]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma/pl330.c
dmaengine: dw-dmac: implement dma protection control setting
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / pl330.c
1 /*
2 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6 * Jaswinder Singh <jassi.brar@samsung.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/scatterlist.h>
26 #include <linux/of.h>
27 #include <linux/of_dma.h>
28 #include <linux/err.h>
29 #include <linux/pm_runtime.h>
30
31 #include "dmaengine.h"
32 #define PL330_MAX_CHAN 8
33 #define PL330_MAX_IRQS 32
34 #define PL330_MAX_PERI 32
35 #define PL330_MAX_BURST 16
36
37 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0)
38
39 enum pl330_cachectrl {
40 CCTRL0, /* Noncacheable and nonbufferable */
41 CCTRL1, /* Bufferable only */
42 CCTRL2, /* Cacheable, but do not allocate */
43 CCTRL3, /* Cacheable and bufferable, but do not allocate */
44 INVALID1, /* AWCACHE = 0x1000 */
45 INVALID2,
46 CCTRL6, /* Cacheable write-through, allocate on writes only */
47 CCTRL7, /* Cacheable write-back, allocate on writes only */
48 };
49
50 enum pl330_byteswap {
51 SWAP_NO,
52 SWAP_2,
53 SWAP_4,
54 SWAP_8,
55 SWAP_16,
56 };
57
58 /* Register and Bit field Definitions */
59 #define DS 0x0
60 #define DS_ST_STOP 0x0
61 #define DS_ST_EXEC 0x1
62 #define DS_ST_CMISS 0x2
63 #define DS_ST_UPDTPC 0x3
64 #define DS_ST_WFE 0x4
65 #define DS_ST_ATBRR 0x5
66 #define DS_ST_QBUSY 0x6
67 #define DS_ST_WFP 0x7
68 #define DS_ST_KILL 0x8
69 #define DS_ST_CMPLT 0x9
70 #define DS_ST_FLTCMP 0xe
71 #define DS_ST_FAULT 0xf
72
73 #define DPC 0x4
74 #define INTEN 0x20
75 #define ES 0x24
76 #define INTSTATUS 0x28
77 #define INTCLR 0x2c
78 #define FSM 0x30
79 #define FSC 0x34
80 #define FTM 0x38
81
82 #define _FTC 0x40
83 #define FTC(n) (_FTC + (n)*0x4)
84
85 #define _CS 0x100
86 #define CS(n) (_CS + (n)*0x8)
87 #define CS_CNS (1 << 21)
88
89 #define _CPC 0x104
90 #define CPC(n) (_CPC + (n)*0x8)
91
92 #define _SA 0x400
93 #define SA(n) (_SA + (n)*0x20)
94
95 #define _DA 0x404
96 #define DA(n) (_DA + (n)*0x20)
97
98 #define _CC 0x408
99 #define CC(n) (_CC + (n)*0x20)
100
101 #define CC_SRCINC (1 << 0)
102 #define CC_DSTINC (1 << 14)
103 #define CC_SRCPRI (1 << 8)
104 #define CC_DSTPRI (1 << 22)
105 #define CC_SRCNS (1 << 9)
106 #define CC_DSTNS (1 << 23)
107 #define CC_SRCIA (1 << 10)
108 #define CC_DSTIA (1 << 24)
109 #define CC_SRCBRSTLEN_SHFT 4
110 #define CC_DSTBRSTLEN_SHFT 18
111 #define CC_SRCBRSTSIZE_SHFT 1
112 #define CC_DSTBRSTSIZE_SHFT 15
113 #define CC_SRCCCTRL_SHFT 11
114 #define CC_SRCCCTRL_MASK 0x7
115 #define CC_DSTCCTRL_SHFT 25
116 #define CC_DRCCCTRL_MASK 0x7
117 #define CC_SWAP_SHFT 28
118
119 #define _LC0 0x40c
120 #define LC0(n) (_LC0 + (n)*0x20)
121
122 #define _LC1 0x410
123 #define LC1(n) (_LC1 + (n)*0x20)
124
125 #define DBGSTATUS 0xd00
126 #define DBG_BUSY (1 << 0)
127
128 #define DBGCMD 0xd04
129 #define DBGINST0 0xd08
130 #define DBGINST1 0xd0c
131
132 #define CR0 0xe00
133 #define CR1 0xe04
134 #define CR2 0xe08
135 #define CR3 0xe0c
136 #define CR4 0xe10
137 #define CRD 0xe14
138
139 #define PERIPH_ID 0xfe0
140 #define PERIPH_REV_SHIFT 20
141 #define PERIPH_REV_MASK 0xf
142 #define PERIPH_REV_R0P0 0
143 #define PERIPH_REV_R1P0 1
144 #define PERIPH_REV_R1P1 2
145
146 #define CR0_PERIPH_REQ_SET (1 << 0)
147 #define CR0_BOOT_EN_SET (1 << 1)
148 #define CR0_BOOT_MAN_NS (1 << 2)
149 #define CR0_NUM_CHANS_SHIFT 4
150 #define CR0_NUM_CHANS_MASK 0x7
151 #define CR0_NUM_PERIPH_SHIFT 12
152 #define CR0_NUM_PERIPH_MASK 0x1f
153 #define CR0_NUM_EVENTS_SHIFT 17
154 #define CR0_NUM_EVENTS_MASK 0x1f
155
156 #define CR1_ICACHE_LEN_SHIFT 0
157 #define CR1_ICACHE_LEN_MASK 0x7
158 #define CR1_NUM_ICACHELINES_SHIFT 4
159 #define CR1_NUM_ICACHELINES_MASK 0xf
160
161 #define CRD_DATA_WIDTH_SHIFT 0
162 #define CRD_DATA_WIDTH_MASK 0x7
163 #define CRD_WR_CAP_SHIFT 4
164 #define CRD_WR_CAP_MASK 0x7
165 #define CRD_WR_Q_DEP_SHIFT 8
166 #define CRD_WR_Q_DEP_MASK 0xf
167 #define CRD_RD_CAP_SHIFT 12
168 #define CRD_RD_CAP_MASK 0x7
169 #define CRD_RD_Q_DEP_SHIFT 16
170 #define CRD_RD_Q_DEP_MASK 0xf
171 #define CRD_DATA_BUFF_SHIFT 20
172 #define CRD_DATA_BUFF_MASK 0x3ff
173
174 #define PART 0x330
175 #define DESIGNER 0x41
176 #define REVISION 0x0
177 #define INTEG_CFG 0x0
178 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12))
179
180 #define PL330_STATE_STOPPED (1 << 0)
181 #define PL330_STATE_EXECUTING (1 << 1)
182 #define PL330_STATE_WFE (1 << 2)
183 #define PL330_STATE_FAULTING (1 << 3)
184 #define PL330_STATE_COMPLETING (1 << 4)
185 #define PL330_STATE_WFP (1 << 5)
186 #define PL330_STATE_KILLING (1 << 6)
187 #define PL330_STATE_FAULT_COMPLETING (1 << 7)
188 #define PL330_STATE_CACHEMISS (1 << 8)
189 #define PL330_STATE_UPDTPC (1 << 9)
190 #define PL330_STATE_ATBARRIER (1 << 10)
191 #define PL330_STATE_QUEUEBUSY (1 << 11)
192 #define PL330_STATE_INVALID (1 << 15)
193
194 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
195 | PL330_STATE_WFE | PL330_STATE_FAULTING)
196
197 #define CMD_DMAADDH 0x54
198 #define CMD_DMAEND 0x00
199 #define CMD_DMAFLUSHP 0x35
200 #define CMD_DMAGO 0xa0
201 #define CMD_DMALD 0x04
202 #define CMD_DMALDP 0x25
203 #define CMD_DMALP 0x20
204 #define CMD_DMALPEND 0x28
205 #define CMD_DMAKILL 0x01
206 #define CMD_DMAMOV 0xbc
207 #define CMD_DMANOP 0x18
208 #define CMD_DMARMB 0x12
209 #define CMD_DMASEV 0x34
210 #define CMD_DMAST 0x08
211 #define CMD_DMASTP 0x29
212 #define CMD_DMASTZ 0x0c
213 #define CMD_DMAWFE 0x36
214 #define CMD_DMAWFP 0x30
215 #define CMD_DMAWMB 0x13
216
217 #define SZ_DMAADDH 3
218 #define SZ_DMAEND 1
219 #define SZ_DMAFLUSHP 2
220 #define SZ_DMALD 1
221 #define SZ_DMALDP 2
222 #define SZ_DMALP 2
223 #define SZ_DMALPEND 2
224 #define SZ_DMAKILL 1
225 #define SZ_DMAMOV 6
226 #define SZ_DMANOP 1
227 #define SZ_DMARMB 1
228 #define SZ_DMASEV 2
229 #define SZ_DMAST 1
230 #define SZ_DMASTP 2
231 #define SZ_DMASTZ 1
232 #define SZ_DMAWFE 2
233 #define SZ_DMAWFP 2
234 #define SZ_DMAWMB 1
235 #define SZ_DMAGO 6
236
237 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
238 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
239
240 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
241 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
242
243 /*
244 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
245 * at 1byte/burst for P<->M and M<->M respectively.
246 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
247 * should be enough for P<->M and M<->M respectively.
248 */
249 #define MCODE_BUFF_PER_REQ 256
250
251 /* Use this _only_ to wait on transient states */
252 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax();
253
254 #ifdef PL330_DEBUG_MCGEN
255 static unsigned cmd_line;
256 #define PL330_DBGCMD_DUMP(off, x...) do { \
257 printk("%x:", cmd_line); \
258 printk(x); \
259 cmd_line += off; \
260 } while (0)
261 #define PL330_DBGMC_START(addr) (cmd_line = addr)
262 #else
263 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0)
264 #define PL330_DBGMC_START(addr) do {} while (0)
265 #endif
266
267 /* The number of default descriptors */
268
269 #define NR_DEFAULT_DESC 16
270
271 /* Delay for runtime PM autosuspend, ms */
272 #define PL330_AUTOSUSPEND_DELAY 20
273
274 /* Populated by the PL330 core driver for DMA API driver's info */
275 struct pl330_config {
276 u32 periph_id;
277 #define DMAC_MODE_NS (1 << 0)
278 unsigned int mode;
279 unsigned int data_bus_width:10; /* In number of bits */
280 unsigned int data_buf_dep:11;
281 unsigned int num_chan:4;
282 unsigned int num_peri:6;
283 u32 peri_ns;
284 unsigned int num_events:6;
285 u32 irq_ns;
286 };
287
288 /**
289 * Request Configuration.
290 * The PL330 core does not modify this and uses the last
291 * working configuration if the request doesn't provide any.
292 *
293 * The Client may want to provide this info only for the
294 * first request and a request with new settings.
295 */
296 struct pl330_reqcfg {
297 /* Address Incrementing */
298 unsigned dst_inc:1;
299 unsigned src_inc:1;
300
301 /*
302 * For now, the SRC & DST protection levels
303 * and burst size/length are assumed same.
304 */
305 bool nonsecure;
306 bool privileged;
307 bool insnaccess;
308 unsigned brst_len:5;
309 unsigned brst_size:3; /* in power of 2 */
310
311 enum pl330_cachectrl dcctl;
312 enum pl330_cachectrl scctl;
313 enum pl330_byteswap swap;
314 struct pl330_config *pcfg;
315 };
316
317 /*
318 * One cycle of DMAC operation.
319 * There may be more than one xfer in a request.
