .alg = CIPHER_ALG_NONE,
3994 .mode = CIPHER_MODE_NONE,
3995 },
3996 .auth_info = {
3997 .alg = HASH_ALG_SHA224,
3998 .mode = HASH_MODE_HASH,
3999 },
4000 },
4001 {.type = CRYPTO_ALG_TYPE_AHASH,
4002 .alg.hash = {
4003 .halg.digestsize = SHA224_DIGEST_SIZE,
4004 .halg.base = {
4005 .cra_name = "hmac(sha224)",
4006 .cra_driver_name = "hmac-sha224-iproc",
4007 .cra_blocksize = SHA224_BLOCK_SIZE,
4008 }
4009 },
4010 .cipher_info = {
4011 .alg = CIPHER_ALG_NONE,
4012 .mode = CIPHER_MODE_NONE,
4013 },
4014 .auth_info = {
4015 .alg = HASH_ALG_SHA224,
4016 .mode = HASH_MODE_HMAC,
4017 },
4018 },
4019 {.type = CRYPTO_ALG_TYPE_AHASH,
4020 .alg.hash = {
4021 .halg.digestsize = SHA256_DIGEST_SIZE,
4022 .halg.base = {
4023 .cra_name = "sha256",
4024 .cra_driver_name = "sha256-iproc",
4025 .cra_blocksize = SHA256_BLOCK_SIZE,
4026 }
4027 },
4028 .cipher_info = {
4029 .alg = CIPHER_ALG_NONE,
4030 .mode = CIPHER_MODE_NONE,
4031 },
4032 .auth_info = {
4033 .alg = HASH_ALG_SHA256,
4034 .mode = HASH_MODE_HASH,
4035 },
4036 },
4037 {.type = CRYPTO_ALG_TYPE_AHASH,
4038 .alg.hash = {
4039 .halg.digestsize = SHA256_DIGEST_SIZE,
4040 .halg.base = {
4041 .cra_name = "hmac(sha256)",
4042 .cra_driver_name = "hmac-sha256-iproc",
4043 .cra_blocksize = SHA256_BLOCK_SIZE,
4044 }
4045 },
4046 .cipher_info = {
4047 .alg = CIPHER_ALG_NONE,
4048 .mode = CIPHER_MODE_NONE,
4049 },
4050 .auth_info = {
4051 .alg = HASH_ALG_SHA256,
4052 .mode = HASH_MODE_HMAC,
4053 },
4054 },
4055 {
4056 .type = CRYPTO_ALG_TYPE_AHASH,
4057 .alg.hash = {
4058 .halg.digestsize = SHA384_DIGEST_SIZE,
4059 .halg.base = {
4060 .cra_name = "sha384",
4061 .cra_driver_name = "sha384-iproc",
4062 .cra_blocksize = SHA384_BLOCK_SIZE,
4063 }
4064 },
4065 .cipher_info = {
4066 .alg = CIPHER_ALG_NONE,
4067 .mode = CIPHER_MODE_NONE,
4068 },
4069 .auth_info = {
4070 .alg = HASH_ALG_SHA384,
4071 .mode = HASH_MODE_HASH,
4072 },
4073 },
4074 {
4075 .type = CRYPTO_ALG_TYPE_AHASH,
4076 .alg.hash = {
4077 .halg.digestsize = SHA384_DIGEST_SIZE,
4078 .halg.base = {
4079 .cra_name = "hmac(sha384)",
4080 .cra_driver_name = "hmac-sha384-iproc",
4081 .cra_blocksize = SHA384_BLOCK_SIZE,
4082 }
4083 },
4084 .cipher_info = {
4085 .alg = CIPHER_ALG_NONE,
4086 .mode = CIPHER_MODE_NONE,
4087 },
4088 .auth_info = {
4089 .alg = HASH_ALG_SHA384,
4090 .mode = HASH_MODE_HMAC,
4091 },
4092 },
4093 {
4094 .type = CRYPTO_ALG_TYPE_AHASH,
4095 .alg.hash = {
4096 .halg.digestsize = SHA512_DIGEST_SIZE,
4097 .halg.base = {
4098 .cra_name = "sha512",
4099 .cra_driver_name = "sha512-iproc",
4100 .cra_blocksize = SHA512_BLOCK_SIZE,
4101 }
4102 },
4103 .cipher_info = {
4104 .alg = CIPHER_ALG_NONE,
4105 .mode = CIPHER_MODE_NONE,
4106 },
4107 .auth_info = {
4108 .alg = HASH_ALG_SHA512,
4109 .mode = HASH_MODE_HASH,
4110 },
4111 },
4112 {
4113 .type = CRYPTO_ALG_TYPE_AHASH,