320 */
321 struct pl330_xfer {
322 u32 src_addr;
323 u32 dst_addr;
324 /* Size to xfer */
325 u32 bytes;
326 };
327
328 /* The xfer callbacks are made with one of these arguments. */
329 enum pl330_op_err {
330 /* The all xfers in the request were success. */
331 PL330_ERR_NONE,
332 /* If req aborted due to global error. */
333 PL330_ERR_ABORT,
334 /* If req failed due to problem with Channel. */
335 PL330_ERR_FAIL,
336 };
337
338 enum dmamov_dst {
339 SAR = 0,
340 CCR,
341 DAR,
342 };
343
344 enum pl330_dst {
345 SRC = 0,
346 DST,
347 };
348
349 enum pl330_cond {
350 SINGLE,
351 BURST,
352 ALWAYS,
353 };
354
355 struct dma_pl330_desc;
356
357 struct _pl330_req {
358 u32 mc_bus;
359 void *mc_cpu;
360 struct dma_pl330_desc *desc;
361 };
362
363 /* ToBeDone for tasklet */
364 struct _pl330_tbd {
365 bool reset_dmac;
366 bool reset_mngr;
367 u8 reset_chan;
368 };
369
370 /* A DMAC Thread */
371 struct pl330_thread {
372 u8 id;
373 int ev;
374 /* If the channel is not yet acquired by any client */
375 bool free;
376 /* Parent DMAC */
377 struct pl330_dmac *dmac;
378 /* Only two at a time */
379 struct _pl330_req req[2];
380 /* Index of the last enqueued request */
381 unsigned lstenq;
382 /* Index of the last submitted request or -1 if the DMA is stopped */
383 int req_running;
384 };
385
386 enum pl330_dmac_state {
387 UNINIT,
388 INIT,
389 DYING,
390 };
391
392 enum desc_status {
393 /* In the DMAC pool */
394 FREE,
395 /*
396 * Allocated to some channel during prep_xxx
397 * Also may be sitting on the work_list.
398 */
399 PREP,
400 /*
401 * Sitting on the work_list and already submitted
402 * to the PL330 core. Not more than two descriptors
403 * of a channel can be BUSY at any time.
404 */
405 BUSY,
406 /*
407 * Sitting on the channel work_list but xfer done
408 * by PL330 core
409 */
410 DONE,
411 };
412
413 struct dma_pl330_chan {
414 /* Schedule desc completion */
415 struct tasklet_struct task;
416
417 /* DMA-Engine Channel */
418 struct dma_chan chan;
419
420 /* List of submitted descriptors */
421 struct list_head submitted_list;
422 /* List of issued descriptors */
423 struct list_head work_list;
424 /* List of completed descriptors */
425 struct list_head completed_list;
426
427 /* Pointer to the DMAC that manages this channel,
428 * NULL if the channel is available to be acquired.
429 * As the parent, this DMAC also provides descriptors
430 * to the channel.
431 */
432 struct pl330_dmac *dmac;
433
434 /* To protect channel manipulation */
435 spinlock_t lock;
436
437 /*
438 * Hardware channel thread of PL330 DMAC. NULL if the channel is
439 * available.
440 */
441 struct pl330_thread *thread;
442
443 /* For D-to-M and M-to-D channels */
444 int burst_sz; /* the peripheral fifo width */
445 int burst_len; /* the number of burst */
446 phys_addr_t fifo_addr;
447 /* DMA-mapped view of the FIFO; may differ if an IOMMU is present */
448 dma_addr_t fifo_dma;
449 enum dma_data_direction dir;
450
451 /* for cyclic capability */
452 bool cyclic;
453
454 /* for runtime pm tracking */
455 bool active;
456 };
457
458 struct pl330_dmac {
459 /* DMA-Engine Device */
460 struct dma_device ddma;
461
462 /* Holds info about sg limitations */
463 struct device_dma_parameters dma_parms;
464
465 /* Pool of descriptors available for the DMAC's channels */
466 struct list_head desc_pool;
467 /* To protect desc_pool manipulation */
468 spinlock_t pool_lock;
469
470 /* Size of MicroCode buffers for each channel. */
471 unsigned mcbufsz;
472 /* ioremap'ed address of PL330 registers. */
473 void __iomem *base;
474 /* Populated by the PL330 core driver during pl330_add */
475 struct pl330_config pcfg;
476
477 spinlock_t lock;
478 /* Maximum possible events/irqs */
479 int events[32];
480 /* BUS address of MicroCode buffer */
481 dma_addr_t mcode_bus;
482 /* CPU address of MicroCode buffer */
483 void *mcode_cpu;
484 /* List of all Channel threads */
485 struct pl330_thread *channels;
486 /* Pointer to the MANAGER thread */
487 struct pl330_thread *manager;
488 /* To handle bad news in interrupt */
489 struct tasklet_struct tasks;
490 struct _pl330_tbd dmac_tbd;
491 /* State of DMAC operation */
492 enum pl330_dmac_state state;
493 /* Holds list of reqs with due callbacks */
494 struct list_head req_done;
495
496 /* Peripheral channels connected to this DMAC */
497 unsigned int num_peripherals;
498 struct dma_pl330_chan *peripherals; /* keep at end */
499 int quirks;
500 };
501
502 static struct pl330_of_quirks {
503 char *quirk;
504 int id;
505 } of_quirks[] = {
506 {
507 .quirk = "arm,pl330-broken-no-flushp",
508 .id = PL330_QUIRK_BROKEN_NO_FLUSHP,
509 }
510 };
511
512 struct dma_pl330_desc {
513 /* To attach to a queue as child */
514 struct list_head node;
515
516 /* Descriptor for the DMA Engine API */
517 struct dma_async_tx_descriptor txd;
518
519 /* Xfer for PL330 core */
520 struct pl330_xfer px;
521
522 struct pl330_reqcfg rqcfg;
523
524 enum desc_status status;
525
526 int bytes_requested;
527 bool last;
528
529 /* The channel which currently holds this desc */
530 struct dma_pl330_chan *pchan;
531
532 enum dma_transfer_direction rqtype;
533 /* Index of peripheral for the xfer. */
534 unsigned peri:5;
535 /* Hook to attach to DMAC's list of reqs with due callback */
536 struct list_head rqd;
537 };
538
539 struct _xfer_spec {
540 u32 ccr;
541 struct dma_pl330_desc *desc;
542 };
543
544 static inline bool _queue_full(struct pl330_thread *thrd)
545 {
546 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
547 }
548
549 static inline bool is_manager(struct pl330_thread *thrd)
550 {
551 return thrd->dmac->manager == thrd;
552 }
553
554 /* If manager of the thread is in Non-Secure mode */
555 static inline bool _manager_ns(struct pl330_thread *thrd)
556 {
557 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
558 }
559
560 static inline u32 get_revision(u32 periph_id)
561 {
562 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
563 }
564
565 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
566 {
567 if (dry_run)
568 return SZ_DMAEND;
569
570 buf[0] = CMD_DMAEND;
571
572 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
573
574 return SZ_DMAEND;
575 }
576
577 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
578 {
579 if (dry_run)
580 return SZ_DMAFLUSHP;
581
582 buf[0] = CMD_DMAFLUSHP;
583
584 peri &= 0x1f;
585 peri <<= 3;
586 buf[1] = peri;
587
588 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
589
590 return SZ_DMAFLUSHP;
591 }
592
593 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond)
594 {
595 if (dry_run)
596 return SZ_DMALD;
597
598 buf[0] = CMD_DMALD;
599
600 if (cond == SINGLE)
601 buf[0] |= (0 << 1) | (1 << 0);
602 else if (cond == BURST)
603 buf[0] |= (1 << 1) | (1 << 0);
604
605 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
606 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
607
608 return SZ_DMALD;
609 }
610
611 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
612 enum pl330_cond cond, u8 peri)
613 {
614 if (dry_run)
615 return SZ_DMALDP;
616
617 buf[0] = CMD_DMALDP;
618
619 if (cond == BURST)
620 buf[0] |= (1 << 1);
621
622 peri &= 0x1f;
623 peri <<= 3;
624 buf[1] = peri;
625
626 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
627 cond == SINGLE ? 'S' : 'B', peri >> 3);
628
629 return SZ_DMALDP;
630 }
631
632 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
633 unsigned loop, u8 cnt)
634 {
635 if (dry_run)
636 return SZ_DMALP;
637
638 buf[0] = CMD_DMALP;
639
640 if (loop)
641 buf[0] |= (1 << 1);
642
643 cnt--; /* DMAC increments by 1 internally */
644 buf[1] = cnt;
645
646 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
647
648 return SZ_DMALP;
649 }
650
651 struct _arg_LPEND {
652 enum pl330_cond cond;
653 bool forever;
654 unsigned loop;
655 u8 bjump;
656 };
657
658 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
659 const struct _arg_LPEND *arg)
660 {
661 enum pl330_cond cond = arg->cond;
662 bool forever = arg->forever;
663 unsigned loop = arg->loop;
664 u8 bjump = arg->bjump;
665
666 if (dry_run)
667 return SZ_DMALPEND;
668
669 buf[0] = CMD_DMALPEND;
670
671 if (loop)
672 buf[0] |= (1 << 2);
673
674 if (!forever)
675 buf[0] |= (1 << 4);
676
677 if (cond == SINGLE)
678 buf[0] |= (0 << 1) | (1 << 0);
679 else if (cond == BURST)
680 buf[0] |= (1 << 1) | (1 << 0);
681
682 buf[1] = bjump;
683
684 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
685 forever ? "FE" : "END",
686 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
687 loop ? '1' : '0',
688 bjump);
689
690 return SZ_DMALPEND;
691 }
692
693 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
694 {
695 if (dry_run)
696 return SZ_DMAKILL;
697
698 buf[0] = CMD_DMAKILL;
699
700 return SZ_DMAKILL;
701 }
702
703 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
704 enum dmamov_dst dst, u32 val)
705 {
706 if (dry_run)
707 return SZ_DMAMOV;
708
709 buf[0] = CMD_DMAMOV;
710 buf[1] = dst;
711 buf[2] = val;
712 buf[3] = val >> 8;
713 buf[4] = val >> 16;
714 buf[5] = val >> 24;
715
716 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
717 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
718
719 return SZ_DMAMOV;
720 }
721
722 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
723 {
724 if (dry_run)
725 return SZ_DMARMB;
726
727 buf[0] = CMD_DMARMB;
728
729 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
730
731 return SZ_DMARMB;
732 }
733
734 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
735 {
736 if (dry_run)
737 return SZ_DMASEV;
738
739 buf[0] = CMD_DMASEV;
740
741 ev &= 0x1f;
742 ev <<= 3;
743 buf[1] = ev;
744
745 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
746
747 return SZ_DMASEV;
748 }
749
750 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
751 {
752 if (dry_run)
753 return SZ_DMAST;
754
755 buf[0] = CMD_DMAST;
756
757 if (cond == SINGLE)
758 buf[0] |= (0 << 1) | (1 << 0);
759 else if (cond == BURST)
760 buf[0] |= (1 << 1) | (1 << 0);
761
762 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
763 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
764
765 return SZ_DMAST;
766 }
767
768 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
769 enum pl330_cond cond, u8 peri)
770 {
771 if (dry_run)
772 return SZ_DMASTP;
773
774 buf[0] = CMD_DMASTP;
775
776 if (cond == BURST)
777 buf[0] |= (1 << 1);
778
779 peri &= 0x1f;
780 peri <<= 3;
781 buf[1] = peri;
782
783 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
784 cond == SINGLE ? 'S' : 'B', peri >> 3);
785
786 return SZ_DMASTP;
787 }
788
789 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
790 enum pl330_cond cond, u8 peri)
791 {
792 if (dry_run)
793 return SZ_DMAWFP;
794
795 buf[0] = CMD_DMAWFP;
796
797 if (cond == SINGLE)
798 buf[0] |= (0 << 1) | (0 << 0);
799 else if (cond == BURST)
800 buf[0] |= (1 << 1) | (0 << 0);
801 else
802 buf[0] |= (0 << 1) | (1 << 0);
803
804 peri &= 0x1f;
805 peri <<= 3;
806 buf[1] = peri;
807
808 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
809 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
810
811 return SZ_DMAWFP;
812 }
813
814 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
815 {
816 if (dry_run)
817 return SZ_DMAWMB;
818
819 buf[0] = CMD_DMAWMB;
820
821 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
822
823 return SZ_DMAWMB;
824 }
825
826 struct _arg_GO {
827 u8 chan;
828 u32 addr;
829 unsigned ns;
830 };
831
832 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
833 const struct _arg_GO *arg)
834 {
835 u8 chan = arg->chan;
836 u32 addr = arg->addr;
837 unsigned ns = arg->ns;
838
839 if (dry_run)
840 return SZ_DMAGO;
841
842 buf[0] = CMD_DMAGO;
843 buf[0] |= (ns << 1);
844 buf[1] = chan & 0x7;
845 buf[2] = addr;
846 buf[3] = addr >> 8;
847 buf[4] = addr >> 16;
848 buf[5] = addr >> 24;
849
850 return SZ_DMAGO;
851 }
852
853 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
854
855 /* Returns Time-Out */
856 static bool _until_dmac_idle(struct pl330_thread *thrd)
857 {
858 void __iomem *regs = thrd->dmac->base;
859 unsigned long loops = msecs_to_loops(5);
860
861 do {
862 /* Until Manager is Idle */
863 if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
864 break;
865
866 cpu_relax();
867 } while (--loops);
868
869 if (!loops)
870 return true;
871
872 return false;
873 }
874
875 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
876 u8 insn[], bool as_manager)
877 {
878 void __iomem *regs = thrd->dmac->base;
879 u32 val;
880
881 val = (insn[0] << 16) | (insn[1] << 24);
882 if (!as_manager) {
883 val |= (1 << 0);
884 val |= (thrd->id << 8); /* Channel Number */
885 }
886 writel(val, regs + DBGINST0);
887
888 val = le32_to_cpu(*((__le32 *)&insn[2]));
889 writel(val, regs + DBGINST1);
890
891 /* If timed out due to halted state-machine */
892 if (_until_dmac_idle(thrd)) {
893 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
894 return;
895 }
896
897 /* Get going */
898 writel(0, regs + DBGCMD);
899 }
900
901 static inline u32 _state(struct pl330_thread *thrd)
902 {
903 void __iomem *regs = thrd->dmac->base;
904 u32 val;
905
906 if (is_manager(thrd))
907 val = readl(regs + DS) & 0xf;
908 else
909 val = readl(regs + CS(thrd->id)) & 0xf;
910
911 switch (val) {
912 case DS_ST_STOP:
913 return PL330_STATE_STOPPED;
914 case DS_ST_EXEC:
915 return PL330_STATE_EXECUTING;
916 case DS_ST_CMISS:
917 return PL330_STATE_CACHEMISS;
918 case DS_ST_UPDTPC:
919 return PL330_STATE_UPDTPC;
920 case DS_ST_WFE:
921 return PL330_STATE_WFE;
922 case DS_ST_FAULT:
923 return PL330_STATE_FAULTING;
924 case DS_ST_ATBRR:
925 if (is_manager(thrd))
926 return PL330_STATE_INVALID;
927 else
928 return PL330_STATE_ATBARRIER;
929 case DS_ST_QBUSY:
930 if (is_manager(thrd))
931 return PL330_STATE_INVALID;
932 else
933 return PL330_STATE_QUEUEBUSY;
934 case DS_ST_WFP:
935 if (is_manager(thrd))
936 return PL330_STATE_INVALID;
937 else
938 return PL330_STATE_WFP;
939 case DS_ST_KILL:
940 if (is_manager(thrd))
941 return PL330_STATE_INVALID;
942 else
943 return PL330_STATE_KILLING;
944 case DS_ST_CMPLT:
945 if (is_manager(thrd))
946 return PL330_STATE_INVALID;
947 else
948 return PL330_STATE_COMPLETING;
949 case DS_ST_FLTCMP:
950 if (is_manager(thrd))
951 return PL330_STATE_INVALID;
952 else
953 return PL330_STATE_FAULT_COMPLETING;
954 default:
955 return PL330_STATE_INVALID;
956 }
957 }
958
959 static void _stop(struct pl330_thread *thrd)
960 {
961 void __iomem *regs = thrd->dmac->base;
962 u8 insn[6] = {0, 0, 0, 0, 0, 0};
963 u32 inten = readl(regs + INTEN);
964
965 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
966 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
967
968 /* Return if nothing needs to be done */
969 if (_state(thrd) == PL330_STATE_COMPLETING
970 || _state(thrd) == PL330_STATE_KILLING
971 || _state(thrd) == PL330_STATE_STOPPED)
972 return;
973
974 _emit_KILL(0, insn);
975
976 _execute_DBGINSN(thrd, insn, is_manager(thrd));
977
978 /* clear the event */
979 if (inten & (1 << thrd->ev))
980 writel(1 << thrd->ev, regs + INTCLR);
981 /* Stop generating interrupts for SEV */
982 writel(inten & ~(1 << thrd->ev), regs + INTEN);
983 }
984
985 /* Start doing req 'idx' of thread 'thrd' */
986 static bool _trigger(struct pl330_thread *thrd)
987 {
988 void __iomem *regs = thrd->dmac->base;
989 struct _pl330_req *req;
990 struct dma_pl330_desc *desc;
991 struct _arg_GO go;
992 unsigned ns;
993 u8 insn[6] = {0, 0, 0, 0, 0, 0};
994 int idx;
995
996 /* Return if already ACTIVE */
997 if (_state(thrd) != PL330_STATE_STOPPED)
998 return true;
999
1000 idx = 1 - thrd->lstenq;
1001 if (thrd->req[idx].desc != NULL) {
1002 req = &thrd->req[idx];
1003 } else {
1004 idx = thrd->lstenq;
1005 if (thrd->req[idx].desc != NULL)
1006 req = &thrd->req[idx];
1007 else
1008 req = NULL;
1009 }
1010
1011 /* Return if no request */
1012 if (!req)
1013 return true;
1014
1015 /* Return if req is running */
1016 if (idx == thrd->req_running)
1017 return true;
1018
1019 desc = req->desc;
1020
1021 ns = desc->rqcfg.nonsecure ? 1 : 0;
1022
1023 /* See 'Abort Sources' point-4 at Page 2-25 */
1024 if (_manager_ns(thrd) && !ns)
1025 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1026 __func__, __LINE__);
1027
1028 go.chan = thrd->id;
1029 go.addr = req->mc_bus;
1030 go.ns = ns;
1031 _emit_GO(0, insn, &go);
1032
1033 /* Set to generate interrupts for SEV */
1034 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1035
1036 /* Only manager can execute GO */
1037 _execute_DBGINSN(thrd, insn, true);
1038
1039 thrd->req_running = idx;
1040
1041 return true;
1042 }
1043
1044 static bool _start(struct pl330_thread *thrd)
1045 {
1046 switch (_state(thrd)) {
1047 case PL330_STATE_FAULT_COMPLETING:
1048 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1049
1050 if (_state(thrd) == PL330_STATE_KILLING)
1051 UNTIL(thrd, PL330_STATE_STOPPED)
1052
1053 case PL330_STATE_FAULTING:
1054 _stop(thrd);
1055
1056 case PL330_STATE_KILLING:
1057 case PL330_STATE_COMPLETING:
1058 UNTIL(thrd, PL330_STATE_STOPPED)
1059
1060 case PL330_STATE_STOPPED:
1061 return _trigger(thrd);
1062
1063 case PL330_STATE_WFP:
1064 case PL330_STATE_QUEUEBUSY:
1065 case PL330_STATE_ATBARRIER:
1066 case PL330_STATE_UPDTPC:
1067 case PL330_STATE_CACHEMISS:
1068 case PL330_STATE_EXECUTING:
1069 return true;
1070
1071 case PL330_STATE_WFE: /* For RESUME, nothing yet */
1072 default:
1073 return false;
1074 }
1075 }
1076
1077 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1078 const struct _xfer_spec *pxs, int cyc)
1079 {
1080 int off = 0;
1081 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1082
1083 /* check lock-up free version */
1084 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1085 while (cyc--) {
1086 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1087 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1088 }
1089 } else {
1090 while (cyc--) {
1091 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1092 off += _emit_RMB(dry_run, &buf[off]);
1093 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1094 off += _emit_WMB(dry_run, &buf[off]);
1095 }
1096 }
1097
1098 return off;
1099 }
1100
1101 static inline int _ldst_devtomem(struct pl330_dmac *pl330, unsigned dry_run,
1102 u8 buf[], const struct _xfer_spec *pxs,
1103 int cyc)
1104 {
1105 int off = 0;
1106 enum pl330_cond cond;
1107
1108 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1109 cond = BURST;
1110 else
1111 cond = SINGLE;
1112
1113 while (cyc--) {
1114 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1115 off += _emit_LDP(dry_run, &buf[off], cond, pxs->desc->peri);
1116 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1117
1118 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1119 off += _emit_FLUSHP(dry_run, &buf[off],
1120 pxs->desc->peri);
1121 }
1122
1123 return off;
1124 }
1125
1126 static inline int _ldst_memtodev(struct pl330_dmac *pl330,
1127 unsigned dry_run, u8 buf[],
1128 const struct _xfer_spec *pxs, int cyc)
1129 {
1130 int off = 0;
1131 enum pl330_cond cond;
1132
1133 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1134 cond = BURST;
1135 else
1136 cond = SINGLE;
1137
1138 while (cyc--) {
1139 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1140 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1141 off += _emit_STP(dry_run, &buf[off], cond, pxs->desc->peri);
1142
1143 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1144 off += _emit_FLUSHP(dry_run, &buf[off],
1145 pxs->desc->peri);
1146 }
1147
1148 return off;
1149 }
1150
1151 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1152 const struct _xfer_spec *pxs, int cyc)
1153 {
1154 int off = 0;
1155
1156 switch (pxs->desc->rqtype) {
1157 case DMA_MEM_TO_DEV:
1158 off += _ldst_memtodev(pl330, dry_run, &buf[off], pxs, cyc);
1159 break;
1160 case DMA_DEV_TO_MEM:
1161 off += _ldst_devtomem(pl330, dry_run, &buf[off], pxs, cyc);
1162 break;
1163 case DMA_MEM_TO_MEM:
1164 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1165 break;
1166 default:
1167 off += 0x40000000; /* Scare off the Client */
1168 break;
1169 }
1170
1171 return off;
1172 }
1173
1174 /* Returns bytes consumed and updates bursts */
1175 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1176 unsigned long *bursts, const struct _xfer_spec *pxs)
1177 {
1178 int cyc, cycmax, szlp, szlpend, szbrst, off;
1179 unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1180 struct _arg_LPEND lpend;
1181
1182 if (*bursts == 1)
1183 return _bursts(pl330, dry_run, buf, pxs, 1);
1184
1185 /* Max iterations possible in DMALP is 256 */
1186 if (*bursts >= 256*256) {
1187 lcnt1 = 256;
1188 lcnt0 = 256;
1189 cyc = *bursts / lcnt1 / lcnt0;
1190 } else if (*bursts > 256) {
1191 lcnt1 = 256;
1192 lcnt0 = *bursts / lcnt1;
1193 cyc = 1;
1194 } else {
1195 lcnt1 = *bursts;
1196 lcnt0 = 0;
1197 cyc = 1;
1198 }
1199
1200 szlp = _emit_LP(1, buf, 0, 0);
1201 szbrst = _bursts(pl330, 1, buf, pxs, 1);
1202
1203 lpend.cond = ALWAYS;
1204 lpend.forever = false;
1205 lpend.loop = 0;
1206 lpend.bjump = 0;
1207 szlpend = _emit_LPEND(1, buf, &lpend);
1208
1209 if (lcnt0) {
1210 szlp *= 2;
1211 szlpend *= 2;
1212 }
1213
1214 /*
1215 * Max bursts that we can unroll due to limit on the
1216 * size of backward jump that can be encoded in DMALPEND
1217 * which is 8-bits and hence 255
1218 */
1219 cycmax = (255 - (szlp + szlpend)) / szbrst;
1220
1221 cyc = (cycmax < cyc) ? cycmax : cyc;
1222
1223 off = 0;
1224
1225 if (lcnt0) {
1226 off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1227 ljmp0 = off;
1228 }
1229
1230 off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1231 ljmp1 = off;
1232
1233 off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1234
1235 lpend.cond = ALWAYS;
1236 lpend.forever = false;
1237 lpend.loop = 1;
1238 lpend.bjump = off - ljmp1;
1239 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1240
1241 if (lcnt0) {
1242 lpend.cond = ALWAYS;
1243 lpend.forever = false;
1244 lpend.loop = 0;
1245 lpend.bjump = off - ljmp0;
1246 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1247 }
1248
1249 *bursts = lcnt1 * cyc;
1250 if (lcnt0)
1251 *bursts *= lcnt0;
1252
1253 return off;
1254 }
1255
1256 static inline int _setup_loops(struct pl330_dmac *pl330,
1257 unsigned dry_run, u8 buf[],
1258 const struct _xfer_spec *pxs)
1259 {
1260 struct pl330_xfer *x = &pxs->desc->px;
1261 u32 ccr = pxs->ccr;
1262 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1263 int off = 0;
1264
1265 while (bursts) {
1266 c = bursts;
1267 off += _loop(pl330, dry_run, &buf[off], &c, pxs);
1268 bursts -= c;
1269 }
1270
1271 return off;
1272 }
1273
1274 static inline int _setup_xfer(struct pl330_dmac *pl330,
1275 unsigned dry_run, u8 buf[],
1276 const struct _xfer_spec *pxs)
1277 {
1278 struct pl330_xfer *x = &pxs->desc->px;
1279 int off = 0;
1280
1281 /* DMAMOV SAR, x->src_addr */
1282 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1283 /* DMAMOV DAR, x->dst_addr */
1284 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1285
1286 /* Setup Loop(s) */
1287 off += _setup_loops(pl330, dry_run, &buf[off], pxs);
1288
1289 return off;
1290 }
1291
1292 /*
1293 * A req is a sequence of one or more xfer units.