4114 .alg.hash = {
4115 .halg.digestsize = SHA512_DIGEST_SIZE,
4116 .halg.base = {
4117 .cra_name = "hmac(sha512)",
4118 .cra_driver_name = "hmac-sha512-iproc",
4119 .cra_blocksize = SHA512_BLOCK_SIZE,
4120 }
4121 },
4122 .cipher_info = {
4123 .alg = CIPHER_ALG_NONE,
4124 .mode = CIPHER_MODE_NONE,
4125 },
4126 .auth_info = {
4127 .alg = HASH_ALG_SHA512,
4128 .mode = HASH_MODE_HMAC,
4129 },
4130 },
4131 {
4132 .type = CRYPTO_ALG_TYPE_AHASH,
4133 .alg.hash = {
4134 .halg.digestsize = SHA3_224_DIGEST_SIZE,
4135 .halg.base = {
4136 .cra_name = "sha3-224",
4137 .cra_driver_name = "sha3-224-iproc",
4138 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4139 }
4140 },
4141 .cipher_info = {
4142 .alg = CIPHER_ALG_NONE,
4143 .mode = CIPHER_MODE_NONE,
4144 },
4145 .auth_info = {
4146 .alg = HASH_ALG_SHA3_224,
4147 .mode = HASH_MODE_HASH,
4148 },
4149 },
4150 {
4151 .type = CRYPTO_ALG_TYPE_AHASH,
4152 .alg.hash = {
4153 .halg.digestsize = SHA3_224_DIGEST_SIZE,
4154 .halg.base = {
4155 .cra_name = "hmac(sha3-224)",
4156 .cra_driver_name = "hmac-sha3-224-iproc",
4157 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4158 }
4159 },
4160 .cipher_info = {
4161 .alg = CIPHER_ALG_NONE,
4162 .mode = CIPHER_MODE_NONE,
4163 },
4164 .auth_info = {
4165 .alg = HASH_ALG_SHA3_224,
4166 .mode = HASH_MODE_HMAC
4167 },
4168 },
4169 {
4170 .type = CRYPTO_ALG_TYPE_AHASH,
4171 .alg.hash = {
4172 .halg.digestsize = SHA3_256_DIGEST_SIZE,
4173 .halg.base = {
4174 .cra_name = "sha3-256",
4175 .cra_driver_name = "sha3-256-iproc",
4176 .cra_blocksize = SHA3_256_BLOCK_SIZE,
4177 }
4178 },
4179 .cipher_info = {
4180 .alg = CIPHER_ALG_NONE,
4181 .mode = CIPHER_MODE_NONE,
4182 },
4183 .auth_info = {
4184 .alg = HASH_ALG_SHA3_256,
4185 .mode = HASH_MODE_HASH,
4186 },
4187 },
4188 {
4189 .type = CRYPTO_ALG_TYPE_AHASH,
4190 .alg.hash = {
4191 .halg.digestsize = SHA3_256_DIGEST_SIZE,
4192 .halg.base = {
4193 .cra_name = "hmac(sha3-256)",
4194 .cra_driver_name = "hmac-sha3-256-iproc",
4195 .cra_blocksize = SHA3_256_BLOCK_SIZE,
4196 }
4197 },
4198 .cipher_info = {
4199 .alg = CIPHER_ALG_NONE,
4200 .mode = CIPHER_MODE_NONE,
4201 },
4202 .auth_info = {
4203 .alg = HASH_ALG_SHA3_256,
4204 .mode = HASH_MODE_HMAC,
4205 },
4206 },
4207 {
4208 .type = CRYPTO_ALG_TYPE_AHASH,
4209 .alg.hash = {
4210 .halg.digestsize = SHA3_384_DIGEST_SIZE,
4211 .halg.base = {
4212 .cra_name = "sha3-384",
4213 .cra_driver_name = "sha3-384-iproc",
4214 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4215 }
4216 },
4217 .cipher_info = {
4218 .alg = CIPHER_ALG_NONE,
4219 .mode = CIPHER_MODE_NONE,
4220 },
4221 .auth_info = {
4222 .alg = HASH_ALG_SHA3_384,
4223 .mode = HASH_MODE_HASH,
4224 },
4225 },
4226 {
4227 .type = CRYPTO_ALG_TYPE_AHASH,
4228 .alg.hash = {
4229 .halg.digestsize = SHA3_384_DIGEST_SIZE,
4230 .halg.base = {
4231 .cra_name = "hmac(sha3-384)",
4232 .cra_driver_name = "hmac-sha3-384-iproc",
4233 .cra_blocksize = SHA3_384_BLOCK_SIZE,
4234 }
4235 },
4236 .cipher_info = {
4237 .alg = CIPHER_ALG_NONE,
4238 .mode = CIPHER_MODE_NONE,
4239 },
4240 .auth_info = {
4241 .alg = HASH_ALG_SHA3_384,
4242 .mode = HASH_MODE_HMAC,
4243 },
4244 },
4245 {
4246 .type = CRYPTO_ALG_TYPE_AHASH,
4247 .alg.hash = {
4248 .halg.digestsize = SHA3_512_DIGEST_SIZE,
4249 .halg.base = {
4250 .cra_name = "sha3-512",
4251 .cra_driver_name = "sha3-512-iproc",
4252 .cra_blocksize = SHA3_512_BLOCK_SIZE,
4253 }
4254 },
4255 .cipher_info = {
4256 .alg = CIPHER_ALG_NONE,
4257 .mode = CIPHER_MODE_NONE,
4258 },
4259 .auth_info = {
4260 .alg = HASH_ALG_SHA3_512,
4261 .mode = HASH_MODE_HASH,
4262 },
4263 },
4264 {
4265 .type = CRYPTO_ALG_TYPE_AHASH,
4266 .alg.hash = {
4267 .halg.digestsize = SHA3_512_DIGEST_SIZE,
4268 .halg.base = {
4269 .cra_name = "hmac(sha3-512)",
4270 .cra_driver_name = "hmac-sha3-512-iproc",
4271 .cra_blocksize = SHA3_512_BLOCK_SIZE,
4272 }
4273 },
4274 .cipher_info = {
4275 .alg = CIPHER_ALG_NONE,
4276 .mode = CIPHER_MODE_NONE,
4277 },
4278 .auth_info = {
4279 .alg = HASH_ALG_SHA3_512,
4280 .mode = HASH_MODE_HMAC,
4281 },
4282 },
4283 {
4284 .type = CRYPTO_ALG_TYPE_AHASH,
4285 .alg.hash = {
4286 .halg.digestsize = AES_BLOCK_SIZE,
4287 .halg.base = {
4288 .cra_name = "xcbc(aes)",
4289 .cra_driver_name = "xcbc-aes-iproc",
4290 .cra_blocksize = AES_BLOCK_SIZE,
4291 }
4292 },
4293 .cipher_info = {
4294 .alg = CIPHER_ALG_NONE,
4295 .mode = CIPHER_MODE_NONE,
4296 },
4297 .auth_info = {
4298 .alg = HASH_ALG_AES,
4299 .mode = HASH_MODE_XCBC,
4300 },
4301 },
4302 {
4303 .type = CRYPTO_ALG_TYPE_AHASH,
4304 .alg.hash = {
4305 .halg.digestsize = AES_BLOCK_SIZE,
4306 .halg.base = {
4307 .cra_name = "cmac(aes)",
4308 .cra_driver_name = "cmac-aes-iproc",
4309 .cra_blocksize = AES_BLOCK_SIZE,
4310 }
4311 },
4312 .cipher_info = {
4313 .alg = CIPHER_ALG_NONE,
4314 .mode = CIPHER_MODE_NONE,
4315 },
4316 .auth_info = {
4317 .alg = HASH_ALG_AES,
4318 .mode = HASH_MODE_CMAC,
4319 },
4320 },
4321 };
4322
4323 static int generic_cra_init(struct crypto_tfm *tfm,
4324 struct iproc_alg_s *cipher_alg)
4325 {
4326 struct spu_hw *spu = &iproc_priv.spu;
4327 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4328 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4329
4330 flow_log("%s()\n", __func__);
4331
4332 ctx->alg = cipher_alg;
4333 ctx->cipher = cipher_alg->cipher_info;
4334 ctx->auth = cipher_alg->auth_info;
4335 ctx->auth_first = cipher_alg->auth_first;
4336 ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4337 ctx->cipher.mode,
4338 blocksize);
4339 ctx->fallback_cipher = NULL;
4340
4341 ctx->enckeylen = 0;
4342 ctx->authkeylen = 0;
4343
4344 atomic_inc(&iproc_priv.stream_count);
4345 atomic_inc(&iproc_priv.session_count);
4346