1294 * Returns the number of bytes taken to setup the MC for the req.
1295 */
1296 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run,
1297 struct pl330_thread *thrd, unsigned index,
1298 struct _xfer_spec *pxs)
1299 {
1300 struct _pl330_req *req = &thrd->req[index];
1301 struct pl330_xfer *x;
1302 u8 *buf = req->mc_cpu;
1303 int off = 0;
1304
1305 PL330_DBGMC_START(req->mc_bus);
1306
1307 /* DMAMOV CCR, ccr */
1308 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1309
1310 x = &pxs->desc->px;
1311 /* Error if xfer length is not aligned at burst size */
1312 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1313 return -EINVAL;
1314
1315 off += _setup_xfer(pl330, dry_run, &buf[off], pxs);
1316
1317 /* DMASEV peripheral/event */
1318 off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1319 /* DMAEND */
1320 off += _emit_END(dry_run, &buf[off]);
1321
1322 return off;
1323 }
1324
1325 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1326 {
1327 u32 ccr = 0;
1328
1329 if (rqc->src_inc)
1330 ccr |= CC_SRCINC;
1331
1332 if (rqc->dst_inc)
1333 ccr |= CC_DSTINC;
1334
1335 /* We set same protection levels for Src and DST for now */
1336 if (rqc->privileged)
1337 ccr |= CC_SRCPRI | CC_DSTPRI;
1338 if (rqc->nonsecure)
1339 ccr |= CC_SRCNS | CC_DSTNS;
1340 if (rqc->insnaccess)
1341 ccr |= CC_SRCIA | CC_DSTIA;
1342
1343 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1344 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1345
1346 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1347 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1348
1349 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1350 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1351
1352 ccr |= (rqc->swap << CC_SWAP_SHFT);
1353
1354 return ccr;
1355 }
1356
1357 /*
1358 * Submit a list of xfers after which the client wants notification.
1359 * Client is not notified after each xfer unit, just once after all
1360 * xfer units are done or some error occurs.
1361 */
1362 static int pl330_submit_req(struct pl330_thread *thrd,
1363 struct dma_pl330_desc *desc)
1364 {
1365 struct pl330_dmac *pl330 = thrd->dmac;
1366 struct _xfer_spec xs;
1367 unsigned long flags;
1368 unsigned idx;
1369 u32 ccr;
1370 int ret = 0;
1371
1372 if (pl330->state == DYING
1373 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1374 dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1375 __func__, __LINE__);
1376 return -EAGAIN;
1377 }
1378
1379 /* If request for non-existing peripheral */
1380 if (desc->rqtype != DMA_MEM_TO_MEM &&
1381 desc->peri >= pl330->pcfg.num_peri) {
1382 dev_info(thrd->dmac->ddma.dev,
1383 "%s:%d Invalid peripheral(%u)!\n",
1384 __func__, __LINE__, desc->peri);
1385 return -EINVAL;
1386 }
1387
1388 spin_lock_irqsave(&pl330->lock, flags);
1389
1390 if (_queue_full(thrd)) {
1391 ret = -EAGAIN;
1392 goto xfer_exit;
1393 }
1394
1395 /* Prefer Secure Channel */
1396 if (!_manager_ns(thrd))
1397 desc->rqcfg.nonsecure = 0;
1398 else
1399 desc->rqcfg.nonsecure = 1;
1400
1401 ccr = _prepare_ccr(&desc->rqcfg);
1402
1403 idx = thrd->req[0].desc == NULL ? 0 : 1;
1404
1405 xs.ccr = ccr;
1406 xs.desc = desc;
1407
1408 /* First dry run to check if req is acceptable */
1409 ret = _setup_req(pl330, 1, thrd, idx, &xs);
1410 if (ret < 0)
1411 goto xfer_exit;
1412
1413 if (ret > pl330->mcbufsz / 2) {
1414 dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1415 __func__, __LINE__, ret, pl330->mcbufsz / 2);
1416 ret = -ENOMEM;
1417 goto xfer_exit;
1418 }
1419
1420 /* Hook the request */
1421 thrd->lstenq = idx;
1422 thrd->req[idx].desc = desc;
1423 _setup_req(pl330, 0, thrd, idx, &xs);
1424
1425 ret = 0;
1426
1427 xfer_exit:
1428 spin_unlock_irqrestore(&pl330->lock, flags);
1429
1430 return ret;
1431 }
1432
1433 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1434 {
1435 struct dma_pl330_chan *pch;
1436 unsigned long flags;
1437
1438 if (!desc)
1439 return;
1440
1441 pch = desc->pchan;
1442
1443 /* If desc aborted */
1444 if (!pch)
1445 return;
1446
1447 spin_lock_irqsave(&pch->lock, flags);
1448
1449 desc->status = DONE;
1450
1451 spin_unlock_irqrestore(&pch->lock, flags);
1452
1453 tasklet_schedule(&pch->task);
1454 }
1455
1456 static void pl330_dotask(unsigned long data)
1457 {
1458 struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1459 unsigned long flags;
1460 int i;
1461
1462 spin_lock_irqsave(&pl330->lock, flags);
1463
1464 /* The DMAC itself gone nuts */
1465 if (pl330->dmac_tbd.reset_dmac) {
1466 pl330->state = DYING;
1467 /* Reset the manager too */
1468 pl330->dmac_tbd.reset_mngr = true;
1469 /* Clear the reset flag */
1470 pl330->dmac_tbd.reset_dmac = false;
1471 }
1472
1473 if (pl330->dmac_tbd.reset_mngr) {
1474 _stop(pl330->manager);
1475 /* Reset all channels */
1476 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1477 /* Clear the reset flag */
1478 pl330->dmac_tbd.reset_mngr = false;
1479 }
1480
1481 for (i = 0; i < pl330->pcfg.num_chan; i++) {
1482
1483 if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1484 struct pl330_thread *thrd = &pl330->channels[i];
1485 void __iomem *regs = pl330->base;
1486 enum pl330_op_err err;
1487
1488 _stop(thrd);
1489
1490 if (readl(regs + FSC) & (1 << thrd->id))
1491 err = PL330_ERR_FAIL;
1492 else
1493 err = PL330_ERR_ABORT;
1494
1495 spin_unlock_irqrestore(&pl330->lock, flags);
1496 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1497 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1498 spin_lock_irqsave(&pl330->lock, flags);
1499
1500 thrd->req[0].desc = NULL;
1501 thrd->req[1].desc = NULL;
1502 thrd->req_running = -1;
1503
1504 /* Clear the reset flag */
1505 pl330->dmac_tbd.reset_chan &= ~(1 << i);
1506 }
1507 }
1508
1509 spin_unlock_irqrestore(&pl330->lock, flags);
1510
1511 return;
1512 }
1513
1514 /* Returns 1 if state was updated, 0 otherwise */
1515 static int pl330_update(struct pl330_dmac *pl330)
1516 {
1517 struct dma_pl330_desc *descdone;
1518 unsigned long flags;
1519 void __iomem *regs;
1520 u32 val;
1521 int id, ev, ret = 0;
1522
1523 regs = pl330->base;
1524
1525 spin_lock_irqsave(&pl330->lock, flags);
1526
1527 val = readl(regs + FSM) & 0x1;
1528 if (val)
1529 pl330->dmac_tbd.reset_mngr = true;
1530 else
1531 pl330->dmac_tbd.reset_mngr = false;
1532
1533 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1534 pl330->dmac_tbd.reset_chan |= val;
1535 if (val) {
1536 int i = 0;
1537 while (i < pl330->pcfg.num_chan) {
1538 if (val & (1 << i)) {
1539 dev_info(pl330->ddma.dev,
1540 "Reset Channel-%d\t CS-%x FTC-%x\n",
1541 i, readl(regs + CS(i)),
1542 readl(regs + FTC(i)));
1543 _stop(&pl330->channels[i]);
1544 }
1545 i++;
1546 }
1547 }
1548
1549 /* Check which event happened i.e, thread notified */
1550 val = readl(regs + ES);
1551 if (pl330->pcfg.num_events < 32
1552 && val & ~((1 << pl330->pcfg.num_events) - 1)) {
1553 pl330->dmac_tbd.reset_dmac = true;
1554 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1555 __LINE__);
1556 ret = 1;
1557 goto updt_exit;
1558 }
1559
1560 for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1561 if (val & (1 << ev)) { /* Event occurred */
1562 struct pl330_thread *thrd;
1563 u32 inten = readl(regs + INTEN);
1564 int active;
1565
1566 /* Clear the event */
1567 if (inten & (1 << ev))
1568 writel(1 << ev, regs + INTCLR);
1569
1570 ret = 1;
1571
1572 id = pl330->events[ev];
1573
1574 thrd = &pl330->channels[id];
1575
1576 active = thrd->req_running;
1577 if (active == -1) /* Aborted */
1578 continue;
1579
1580 /* Detach the req */
1581 descdone = thrd->req[active].desc;
1582 thrd->req[active].desc = NULL;
1583
1584 thrd->req_running = -1;
1585
1586 /* Get going again ASAP */
1587 _start(thrd);
1588
1589 /* For now, just make a list of callbacks to be done */
1590 list_add_tail(&descdone->rqd, &pl330->req_done);
1591 }
1592 }
1593
1594 /* Now that we are in no hurry, do the callbacks */
1595 while (!list_empty(&pl330->req_done)) {
1596 descdone = list_first_entry(&pl330->req_done,
1597 struct dma_pl330_desc, rqd);
1598 list_del(&descdone->rqd);
1599 spin_unlock_irqrestore(&pl330->lock, flags);
1600 dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1601 spin_lock_irqsave(&pl330->lock, flags);
1602 }
1603
1604 updt_exit:
1605 spin_unlock_irqrestore(&pl330->lock, flags);
1606
1607 if (pl330->dmac_tbd.reset_dmac
1608 || pl330->dmac_tbd.reset_mngr
1609 || pl330->dmac_tbd.reset_chan) {
1610 ret = 1;
1611 tasklet_schedule(&pl330->tasks);
1612 }
1613
1614 return ret;
1615 }
1616
1617 /* Reserve an event */
1618 static inline int _alloc_event(struct pl330_thread *thrd)
1619 {
1620 struct pl330_dmac *pl330 = thrd->dmac;
1621 int ev;
1622
1623 for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1624 if (pl330->events[ev] == -1) {
1625 pl330->events[ev] = thrd->id;
1626 return ev;
1627 }
1628
1629 return -1;
1630 }
1631
1632 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1633 {
1634 return pl330->pcfg.irq_ns & (1 << i);
1635 }
1636
1637 /* Upon success, returns IdentityToken for the
1638 * allocated channel, NULL otherwise.