4347 return 0;
4348 }
4349
4350 static int ablkcipher_cra_init(struct crypto_tfm *tfm)
4351 {
4352 struct crypto_alg *alg = tfm->__crt_alg;
4353 struct iproc_alg_s *cipher_alg;
4354
4355 flow_log("%s()\n", __func__);
4356
4357 tfm->crt_ablkcipher.reqsize = sizeof(struct iproc_reqctx_s);
4358
4359 cipher_alg = container_of(alg, struct iproc_alg_s, alg.crypto);
4360 return generic_cra_init(tfm, cipher_alg);
4361 }
4362
4363 static int ahash_cra_init(struct crypto_tfm *tfm)
4364 {
4365 int err;
4366 struct crypto_alg *alg = tfm->__crt_alg;
4367 struct iproc_alg_s *cipher_alg;
4368
4369 cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4370 alg.hash);
4371
4372 err = generic_cra_init(tfm, cipher_alg);
4373 flow_log("%s()\n", __func__);
4374
4375 /*
4376 * export state size has to be < 512 bytes. So don't include msg bufs
4377 * in state size.
4378 */
4379 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4380 sizeof(struct iproc_reqctx_s));
4381
4382 return err;
4383 }
4384
4385 static int aead_cra_init(struct crypto_aead *aead)
4386 {
4387 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4388 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4389 struct crypto_alg *alg = tfm->__crt_alg;
4390 struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4391 struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4392 alg.aead);
4393
4394 int err = generic_cra_init(tfm, cipher_alg);
4395
4396 flow_log("%s()\n", __func__);
4397
4398 crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4399 ctx->is_esp = false;
4400 ctx->salt_len = 0;
4401 ctx->salt_offset = 0;
4402
4403 /* random first IV */
4404 get_random_bytes(ctx->iv, MAX_IV_SIZE);
4405 flow_dump(" iv: ", ctx->iv, MAX_IV_SIZE);
4406
4407 if (!err) {
4408 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4409 flow_log("%s() creating fallback cipher\n", __func__);
4410
4411 ctx->fallback_cipher =
4412 crypto_alloc_aead(alg->cra_name, 0,
4413 CRYPTO_ALG_ASYNC |
4414 CRYPTO_ALG_NEED_FALLBACK);
4415 if (IS_ERR(ctx->fallback_cipher)) {
4416 pr_err("%s() Error: failed to allocate fallback for %s\n",
4417 __func__, alg->cra_name);
4418 return PTR_ERR(ctx->fallback_cipher);
4419 }
4420 }
4421 }
4422
4423 return err;
4424 }
4425
4426 static void generic_cra_exit(struct crypto_tfm *tfm)
4427 {
4428 atomic_dec(&iproc_priv.session_count);
4429 }
4430
4431 static void aead_cra_exit(struct crypto_aead *aead)
4432 {
4433 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4434 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4435
4436 generic_cra_exit(tfm);
4437
4438 if (ctx->fallback_cipher) {
4439 crypto_free_aead(ctx->fallback_cipher);
4440 ctx->fallback_cipher = NULL;
4441 }
4442 }
4443
4444 /**
4445 * spu_functions_register() - Specify hardware-specific SPU functions based on
4446 * SPU type read from device tree.