1639 */
1640 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1641 {
1642 struct pl330_thread *thrd = NULL;
1643 int chans, i;
1644
1645 if (pl330->state == DYING)
1646 return NULL;
1647
1648 chans = pl330->pcfg.num_chan;
1649
1650 for (i = 0; i < chans; i++) {
1651 thrd = &pl330->channels[i];
1652 if ((thrd->free) && (!_manager_ns(thrd) ||
1653 _chan_ns(pl330, i))) {
1654 thrd->ev = _alloc_event(thrd);
1655 if (thrd->ev >= 0) {
1656 thrd->free = false;
1657 thrd->lstenq = 1;
1658 thrd->req[0].desc = NULL;
1659 thrd->req[1].desc = NULL;
1660 thrd->req_running = -1;
1661 break;
1662 }
1663 }
1664 thrd = NULL;
1665 }
1666
1667 return thrd;
1668 }
1669
1670 /* Release an event */
1671 static inline void _free_event(struct pl330_thread *thrd, int ev)
1672 {
1673 struct pl330_dmac *pl330 = thrd->dmac;
1674
1675 /* If the event is valid and was held by the thread */
1676 if (ev >= 0 && ev < pl330->pcfg.num_events
1677 && pl330->events[ev] == thrd->id)
1678 pl330->events[ev] = -1;
1679 }
1680
1681 static void pl330_release_channel(struct pl330_thread *thrd)
1682 {
1683 struct pl330_dmac *pl330;
1684
1685 if (!thrd || thrd->free)
1686 return;
1687
1688 _stop(thrd);
1689
1690 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1691 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1692
1693 pl330 = thrd->dmac;
1694
1695 _free_event(thrd, thrd->ev);
1696 thrd->free = true;
1697 }
1698
1699 /* Initialize the structure for PL330 configuration, that can be used
1700 * by the client driver the make best use of the DMAC
1701 */
1702 static void read_dmac_config(struct pl330_dmac *pl330)
1703 {
1704 void __iomem *regs = pl330->base;
1705 u32 val;
1706
1707 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1708 val &= CRD_DATA_WIDTH_MASK;
1709 pl330->pcfg.data_bus_width = 8 * (1 << val);
1710
1711 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1712 val &= CRD_DATA_BUFF_MASK;
1713 pl330->pcfg.data_buf_dep = val + 1;
1714
1715 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1716 val &= CR0_NUM_CHANS_MASK;
1717 val += 1;
1718 pl330->pcfg.num_chan = val;
1719
1720 val = readl(regs + CR0);
1721 if (val & CR0_PERIPH_REQ_SET) {
1722 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1723 val += 1;
1724 pl330->pcfg.num_peri = val;
1725 pl330->pcfg.peri_ns = readl(regs + CR4);
1726 } else {
1727 pl330->pcfg.num_peri = 0;
1728 }
1729
1730 val = readl(regs + CR0);
1731 if (val & CR0_BOOT_MAN_NS)
1732 pl330->pcfg.mode |= DMAC_MODE_NS;
1733 else
1734 pl330->pcfg.mode &= ~DMAC_MODE_NS;
1735
1736 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1737 val &= CR0_NUM_EVENTS_MASK;
1738 val += 1;
1739 pl330->pcfg.num_events = val;
1740
1741 pl330->pcfg.irq_ns = readl(regs + CR3);
1742 }
1743
1744 static inline void _reset_thread(struct pl330_thread *thrd)
1745 {
1746 struct pl330_dmac *pl330 = thrd->dmac;
1747
1748 thrd->req[0].mc_cpu = pl330->mcode_cpu
1749 + (thrd->id * pl330->mcbufsz);
1750 thrd->req[0].mc_bus = pl330->mcode_bus
1751 + (thrd->id * pl330->mcbufsz);
1752 thrd->req[0].desc = NULL;
1753
1754 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1755 + pl330->mcbufsz / 2;
1756 thrd->req[1].mc_bus = thrd->req[0].mc_bus
1757 + pl330->mcbufsz / 2;
1758 thrd->req[1].desc = NULL;
1759
1760 thrd->req_running = -1;
1761 }
1762
1763 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1764 {
1765 int chans = pl330->pcfg.num_chan;
1766 struct pl330_thread *thrd;
1767 int i;
1768
1769 /* Allocate 1 Manager and 'chans' Channel threads */
1770 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
1771 GFP_KERNEL);
1772 if (!pl330->channels)
1773 return -ENOMEM;
1774
1775 /* Init Channel threads */
1776 for (i = 0; i < chans; i++) {
1777 thrd = &pl330->channels[i];
1778 thrd->id = i;
1779 thrd->dmac = pl330;
1780 _reset_thread(thrd);
1781 thrd->free = true;
1782 }
1783
1784 /* MANAGER is indexed at the end */
1785 thrd = &pl330->channels[chans];
1786 thrd->id = chans;
1787 thrd->dmac = pl330;
1788 thrd->free = false;
1789 pl330->manager = thrd;
1790
1791 return 0;
1792 }
1793
1794 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1795 {
1796 int chans = pl330->pcfg.num_chan;
1797 int ret;
1798
1799 /*
1800 * Alloc MicroCode buffer for 'chans' Channel threads.
1801 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1802 */
1803 pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev,
1804 chans * pl330->mcbufsz,
1805 &pl330->mcode_bus, GFP_KERNEL,
1806 DMA_ATTR_PRIVILEGED);
1807 if (!pl330->mcode_cpu) {
1808 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1809 __func__, __LINE__);
1810 return -ENOMEM;
1811 }
1812
1813 ret = dmac_alloc_threads(pl330);
1814 if (ret) {
1815 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1816 __func__, __LINE__);
1817 dma_free_coherent(pl330->ddma.dev,
1818 chans * pl330->mcbufsz,
1819 pl330->mcode_cpu, pl330->mcode_bus);
1820 return ret;
1821 }
1822
1823 return 0;
1824 }
1825
1826 static int pl330_add(struct pl330_dmac *pl330)
1827 {
1828 int i, ret;
1829
1830 /* Check if we can handle this DMAC */
1831 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1832 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1833 pl330->pcfg.periph_id);
1834 return -EINVAL;
1835 }
1836
1837 /* Read the configuration of the DMAC */
1838 read_dmac_config(pl330);
1839
1840 if (pl330->pcfg.num_events == 0) {
1841 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1842 __func__, __LINE__);
1843 return -EINVAL;
1844 }
1845
1846 spin_lock_init(&pl330->lock);
1847
1848 INIT_LIST_HEAD(&pl330->req_done);
1849
1850 /* Use default MC buffer size if not provided */
1851 if (!pl330->mcbufsz)
1852 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1853
1854 /* Mark all events as free */
1855 for (i = 0; i < pl330->pcfg.num_events; i++)
1856 pl330->events[i] = -1;
1857
1858 /* Allocate resources needed by the DMAC */
1859 ret = dmac_alloc_resources(pl330);
1860 if (ret) {
1861 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1862 return ret;
1863 }
1864
1865 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
1866
1867 pl330->state = INIT;
1868
1869 return 0;
1870 }
1871
1872 static int dmac_free_threads(struct pl330_dmac *pl330)
1873 {
1874 struct pl330_thread *thrd;
1875 int i;
1876
1877 /* Release Channel threads */
1878 for (i = 0; i < pl330->pcfg.num_chan; i++) {
1879 thrd = &pl330->channels[i];
1880 pl330_release_channel(thrd);
1881 }
1882
1883 /* Free memory */
1884 kfree(pl330->channels);
1885
1886 return 0;
1887 }
1888
1889 static void pl330_del(struct pl330_dmac *pl330)
1890 {
1891 pl330->state = UNINIT;
1892
1893 tasklet_kill(&pl330->tasks);
1894
1895 /* Free DMAC resources */
1896 dmac_free_threads(pl330);
1897
1898 dma_free_coherent(pl330->ddma.dev,
1899 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
1900 pl330->mcode_bus);
1901 }
1902
1903 /* forward declaration */
1904 static struct amba_driver pl330_driver;
1905
1906 static inline struct dma_pl330_chan *
1907 to_pchan(struct dma_chan *ch)
1908 {
1909 if (!ch)
1910 return NULL;
1911
1912 return container_of(ch, struct dma_pl330_chan, chan);
1913 }
1914
1915 static inline struct dma_pl330_desc *
1916 to_desc(struct dma_async_tx_descriptor *tx)
1917 {
1918 return container_of(tx, struct dma_pl330_desc, txd);
1919 }
1920
1921 static inline void fill_queue(struct dma_pl330_chan *pch)
1922 {
1923 struct dma_pl330_desc *desc;
1924 int ret;
1925
1926 list_for_each_entry(desc, &pch->work_list, node) {
1927
1928 /* If already submitted */
1929 if (desc->status == BUSY)
1930 continue;
1931
1932 ret = pl330_submit_req(pch->thread, desc);
1933 if (!ret) {
1934 desc->status = BUSY;
1935 } else if (ret == -EAGAIN) {
1936 /* QFull or DMAC Dying */
1937 break;
1938 } else {
1939 /* Unacceptable request */
1940 desc->status = DONE;
1941 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
1942 __func__, __LINE__, desc->txd.cookie);
1943 tasklet_schedule(&pch->task);
1944 }
1945 }
1946 }
1947
1948 static void pl330_tasklet(unsigned long data)
1949 {
1950 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
1951 struct dma_pl330_desc *desc, *_dt;
1952 unsigned long flags;
1953 bool power_down = false;
1954
1955 spin_lock_irqsave(&pch->lock, flags);
1956
1957 /* Pick up ripe tomatoes */
1958 list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
1959 if (desc->status == DONE) {
1960 if (!pch->cyclic)
1961 dma_cookie_complete(&desc->txd);
1962 list_move_tail(&desc->node, &pch->completed_list);
1963 }
1964
1965 /* Try to submit a req imm. next to the last completed cookie */
1966 fill_queue(pch);
1967
1968 if (list_empty(&pch->work_list)) {
1969 spin_lock(&pch->thread->dmac->lock);
1970 _stop(pch->thread);
1971 spin_unlock(&pch->thread->dmac->lock);
1972 power_down = true;
1973 pch->active = false;
1974 } else {
1975 /* Make sure the PL330 Channel thread is active */
1976 spin_lock(&pch->thread->dmac->lock);
1977 _start(pch->thread);
1978 spin_unlock(&pch->thread->dmac->lock);
1979 }
1980
1981 while (!list_empty(&pch->completed_list)) {
1982 struct dmaengine_desc_callback cb;
1983
1984 desc = list_first_entry(&pch->completed_list,
1985 struct dma_pl330_desc, node);
1986
1987 dmaengine_desc_get_callback(&desc->txd, &cb);
1988
1989 if (pch->cyclic) {
1990 desc->status = PREP;
1991 list_move_tail(&desc->node, &pch->work_list);
1992 if (power_down) {
1993 pch->active = true;
1994 spin_lock(&pch->thread->dmac->lock);
1995 _start(pch->thread);
1996 spin_unlock(&pch->thread->dmac->lock);
1997 power_down = false;
1998 }
1999 } else {
2000 desc->status = FREE;
2001 list_move_tail(&desc->node, &pch->dmac->desc_pool);
2002 }
2003
2004 dma_descriptor_unmap(&desc->txd);
2005
2006 if (dmaengine_desc_callback_valid(&cb)) {
2007 spin_unlock_irqrestore(&pch->lock, flags);
2008 dmaengine_desc_callback_invoke(&cb, NULL);
2009 spin_lock_irqsave(&pch->lock, flags);
2010 }
2011 }
2012 spin_unlock_irqrestore(&pch->lock, flags);
2013
2014 /* If work list empty, power down */
2015 if (power_down) {
2016 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2017 pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2018 }
2019 }
2020
2021 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2022 struct of_dma *ofdma)
2023 {
2024 int count = dma_spec->args_count;
2025 struct pl330_dmac *pl330 = ofdma->of_dma_data;
2026 unsigned int chan_id;
2027
2028 if (!pl330)
2029 return NULL;
2030
2031 if (count != 1)
2032 return NULL;
2033
2034 chan_id = dma_spec->args[0];
2035 if (chan_id >= pl330->num_peripherals)
2036 return NULL;
2037
2038 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2039 }
2040
2041 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2042 {
2043 struct dma_pl330_chan *pch = to_pchan(chan);
2044 struct pl330_dmac *pl330 = pch->dmac;
2045 unsigned long flags;
2046
2047 spin_lock_irqsave(&pl330->lock, flags);
2048
2049 dma_cookie_init(chan);
2050 pch->cyclic = false;
2051
2052 pch->thread = pl330_request_channel(pl330);
2053 if (!pch->thread) {
2054 spin_unlock_irqrestore(&pl330->lock, flags);
2055 return -ENOMEM;
2056 }
2057
2058 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2059
2060 spin_unlock_irqrestore(&pl330->lock, flags);
2061
2062 return 1;
2063 }
2064
2065 /*
2066 * We need the data direction between the DMAC (the dma-mapping "device") and
2067 * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing!