4447 * @dev: device structure
4448 * @spu_type: SPU hardware generation
4449 * @spu_subtype: SPU hardware version
4450 */
4451 static void spu_functions_register(struct device *dev,
4452 enum spu_spu_type spu_type,
4453 enum spu_spu_subtype spu_subtype)
4454 {
4455 struct spu_hw *spu = &iproc_priv.spu;
4456
4457 if (spu_type == SPU_TYPE_SPUM) {
4458 dev_dbg(dev, "Registering SPUM functions");
4459 spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4460 spu->spu_payload_length = spum_payload_length;
4461 spu->spu_response_hdr_len = spum_response_hdr_len;
4462 spu->spu_hash_pad_len = spum_hash_pad_len;
4463 spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4464 spu->spu_assoc_resp_len = spum_assoc_resp_len;
4465 spu->spu_aead_ivlen = spum_aead_ivlen;
4466 spu->spu_hash_type = spum_hash_type;
4467 spu->spu_digest_size = spum_digest_size;
4468 spu->spu_create_request = spum_create_request;
4469 spu->spu_cipher_req_init = spum_cipher_req_init;
4470 spu->spu_cipher_req_finish = spum_cipher_req_finish;
4471 spu->spu_request_pad = spum_request_pad;
4472 spu->spu_tx_status_len = spum_tx_status_len;
4473 spu->spu_rx_status_len = spum_rx_status_len;
4474 spu->spu_status_process = spum_status_process;
4475 spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4476 spu->spu_ccm_update_iv = spum_ccm_update_iv;
4477 spu->spu_wordalign_padlen = spum_wordalign_padlen;
4478 if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4479 spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4480 else
4481 spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4482 } else {
4483 dev_dbg(dev, "Registering SPU2 functions");
4484 spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4485 spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4486 spu->spu_payload_length = spu2_payload_length;
4487 spu->spu_response_hdr_len = spu2_response_hdr_len;
4488 spu->spu_hash_pad_len = spu2_hash_pad_len;
4489 spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4490 spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4491 spu->spu_aead_ivlen = spu2_aead_ivlen;
4492 spu->spu_hash_type = spu2_hash_type;
4493 spu->spu_digest_size = spu2_digest_size;
4494 spu->spu_create_request = spu2_create_request;
4495 spu->spu_cipher_req_init = spu2_cipher_req_init;
4496 spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4497 spu->spu_request_pad = spu2_request_pad;
4498 spu->spu_tx_status_len = spu2_tx_status_len;
4499 spu->spu_rx_status_len = spu2_rx_status_len;
4500 spu->spu_status_process = spu2_status_process;
4501 spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4502 spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4503 spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4504 }
4505 }
4506
4507 /**
4508 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4509 * channel for the SPU being probed.
4510 * @dev: SPU driver device structure
4511 *
4512 * Return: 0 if successful
4513 * < 0 otherwise
4514 */
4515 static int spu_mb_init(struct device *dev)
4516 {
4517 struct mbox_client *mcl = &iproc_priv.mcl;
4518 int err, i;
4519
4520 iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4521 sizeof(struct mbox_chan *), GFP_KERNEL);
4522 if (!iproc_priv.mbox)
4523 return -ENOMEM;
4524
4525 mcl->dev = dev;
4526 mcl->tx_block = false;
4527 mcl->tx_tout = 0;
4528 mcl->knows_txdone = true;
4529 mcl->rx_callback = spu_rx_callback;
4530 mcl->tx_done = NULL;
4531
4532 for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4533 iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4534 if (IS_ERR(iproc_priv.mbox[i])) {
4535 err = (int)PTR_ERR(iproc_priv.mbox[i]);
4536 dev_err(dev,
4537 "Mbox channel %d request failed with err %d",
4538 i, err);
4539 iproc_priv.mbox[i] = NULL;
4540 goto free_channels;
4541 }
4542 }
4543
4544 return 0;
4545 free_channels:
4546 for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4547 if (iproc_priv.mbox[i])
4548 mbox_free_channel(iproc_priv.mbox[i]);
4549 }
4550