2068 */
2069 static enum dma_data_direction
2070 pl330_dma_slave_map_dir(enum dma_transfer_direction dir)
2071 {
2072 switch (dir) {
2073 case DMA_MEM_TO_DEV:
2074 return DMA_FROM_DEVICE;
2075 case DMA_DEV_TO_MEM:
2076 return DMA_TO_DEVICE;
2077 case DMA_DEV_TO_DEV:
2078 return DMA_BIDIRECTIONAL;
2079 default:
2080 return DMA_NONE;
2081 }
2082 }
2083
2084 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch)
2085 {
2086 if (pch->dir != DMA_NONE)
2087 dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma,
2088 1 << pch->burst_sz, pch->dir, 0);
2089 pch->dir = DMA_NONE;
2090 }
2091
2092
2093 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch,
2094 enum dma_transfer_direction dir)
2095 {
2096 struct device *dev = pch->chan.device->dev;
2097 enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir);
2098
2099 /* Already mapped for this config? */
2100 if (pch->dir == dma_dir)
2101 return true;
2102
2103 pl330_unprep_slave_fifo(pch);
2104 pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr,
2105 1 << pch->burst_sz, dma_dir, 0);
2106 if (dma_mapping_error(dev, pch->fifo_dma))
2107 return false;
2108
2109 pch->dir = dma_dir;
2110 return true;
2111 }
2112
2113 static int pl330_config(struct dma_chan *chan,
2114 struct dma_slave_config *slave_config)
2115 {
2116 struct dma_pl330_chan *pch = to_pchan(chan);
2117
2118 pl330_unprep_slave_fifo(pch);
2119 if (slave_config->direction == DMA_MEM_TO_DEV) {
2120 if (slave_config->dst_addr)
2121 pch->fifo_addr = slave_config->dst_addr;
2122 if (slave_config->dst_addr_width)
2123 pch->burst_sz = __ffs(slave_config->dst_addr_width);
2124 if (slave_config->dst_maxburst)
2125 pch->burst_len = slave_config->dst_maxburst;
2126 } else if (slave_config->direction == DMA_DEV_TO_MEM) {
2127 if (slave_config->src_addr)
2128 pch->fifo_addr = slave_config->src_addr;
2129 if (slave_config->src_addr_width)
2130 pch->burst_sz = __ffs(slave_config->src_addr_width);
2131 if (slave_config->src_maxburst)
2132 pch->burst_len = slave_config->src_maxburst;
2133 }
2134
2135 return 0;
2136 }
2137
2138 static int pl330_terminate_all(struct dma_chan *chan)
2139 {
2140 struct dma_pl330_chan *pch = to_pchan(chan);
2141 struct dma_pl330_desc *desc;
2142 unsigned long flags;
2143 struct pl330_dmac *pl330 = pch->dmac;
2144 LIST_HEAD(list);
2145 bool power_down = false;
2146
2147 pm_runtime_get_sync(pl330->ddma.dev);
2148 spin_lock_irqsave(&pch->lock, flags);
2149
2150 spin_lock(&pl330->lock);
2151 _stop(pch->thread);
2152 pch->thread->req[0].desc = NULL;
2153 pch->thread->req[1].desc = NULL;
2154 pch->thread->req_running = -1;
2155 spin_unlock(&pl330->lock);
2156
2157 power_down = pch->active;
2158 pch->active = false;
2159
2160 /* Mark all desc done */
2161 list_for_each_entry(desc, &pch->submitted_list, node) {
2162 desc->status = FREE;
2163 dma_cookie_complete(&desc->txd);
2164 }
2165
2166 list_for_each_entry(desc, &pch->work_list , node) {
2167 desc->status = FREE;
2168 dma_cookie_complete(&desc->txd);
2169 }
2170
2171 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2172 list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2173 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2174 spin_unlock_irqrestore(&pch->lock, flags);
2175 pm_runtime_mark_last_busy(pl330->ddma.dev);
2176 if (power_down)
2177 pm_runtime_put_autosuspend(pl330->ddma.dev);
2178 pm_runtime_put_autosuspend(pl330->ddma.dev);
2179
2180 return 0;
2181 }
2182
2183 /*
2184 * We don't support DMA_RESUME command because of hardware
2185 * limitations, so after pausing the channel we cannot restore
2186 * it to active state. We have to terminate channel and setup
2187 * DMA transfer again. This pause feature was implemented to
2188 * allow safely read residue before channel termination.
2189 */
2190 static int pl330_pause(struct dma_chan *chan)
2191 {
2192 struct dma_pl330_chan *pch = to_pchan(chan);
2193 struct pl330_dmac *pl330 = pch->dmac;
2194 unsigned long flags;
2195
2196 pm_runtime_get_sync(pl330->ddma.dev);
2197 spin_lock_irqsave(&pch->lock, flags);
2198
2199 spin_lock(&pl330->lock);
2200 _stop(pch->thread);
2201 spin_unlock(&pl330->lock);
2202
2203 spin_unlock_irqrestore(&pch->lock, flags);
2204 pm_runtime_mark_last_busy(pl330->ddma.dev);
2205 pm_runtime_put_autosuspend(pl330->ddma.dev);
2206
2207 return 0;
2208 }
2209
2210 static void pl330_free_chan_resources(struct dma_chan *chan)
2211 {
2212 struct dma_pl330_chan *pch = to_pchan(chan);
2213 struct pl330_dmac *pl330 = pch->dmac;
2214 unsigned long flags;
2215
2216 tasklet_kill(&pch->task);
2217
2218 pm_runtime_get_sync(pch->dmac->ddma.dev);
2219 spin_lock_irqsave(&pl330->lock, flags);
2220
2221 pl330_release_channel(pch->thread);
2222 pch->thread = NULL;
2223
2224 if (pch->cyclic)
2225 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2226
2227 spin_unlock_irqrestore(&pl330->lock, flags);
2228 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2229 pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2230 pl330_unprep_slave_fifo(pch);
2231 }
2232
2233 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2234 struct dma_pl330_desc *desc)
2235 {
2236 struct pl330_thread *thrd = pch->thread;
2237 struct pl330_dmac *pl330 = pch->dmac;
2238 void __iomem *regs = thrd->dmac->base;
2239 u32 val, addr;
2240
2241 pm_runtime_get_sync(pl330->ddma.dev);
2242 val = addr = 0;
2243 if (desc->rqcfg.src_inc) {
2244 val = readl(regs + SA(thrd->id));
2245 addr = desc->px.src_addr;
2246 } else {
2247 val = readl(regs + DA(thrd->id));
2248 addr = desc->px.dst_addr;
2249 }
2250 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2251 pm_runtime_put_autosuspend(pl330->ddma.dev);
2252
2253 /* If DMAMOV hasn't finished yet, SAR/DAR can be zero */
2254 if (!val)
2255 return 0;
2256
2257 return val - addr;
2258 }
2259
2260 static enum dma_status
2261 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2262 struct dma_tx_state *txstate)
2263 {
2264 enum dma_status ret;
2265 unsigned long flags;
2266 struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL;
2267 struct dma_pl330_chan *pch = to_pchan(chan);
2268 unsigned int transferred, residual = 0;
2269
2270 ret = dma_cookie_status(chan, cookie, txstate);
2271
2272 if (!txstate)
2273 return ret;
2274
2275 if (ret == DMA_COMPLETE)
2276 goto out;
2277
2278 spin_lock_irqsave(&pch->lock, flags);
2279 spin_lock(&pch->thread->dmac->lock);
2280
2281 if (pch->thread->req_running != -1)
2282 running = pch->thread->req[pch->thread->req_running].desc;
2283
2284 last_enq = pch->thread->req[pch->thread->lstenq].desc;
2285
2286 /* Check in pending list */
2287 list_for_each_entry(desc, &pch->work_list, node) {
2288 if (desc->status == DONE)
2289 transferred = desc->bytes_requested;
2290 else if (running && desc == running)
2291 transferred =
2292 pl330_get_current_xferred_count(pch, desc);
2293 else if (desc->status == BUSY)
2294 /*
2295 * Busy but not running means either just enqueued,
2296 * or finished and not yet marked done
2297 */
2298 if (desc == last_enq)
2299 transferred = 0;
2300 else
2301 transferred = desc->bytes_requested;
2302 else
2303 transferred = 0;
2304 residual += desc->bytes_requested - transferred;
2305 if (desc->txd.cookie == cookie) {
2306 switch (desc->status) {
2307 case DONE:
2308 ret = DMA_COMPLETE;
2309 break;
2310 case PREP:
2311 case BUSY:
2312 ret = DMA_IN_PROGRESS;
2313 break;
2314 default:
2315 WARN_ON(1);
2316 }
2317 break;
2318 }
2319 if (desc->last)
2320 residual = 0;
2321 }
2322 spin_unlock(&pch->thread->dmac->lock);
2323 spin_unlock_irqrestore(&pch->lock, flags);
2324
2325 out:
2326 dma_set_residue(txstate, residual);
2327
2328 return ret;
2329 }
2330
2331 static void pl330_issue_pending(struct dma_chan *chan)
2332 {
2333 struct dma_pl330_chan *pch = to_pchan(chan);
2334 unsigned long flags;
2335
2336 spin_lock_irqsave(&pch->lock, flags);
2337 if (list_empty(&pch->work_list)) {
2338 /*
2339 * Warn on nothing pending. Empty submitted_list may
2340 * break our pm_runtime usage counter as it is
2341 * updated on work_list emptiness status.
2342 */
2343 WARN_ON(list_empty(&pch->submitted_list));
2344 pch->active = true;
2345 pm_runtime_get_sync(pch->dmac->ddma.dev);
2346 }
2347 list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2348 spin_unlock_irqrestore(&pch->lock, flags);
2349
2350 pl330_tasklet((unsigned long)pch);
2351 }
2352
2353 /*
2354 * We returned the last one of the circular list of descriptor(s)
2355 * from prep_xxx, so the argument to submit corresponds to the last
2356 * descriptor of the list.
2357 */
2358 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2359 {
2360 struct dma_pl330_desc *desc, *last = to_desc(tx);
2361 struct dma_pl330_chan *pch = to_pchan(tx->chan);
2362 dma_cookie_t cookie;
2363 unsigned long flags;
2364
2365 spin_lock_irqsave(&pch->lock, flags);
2366
2367 /* Assign cookies to all nodes */
2368 while (!list_empty(&last->node)) {
2369 desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2370 if (pch->cyclic) {
2371 desc->txd.callback = last->txd.callback;
2372 desc->txd.callback_param = last->txd.callback_param;
2373 }
2374 desc->last = false;
2375
2376 dma_cookie_assign(&desc->txd);
2377
2378 list_move_tail(&desc->node, &pch->submitted_list);
2379 }
2380
2381 last->last = true;
2382 cookie = dma_cookie_assign(&last->txd);
2383 list_add_tail(&last->node, &pch->submitted_list);
2384 spin_unlock_irqrestore(&pch->lock, flags);
2385
2386 return cookie;
2387 }
2388
2389 static inline void _init_desc(struct dma_pl330_desc *desc)
2390 {
2391 desc->rqcfg.swap = SWAP_NO;
2392 desc->rqcfg.scctl = CCTRL0;
2393 desc->rqcfg.dcctl = CCTRL0;
2394 desc->txd.tx_submit = pl330_tx_submit;
2395
2396 INIT_LIST_HEAD(&desc->node);
2397 }
2398
2399 /* Returns the number of descriptors added to the DMAC pool */
2400 static int add_desc(struct list_head *pool, spinlock_t *lock,
2401 gfp_t flg, int count)
2402 {
2403 struct dma_pl330_desc *desc;
2404 unsigned long flags;
2405 int i;
2406
2407 desc = kcalloc(count, sizeof(*desc), flg);
2408 if (!desc)
2409 return 0;
2410
2411 spin_lock_irqsave(lock, flags);
2412
2413 for (i = 0; i < count; i++) {
2414 _init_desc(&desc[i]);
2415 list_add_tail(&desc[i].node, pool);
2416 }
2417
2418 spin_unlock_irqrestore(lock, flags);
2419
2420 return count;
2421 }
2422
2423 static struct dma_pl330_desc *pluck_desc(struct list_head *pool,
2424 spinlock_t *lock)
2425 {
2426 struct dma_pl330_desc *desc = NULL;
2427 unsigned long flags;
2428
2429 spin_lock_irqsave(lock, flags);
2430
2431 if (!list_empty(pool)) {
2432 desc = list_entry(pool->next,
2433 struct dma_pl330_desc, node);
2434
2435 list_del_init(&desc->node);
2436
2437 desc->status = PREP;
2438 desc->txd.callback = NULL;
2439 }
2440
2441 spin_unlock_irqrestore(lock, flags);
2442
2443 return desc;
2444 }
2445
2446 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2447 {
2448 struct pl330_dmac *pl330 = pch->dmac;
2449 u8 *peri_id = pch->chan.private;
2450 struct dma_pl330_desc *desc;
2451
2452 /* Pluck one desc from the pool of DMAC */
2453 desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock);
2454
2455 /* If the DMAC pool is empty, alloc new */
2456 if (!desc) {
2457 DEFINE_SPINLOCK(lock);
2458 LIST_HEAD(pool);
2459
2460 if (!add_desc(&pool, &lock, GFP_ATOMIC, 1))
2461 return NULL;
2462
2463 desc = pluck_desc(&pool, &lock);
2464 WARN_ON(!desc || !list_empty(&pool));
2465 }
2466
2467 /* Initialize the descriptor */
2468 desc->pchan = pch;
2469 desc->txd.cookie = 0;
2470 async_tx_ack(&desc->txd);
2471
2472 desc->peri = peri_id ? pch->chan.chan_id : 0;
2473 desc->rqcfg.pcfg = &pch->dmac->pcfg;
2474
2475 dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2476
2477 return desc;
2478 }
2479
2480 static inline void fill_px(struct pl330_xfer *px,
2481 dma_addr_t dst, dma_addr_t src, size_t len)
2482 {
2483 px->bytes = len;
2484 px->dst_addr = dst;
2485 px->src_addr = src;
2486 }
2487
2488 static struct dma_pl330_desc *
2489 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2490 dma_addr_t src, size_t len)
2491 {
2492 struct dma_pl330_desc *desc = pl330_get_desc(pch);
2493
2494 if (!desc) {
2495 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2496 __func__, __LINE__);
2497 return NULL;
2498 }
2499
2500 /*
2501 * Ideally we should lookout for reqs bigger than
2502 * those that can be programmed with 256 bytes of
2503 * MC buffer, but considering a req size is seldom
2504 * going to be word-unaligned and more than 200MB,
2505 * we take it easy.
2506 * Also, should the limit is reached we'd rather
2507 * have the platform increase MC buffer size than
2508 * complicating this API driver.
2509 */
2510 fill_px(&desc->px, dst, src, len);
2511
2512 return desc;
2513 }
2514
2515 /* Call after fixing burst size */
2516 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2517 {
2518 struct dma_pl330_chan *pch = desc->pchan;
2519 struct pl330_dmac *pl330 = pch->dmac;
2520 int burst_len;
2521
2522 burst_len = pl330->pcfg.data_bus_width / 8;
2523 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2524 burst_len >>= desc->rqcfg.brst_size;
2525
2526 /* src/dst_burst_len can't be more than 16 */
2527 if (burst_len > 16)
2528 burst_len = 16;
2529
2530 while (burst_len > 1) {
2531 if (!(len % (burst_len << desc->rqcfg.brst_size)))
2532 break;
2533 burst_len--;
2534 }
2535
2536 return burst_len;
2537 }
2538
2539 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2540 struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2541 size_t period_len, enum dma_transfer_direction direction,
2542 unsigned long flags)
2543 {
2544 struct dma_pl330_desc *desc = NULL, *first = NULL;
2545 struct dma_pl330_chan *pch = to_pchan(chan);
2546 struct pl330_dmac *pl330 = pch->dmac;
2547 unsigned int i;
2548 dma_addr_t dst;
2549 dma_addr_t src;
2550
2551 if (len % period_len != 0)
2552 return NULL;
2553
2554 if (!is_slave_direction(direction)) {
2555 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2556 __func__, __LINE__);
2557 return NULL;
2558 }
2559
2560 if (!pl330_prep_slave_fifo(pch, direction))
2561 return NULL;
2562
2563 for (i = 0; i < len / period_len; i++) {
2564 desc = pl330_get_desc(pch);
2565 if (!desc) {
2566 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2567 __func__, __LINE__);
2568
2569 if (!first)
2570 return NULL;
2571
2572 spin_lock_irqsave(&pl330->pool_lock, flags);
2573
2574 while (!list_empty(&first->node)) {
2575 desc = list_entry(first->node.next,
2576 struct dma_pl330_desc, node);
2577 list_move_tail(&desc->node, &pl330->desc_pool);
2578 }
2579
2580 list_move_tail(&first->node, &pl330->desc_pool);
2581
2582 spin_unlock_irqrestore(&pl330->pool_lock, flags);
2583
2584 return NULL;
2585 }
2586
2587 switch (direction) {
2588 case DMA_MEM_TO_DEV:
2589 desc->rqcfg.src_inc = 1;
2590 desc->rqcfg.dst_inc = 0;
2591 src = dma_addr;
2592 dst = pch->fifo_dma;
2593 break;
2594 case DMA_DEV_TO_MEM:
2595 desc->rqcfg.src_inc = 0;
2596 desc->rqcfg.dst_inc = 1;
2597 src = pch->fifo_dma;
2598 dst = dma_addr;
2599 break;
2600 default:
2601 break;
2602 }
2603
2604 desc->rqtype = direction;
2605 desc->rqcfg.brst_size = pch->burst_sz;
2606 desc->rqcfg.brst_len = 1;
2607 desc->bytes_requested = period_len;
2608 fill_px(&desc->px, dst, src, period_len);
2609
2610 if (!first)
2611 first = desc;
2612 else
2613 list_add_tail(&desc->node, &first->node);
2614
2615 dma_addr += period_len;
2616 }
2617
2618 if (!desc)
2619 return NULL;
2620
2621 pch->cyclic = true;
2622 desc->txd.flags = flags;
2623
2624 return &desc->txd;
2625 }
2626
2627 static struct dma_async_tx_descriptor *
2628 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2629 dma_addr_t src, size_t len, unsigned long flags)
2630 {
2631 struct dma_pl330_desc *desc;
2632 struct dma_pl330_chan *pch = to_pchan(chan);
2633 struct pl330_dmac *pl330;
2634 int burst;
2635
2636 if (unlikely(!pch || !len))
2637 return NULL;
2638
2639 pl330 = pch->dmac;
2640
2641 desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2642 if (!desc)
2643 return NULL;
2644
2645 desc->rqcfg.src_inc = 1;
2646 desc->rqcfg.dst_inc = 1;
2647 desc->rqtype = DMA_MEM_TO_MEM;
2648
2649 /* Select max possible burst size */
2650 burst = pl330->pcfg.data_bus_width / 8;
2651
2652 /*
2653 * Make sure we use a burst size that aligns with all the memcpy
2654 * parameters because our DMA programming algorithm doesn't cope with
2655 * transfers which straddle an entry in the DMA device's MFIFO.