4551 return err;
4552 }
4553
4554 static void spu_mb_release(struct platform_device *pdev)
4555 {
4556 int i;
4557
4558 for (i = 0; i < iproc_priv.spu.num_chan; i++)
4559 mbox_free_channel(iproc_priv.mbox[i]);
4560 }
4561
4562 static void spu_counters_init(void)
4563 {
4564 int i;
4565 int j;
4566
4567 atomic_set(&iproc_priv.session_count, 0);
4568 atomic_set(&iproc_priv.stream_count, 0);
4569 atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4570 atomic64_set(&iproc_priv.bytes_in, 0);
4571 atomic64_set(&iproc_priv.bytes_out, 0);
4572 for (i = 0; i < SPU_OP_NUM; i++) {
4573 atomic_set(&iproc_priv.op_counts[i], 0);
4574 atomic_set(&iproc_priv.setkey_cnt[i], 0);
4575 }
4576 for (i = 0; i < CIPHER_ALG_LAST; i++)
4577 for (j = 0; j < CIPHER_MODE_LAST; j++)
4578 atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4579
4580 for (i = 0; i < HASH_ALG_LAST; i++) {
4581 atomic_set(&iproc_priv.hash_cnt[i], 0);
4582 atomic_set(&iproc_priv.hmac_cnt[i], 0);
4583 }
4584 for (i = 0; i < AEAD_TYPE_LAST; i++)
4585 atomic_set(&iproc_priv.aead_cnt[i], 0);
4586
4587 atomic_set(&iproc_priv.mb_no_spc, 0);
4588 atomic_set(&iproc_priv.mb_send_fail, 0);
4589 atomic_set(&iproc_priv.bad_icv, 0);
4590 }
4591
4592 static int spu_register_ablkcipher(struct iproc_alg_s *driver_alg)
4593 {
4594 struct spu_hw *spu = &iproc_priv.spu;
4595 struct crypto_alg *crypto = &driver_alg->alg.crypto;
4596 int err;
4597
4598 /* SPU2 does not support RC4 */
4599 if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) &&
4600 (spu->spu_type == SPU_TYPE_SPU2))
4601 return 0;
4602
4603 crypto->cra_module = THIS_MODULE;
4604 crypto->cra_priority = cipher_pri;
4605 crypto->cra_alignmask = 0;
4606 crypto->cra_ctxsize = sizeof(struct iproc_ctx_s);
4607
4608 crypto->cra_init = ablkcipher_cra_init;
4609 crypto->cra_exit = generic_cra_exit;
4610 crypto->cra_type = &crypto_ablkcipher_type;
4611 crypto->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
4612 CRYPTO_ALG_KERN_DRIVER_ONLY;
4613
4614 crypto->cra_ablkcipher.setkey = ablkcipher_setkey;
4615 crypto->cra_ablkcipher.encrypt = ablkcipher_encrypt;
4616 crypto->cra_ablkcipher.decrypt = ablkcipher_decrypt;
4617
4618 err = crypto_register_alg(crypto);
4619 /* Mark alg as having been registered, if successful */
4620 if (err == 0)
4621 driver_alg->registered = true;
4622 pr_debug(" registered ablkcipher %s\n", crypto->cra_driver_name);
4623 return err;
4624 }
4625
4626 static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4627 {
4628 struct spu_hw *spu = &iproc_priv.spu;
4629 struct ahash_alg *hash = &driver_alg->alg.hash;
4630 int err;
4631
4632 /* AES-XCBC is the only AES hash type currently supported on SPU-M */
4633 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4634 (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4635 (spu->spu_type == SPU_TYPE_SPUM))
4636 return 0;
4637
4638 /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4639 if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4640 (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4641 return 0;
4642
4643 hash->halg.base.cra_module = THIS_MODULE;
4644 hash->halg.base.cra_priority = hash_pri;
4645 hash->halg.base.cra_alignmask = 0;
4646 hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4647 hash->halg.base.cra_init = ahash_cra_init;
4648 hash->halg.base.cra_exit = generic_cra_exit;
4649 hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
4650 hash->halg.statesize = sizeof(struct spu_hash_export_s);
4651
4652 if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4653 hash->init = ahash_init;
4654 hash->update = ahash_update;
4655 hash->final = ahash_final;
4656 hash->finup = ahash_finup;
4657 hash->digest = ahash_digest;
4658 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4659 ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4660 (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4661 hash->setkey = ahash_setkey;
4662 }
4663 } else {
4664 hash->setkey = ahash_hmac_setkey;
4665 hash->init = ahash_hmac_init;
4666 hash->update = ahash_hmac_update;
4667 hash->final = ahash_hmac_final;
4668 hash->finup = ahash_hmac_finup;
4669 hash->digest = ahash_hmac_digest;
4670 }
4671 hash->export = ahash_export;
4672 hash->import = ahash_import;
4673
4674 err = crypto_register_ahash(hash);
4675 /* Mark alg as having been registered, if successful */
4676 if (err == 0)
4677 driver_alg->registered = true;
4678 pr_debug(" registered ahash %s\n",
4679 hash->halg.base.cra_driver_name);
4680 return err;
4681 }
4682
4683 static int spu_register_aead(struct iproc_alg_s *driver_alg)
4684 {
4685 struct aead_alg *aead = &driver_alg->alg.aead;
4686 int err;
4687
4688 aead->base.cra_module = THIS_MODULE;
4689 aead->base.cra_priority = aead_pri;
4690 aead->base.cra_alignmask = 0;
4691 aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4692
4693 aead->base.cra_flags |= CRYPTO_ALG_ASYNC;
4694 /* setkey set in alg initialization */
4695 aead->setauthsize = aead_setauthsize;
4696 aead->encrypt = aead_encrypt;
4697 aead->decrypt = aead_decrypt;
4698 aead->init = aead_cra_init;
4699 aead->exit = aead_cra_exit;
4700
4701 err = crypto_register_aead(aead);
4702 /* Mark alg as having been registered, if successful */
4703 if (err == 0)
4704 driver_alg->registered = true;
4705 pr_debug(" registered aead %s\n", aead->base.cra_driver_name);
4706 return err;
4707 }
4708
4709 /* register crypto algorithms the device supports */
4710 static int spu_algs_register(struct device *dev)
4711 {
4712 int i, j;
4713 int err;
4714
4715 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4716 switch (driver_algs[i].type) {
4717 case CRYPTO_ALG_TYPE_ABLKCIPHER:
4718 err = spu_register_ablkcipher(&driver_algs[i]);
4719 break;
4720 case CRYPTO_ALG_TYPE_AHASH:
4721 err = spu_register_ahash(&driver_algs[i]);
4722 break;
4723 case CRYPTO_ALG_TYPE_AEAD:
4724 err = spu_register_aead(&driver_algs[i]);
4725 break;
4726 default:
4727 dev_err(dev,
4728 "iproc-crypto: unknown alg type: %d",
4729 driver_algs[i].type);
4730 err = -EINVAL;
4731 }
4732
4733 if (err) {
4734 dev_err(dev, "alg registration failed with error %d\n",
4735 err);
4736 goto err_algs;
4737 }
4738 }
4739
4740 return 0;
4741
4742 err_algs:
4743 for (j = 0; j < i; j++) {
4744 /* Skip any algorithm not registered */
4745 if (!driver_algs[j].registered)
4746 continue;
4747 switch (driver_algs[j].type) {
4748 case CRYPTO_ALG_TYPE_ABLKCIPHER:
4749 crypto_unregister_alg(&driver_algs[j].alg.crypto);
4750 driver_algs[j].registered = false;
4751 break;
4752 case CRYPTO_ALG_TYPE_AHASH:
4753 crypto_unregister_ahash(&driver_algs[j].alg.hash);
4754 driver_algs[j].registered = false;
4755 break;
4756 case CRYPTO_ALG_TYPE_AEAD:
4757 crypto_unregister_aead(&driver_algs[j].alg.aead);
4758 driver_algs[j].registered = false;
4759 break;
4760 }
4761 }
4762 return err;
4763 }
4764
4765 /* ==================== Kernel Platform API ==================== */
4766
4767 static struct spu_type_subtype spum_ns2_types = {
4768 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4769 };
4770
4771 static struct spu_type_subtype spum_nsp_types = {
4772 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4773 };
4774
4775 static struct spu_type_subtype spu2_types = {
4776 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4777 };
4778
4779 static struct spu_type_subtype spu2_v2_types = {
4780 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4781 };
4782
4783 static const struct of_device_id bcm_spu_dt_ids[] = {
4784 {
4785 .compatible = "brcm,spum-crypto",
4786 .data = &spum_ns2_types,
4787 },
4788 {
4789 .compatible = "brcm,spum-nsp-crypto",
4790 .data = &spum_nsp_types,
4791 },
4792 {
4793 .compatible = "brcm,spu2-crypto",
4794 .data = &spu2_types,
4795 },
4796 {
4797 .compatible = "brcm,spu2-v2-crypto",
4798 .data = &spu2_v2_types,
4799 },
4800 { /* sentinel */ }
4801 };
4802
4803 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4804