2656 */
2657 while ((src | dst | len) & (burst - 1))
2658 burst /= 2;
2659
2660 desc->rqcfg.brst_size = 0;
2661 while (burst != (1 << desc->rqcfg.brst_size))
2662 desc->rqcfg.brst_size++;
2663
2664 /*
2665 * If burst size is smaller than bus width then make sure we only
2666 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2667 */
2668 if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width)
2669 desc->rqcfg.brst_len = 1;
2670
2671 desc->rqcfg.brst_len = get_burst_len(desc, len);
2672 desc->bytes_requested = len;
2673
2674 desc->txd.flags = flags;
2675
2676 return &desc->txd;
2677 }
2678
2679 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2680 struct dma_pl330_desc *first)
2681 {
2682 unsigned long flags;
2683 struct dma_pl330_desc *desc;
2684
2685 if (!first)
2686 return;
2687
2688 spin_lock_irqsave(&pl330->pool_lock, flags);
2689
2690 while (!list_empty(&first->node)) {
2691 desc = list_entry(first->node.next,
2692 struct dma_pl330_desc, node);
2693 list_move_tail(&desc->node, &pl330->desc_pool);
2694 }
2695
2696 list_move_tail(&first->node, &pl330->desc_pool);
2697
2698 spin_unlock_irqrestore(&pl330->pool_lock, flags);
2699 }
2700
2701 static struct dma_async_tx_descriptor *
2702 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2703 unsigned int sg_len, enum dma_transfer_direction direction,
2704 unsigned long flg, void *context)
2705 {
2706 struct dma_pl330_desc *first, *desc = NULL;
2707 struct dma_pl330_chan *pch = to_pchan(chan);
2708 struct scatterlist *sg;
2709 int i;
2710
2711 if (unlikely(!pch || !sgl || !sg_len))
2712 return NULL;
2713
2714 if (!pl330_prep_slave_fifo(pch, direction))
2715 return NULL;
2716
2717 first = NULL;
2718
2719 for_each_sg(sgl, sg, sg_len, i) {
2720
2721 desc = pl330_get_desc(pch);
2722 if (!desc) {
2723 struct pl330_dmac *pl330 = pch->dmac;
2724
2725 dev_err(pch->dmac->ddma.dev,
2726 "%s:%d Unable to fetch desc\n",
2727 __func__, __LINE__);
2728 __pl330_giveback_desc(pl330, first);
2729
2730 return NULL;
2731 }
2732
2733 if (!first)
2734 first = desc;
2735 else
2736 list_add_tail(&desc->node, &first->node);
2737
2738 if (direction == DMA_MEM_TO_DEV) {
2739 desc->rqcfg.src_inc = 1;
2740 desc->rqcfg.dst_inc = 0;
2741 fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg),
2742 sg_dma_len(sg));
2743 } else {
2744 desc->rqcfg.src_inc = 0;
2745 desc->rqcfg.dst_inc = 1;
2746 fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma,
2747 sg_dma_len(sg));
2748 }
2749
2750 desc->rqcfg.brst_size = pch->burst_sz;
2751 desc->rqcfg.brst_len = 1;
2752 desc->rqtype = direction;
2753 desc->bytes_requested = sg_dma_len(sg);
2754 }
2755
2756 /* Return the last desc in the chain */
2757 desc->txd.flags = flg;
2758 return &desc->txd;
2759 }
2760
2761 static irqreturn_t pl330_irq_handler(int irq, void *data)
2762 {
2763 if (pl330_update(data))
2764 return IRQ_HANDLED;
2765 else
2766 return IRQ_NONE;
2767 }
2768
2769 #define PL330_DMA_BUSWIDTHS \
2770 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2771 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2772 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2773 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2774 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2775
2776 /*
2777 * Runtime PM callbacks are provided by amba/bus.c driver.
2778 *
2779 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2780 * bus driver will only disable/enable the clock in runtime PM callbacks.
2781 */
2782 static int __maybe_unused pl330_suspend(struct device *dev)
2783 {
2784 struct amba_device *pcdev = to_amba_device(dev);
2785
2786 pm_runtime_disable(dev);
2787
2788 if (!pm_runtime_status_suspended(dev)) {
2789 /* amba did not disable the clock */
2790 amba_pclk_disable(pcdev);
2791 }
2792 amba_pclk_unprepare(pcdev);
2793
2794 return 0;
2795 }
2796
2797 static int __maybe_unused pl330_resume(struct device *dev)
2798 {
2799 struct amba_device *pcdev = to_amba_device(dev);
2800 int ret;
2801
2802 ret = amba_pclk_prepare(pcdev);
2803 if (ret)
2804 return ret;
2805
2806 if (!pm_runtime_status_suspended(dev))
2807 ret = amba_pclk_enable(pcdev);
2808
2809 pm_runtime_enable(dev);
2810
2811 return ret;
2812 }
2813
2814 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume);
2815
2816 static int
2817 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2818 {
2819 struct pl330_config *pcfg;
2820 struct pl330_dmac *pl330;
2821 struct dma_pl330_chan *pch, *_p;
2822 struct dma_device *pd;
2823 struct resource *res;
2824 int i, ret, irq;
2825 int num_chan;
2826 struct device_node *np = adev->dev.of_node;
2827
2828 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2829 if (ret)
2830 return ret;
2831
2832 /* Allocate a new DMAC and its Channels */
2833 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
2834 if (!pl330)
2835 return -ENOMEM;
2836
2837 pd = &pl330->ddma;
2838 pd->dev = &adev->dev;
2839
2840 pl330->mcbufsz = 0;
2841
2842 /* get quirk */
2843 for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
2844 if (of_property_read_bool(np, of_quirks[i].quirk))
2845 pl330->quirks |= of_quirks[i].id;
2846
2847 res = &adev->res;
2848 pl330->base = devm_ioremap_resource(&adev->dev, res);
2849 if (IS_ERR(pl330->base))
2850 return PTR_ERR(pl330->base);
2851
2852 amba_set_drvdata(adev, pl330);
2853
2854 for (i = 0; i < AMBA_NR_IRQS; i++) {
2855 irq = adev->irq[i];
2856 if (irq) {
2857 ret = devm_request_irq(&adev->dev, irq,
2858 pl330_irq_handler, 0,
2859 dev_name(&adev->dev), pl330);
2860 if (ret)
2861 return ret;
2862 } else {
2863 break;
2864 }
2865 }
2866
2867 pcfg = &pl330->pcfg;
2868
2869 pcfg->periph_id = adev->periphid;
2870 ret = pl330_add(pl330);
2871 if (ret)
2872 return ret;
2873
2874 INIT_LIST_HEAD(&pl330->desc_pool);
2875 spin_lock_init(&pl330->pool_lock);
2876
2877 /* Create a descriptor pool of default size */
2878 if (!add_desc(&pl330->desc_pool, &pl330->pool_lock,
2879 GFP_KERNEL, NR_DEFAULT_DESC))
2880 dev_warn(&adev->dev, "unable to allocate desc\n");
2881
2882 INIT_LIST_HEAD(&pd->channels);
2883
2884 /* Initialize channel parameters */
2885 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
2886
2887 pl330->num_peripherals = num_chan;
2888
2889 pl330->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2890 if (!pl330->peripherals) {
2891 ret = -ENOMEM;
2892 goto probe_err2;
2893 }
2894
2895 for (i = 0; i < num_chan; i++) {
2896 pch = &pl330->peripherals[i];
2897
2898 pch->chan.private = adev->dev.of_node;
2899 INIT_LIST_HEAD(&pch->submitted_list);
2900 INIT_LIST_HEAD(&pch->work_list);
2901 INIT_LIST_HEAD(&pch->completed_list);
2902 spin_lock_init(&pch->lock);
2903 pch->thread = NULL;
2904 pch->chan.device = pd;
2905 pch->dmac = pl330;
2906 pch->dir = DMA_NONE;
2907
2908 /* Add the channel to the DMAC list */
2909 list_add_tail(&pch->chan.device_node, &pd->channels);
2910 }
2911
2912 dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2913 if (pcfg->num_peri) {
2914 dma_cap_set(DMA_SLAVE, pd->cap_mask);
2915 dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2916 dma_cap_set(DMA_PRIVATE, pd->cap_mask);
2917 }
2918
2919 pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2920 pd->device_free_chan_resources = pl330_free_chan_resources;
2921 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2922 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2923 pd->device_tx_status = pl330_tx_status;
2924 pd->device_prep_slave_sg = pl330_prep_slave_sg;
2925 pd->device_config = pl330_config;
2926 pd->device_pause = pl330_pause;
2927 pd->device_terminate_all = pl330_terminate_all;
2928 pd->device_issue_pending = pl330_issue_pending;
2929 pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
2930 pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
2931 pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2932 pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2933 pd->max_burst = ((pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) ?
2934 1 : PL330_MAX_BURST);
2935
2936 ret = dma_async_device_register(pd);
2937 if (ret) {
2938 dev_err(&adev->dev, "unable to register DMAC\n");
2939 goto probe_err3;
2940 }
2941
2942 if (adev->dev.of_node) {
2943 ret = of_dma_controller_register(adev->dev.of_node,
2944 of_dma_pl330_xlate, pl330);
2945 if (ret) {
2946 dev_err(&adev->dev,
2947 "unable to register DMA to the generic DT DMA helpers\n");
2948 }
2949 }
2950
2951 adev->dev.dma_parms = &pl330->dma_parms;
2952
2953 /*
2954 * This is the limit for transfers with a buswidth of 1, larger
2955 * buswidths will have larger limits.
2956 */
2957 ret = dma_set_max_seg_size(&adev->dev, 1900800);
2958 if (ret)
2959 dev_err(&adev->dev, "unable to set the seg size\n");
2960
2961
2962 dev_info(&adev->dev,
2963 "Loaded driver for PL330 DMAC-%x\n", adev->periphid);
2964 dev_info(&adev->dev,
2965 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
2966 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
2967 pcfg->num_peri, pcfg->num_events);
2968
2969 pm_runtime_irq_safe(&adev->dev);
2970 pm_runtime_use_autosuspend(&adev->dev);
2971 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
2972 pm_runtime_mark_last_busy(&adev->dev);
2973 pm_runtime_put_autosuspend(&adev->dev);
2974
2975 return 0;
2976 probe_err3:
2977 /* Idle the DMAC */
2978 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
2979 chan.device_node) {
2980
2981 /* Remove the channel */
2982 list_del(&pch->chan.device_node);
2983
2984 /* Flush the channel */
2985 if (pch->thread) {
2986 pl330_terminate_all(&pch->chan);
2987 pl330_free_chan_resources(&pch->chan);
2988 }
2989 }
2990 probe_err2:
2991 pl330_del(pl330);
2992
2993 return ret;
2994 }
2995
2996 static int pl330_remove(struct amba_device *adev)
2997 {
2998 struct pl330_dmac *pl330 = amba_get_drvdata(adev);
2999 struct dma_pl330_chan *pch, *_p;
3000 int i, irq;
3001
3002 pm_runtime_get_noresume(pl330->ddma.dev);
3003
3004 if (adev->dev.of_node)
3005 of_dma_controller_free(adev->dev.of_node);
3006
3007 for (i = 0; i < AMBA_NR_IRQS; i++) {
3008 irq = adev->irq[i];
3009 if (irq)
3010 devm_free_irq(&adev->dev, irq, pl330);
3011 }
3012
3013 dma_async_device_unregister(&pl330->ddma);
3014
3015 /* Idle the DMAC */
3016 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3017 chan.device_node) {
3018
3019 /* Remove the channel */
3020 list_del(&pch->chan.device_node);
3021
3022 /* Flush the channel */
3023 if (pch->thread) {
3024 pl330_terminate_all(&pch->chan);
3025 pl330_free_chan_resources(&pch->chan);
3026 }
3027 }
3028
3029 pl330_del(pl330);
3030
3031 return 0;
3032 }
3033
3034 static const struct amba_id pl330_ids[] = {
3035 {
3036 .id = 0x00041330,
3037 .mask = 0x000fffff,
3038 },
3039 { 0, 0 },
3040 };
3041
3042 MODULE_DEVICE_TABLE(amba, pl330_ids);
3043
3044 static struct amba_driver pl330_driver = {
3045 .drv = {
3046 .owner = THIS_MODULE,
3047 .name = "dma-pl330",
3048 .pm = &pl330_pm,
3049 },
3050 .id_table = pl330_ids,
3051 .probe = pl330_probe,
3052 .remove = pl330_remove,
3053 };
3054
3055 module_amba_driver(pl330_driver);
3056
3057 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3058 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3059 MODULE_LICENSE("GPL");