4805 static int spu_dt_read(struct platform_device *pdev)
4806 {
4807 struct device *dev = &pdev->dev;
4808 struct spu_hw *spu = &iproc_priv.spu;
4809 struct resource *spu_ctrl_regs;
4810 const struct spu_type_subtype *matched_spu_type;
4811 struct device_node *dn = pdev->dev.of_node;
4812 int err, i;
4813
4814 /* Count number of mailbox channels */
4815 spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4816
4817 matched_spu_type = of_device_get_match_data(dev);
4818 if (!matched_spu_type) {
4819 dev_err(&pdev->dev, "Failed to match device\n");
4820 return -ENODEV;
4821 }
4822
4823 spu->spu_type = matched_spu_type->type;
4824 spu->spu_subtype = matched_spu_type->subtype;
4825
4826 i = 0;
4827 for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4828 platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4829
4830 spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4831 if (IS_ERR(spu->reg_vbase[i])) {
4832 err = PTR_ERR(spu->reg_vbase[i]);
4833 dev_err(&pdev->dev, "Failed to map registers: %d\n",
4834 err);
4835 spu->reg_vbase[i] = NULL;
4836 return err;
4837 }
4838 }
4839 spu->num_spu = i;
4840 dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4841
4842 return 0;
4843 }
4844
4845 int bcm_spu_probe(struct platform_device *pdev)
4846 {
4847 struct device *dev = &pdev->dev;
4848 struct spu_hw *spu = &iproc_priv.spu;
4849 int err = 0;
4850
4851 iproc_priv.pdev = pdev;
4852 platform_set_drvdata(iproc_priv.pdev,
4853 &iproc_priv);
4854
4855 err = spu_dt_read(pdev);
4856 if (err < 0)
4857 goto failure;
4858
4859 err = spu_mb_init(&pdev->dev);
4860 if (err < 0)
4861 goto failure;
4862
4863 if (spu->spu_type == SPU_TYPE_SPUM)
4864 iproc_priv.bcm_hdr_len = 8;
4865 else if (spu->spu_type == SPU_TYPE_SPU2)
4866 iproc_priv.bcm_hdr_len = 0;
4867
4868 spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype);
4869
4870 spu_counters_init();
4871
4872 spu_setup_debugfs();
4873
4874 err = spu_algs_register(dev);
4875 if (err < 0)
4876 goto fail_reg;
4877
4878 return 0;
4879
4880 fail_reg:
4881 spu_free_debugfs();
4882 failure:
4883 spu_mb_release(pdev);
4884 dev_err(dev, "%s failed with error %d.\n", __func__, err);
4885
4886 return err;
4887 }
4888
4889 int bcm_spu_remove(struct platform_device *pdev)
4890 {
4891 int i;
4892 struct device *dev = &pdev->dev;
4893 char *cdn;
4894
4895 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4896 /*
4897 * Not all algorithms were registered, depending on whether
4898 * hardware is SPU or SPU2. So here we make sure to skip
4899 * those algorithms that were not previously registered.
4900 */
4901 if (!driver_algs[i].registered)
4902 continue;
4903
4904 switch (driver_algs[i].type) {
4905 case CRYPTO_ALG_TYPE_ABLKCIPHER:
4906 crypto_unregister_alg(&driver_algs[i].alg.crypto);
4907 dev_dbg(dev, " unregistered cipher %s\n",
4908 driver_algs[i].alg.crypto.cra_driver_name);
4909 driver_algs[i].registered = false;
4910 break;
4911 case CRYPTO_ALG_TYPE_AHASH:
4912 crypto_unregister_ahash(&driver_algs[i].alg.hash);
4913 cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4914 dev_dbg(dev, " unregistered hash %s\n", cdn);
4915 driver_algs[i].registered = false;
4916 break;
4917 case CRYPTO_ALG_TYPE_AEAD:
4918 crypto_unregister_aead(&driver_algs[i].alg.aead);
4919 dev_dbg(dev, " unregistered aead %s\n",
4920 driver_algs[i].alg.aead.base.cra_driver_name);
4921 driver_algs[i].registered = false;
4922 break;
4923 }
4924 }
4925 spu_free_debugfs();
4926 spu_mb_release(pdev);
4927 return 0;
4928 }
4929
4930 /* ===== Kernel Module API ===== */
4931
4932 static struct platform_driver bcm_spu_pdriver = {
4933 .driver = {
4934 .name = "brcm-spu-crypto",
4935 .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4936 },
4937 .probe = bcm_spu_probe,
4938 .remove = bcm_spu_remove,
4939 };
4940 module_platform_driver(bcm_spu_pdriver);
4941
4942 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4943 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4944 MODULE_LICENSE("GPL v2");