]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - drivers/gpu/drm/vc4/vc4_plane.c
Merge tag 'drm-intel-next-2018-06-06' of git://anongit.freedesktop.org/drm/drm-intel...
[mirror_ubuntu-disco-kernel.git] / drivers / gpu / drm / vc4 / vc4_plane.c
1 /*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 /**
10 * DOC: VC4 plane module
11 *
12 * Each DRM plane is a layer of pixels being scanned out by the HVS.
13 *
14 * At atomic modeset check time, we compute the HVS display element
15 * state that would be necessary for displaying the plane (giving us a
16 * chance to figure out if a plane configuration is invalid), then at
17 * atomic flush time the CRTC will ask us to write our element state
18 * into the region of the HVS that it has allocated for us.
19 */
20
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_helper.h>
23 #include <drm/drm_fb_cma_helper.h>
24 #include <drm/drm_plane_helper.h>
25
26 #include "uapi/drm/vc4_drm.h"
27 #include "vc4_drv.h"
28 #include "vc4_regs.h"
29
30 static const struct hvs_format {
31 u32 drm; /* DRM_FORMAT_* */
32 u32 hvs; /* HVS_FORMAT_* */
33 u32 pixel_order;
34 } hvs_formats[] = {
35 {
36 .drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
37 .pixel_order = HVS_PIXEL_ORDER_ABGR,
38 },
39 {
40 .drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
41 .pixel_order = HVS_PIXEL_ORDER_ABGR,
42 },
43 {
44 .drm = DRM_FORMAT_ABGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
45 .pixel_order = HVS_PIXEL_ORDER_ARGB,
46 },
47 {
48 .drm = DRM_FORMAT_XBGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
49 .pixel_order = HVS_PIXEL_ORDER_ARGB,
50 },
51 {
52 .drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565,
53 .pixel_order = HVS_PIXEL_ORDER_XRGB,
54 },
55 {
56 .drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565,
57 .pixel_order = HVS_PIXEL_ORDER_XBGR,
58 },
59 {
60 .drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
61 .pixel_order = HVS_PIXEL_ORDER_ABGR,
62 },
63 {
64 .drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
65 .pixel_order = HVS_PIXEL_ORDER_ABGR,
66 },
67 {
68 .drm = DRM_FORMAT_RGB888, .hvs = HVS_PIXEL_FORMAT_RGB888,
69 .pixel_order = HVS_PIXEL_ORDER_XRGB,
70 },
71 {
72 .drm = DRM_FORMAT_BGR888, .hvs = HVS_PIXEL_FORMAT_RGB888,
73 .pixel_order = HVS_PIXEL_ORDER_XBGR,
74 },
75 {
76 .drm = DRM_FORMAT_YUV422,
77 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
78 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
79 },
80 {
81 .drm = DRM_FORMAT_YVU422,
82 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
83 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
84 },
85 {
86 .drm = DRM_FORMAT_YUV420,
87 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
88 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
89 },
90 {
91 .drm = DRM_FORMAT_YVU420,
92 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
93 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
94 },
95 {
96 .drm = DRM_FORMAT_NV12,
97 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
98 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
99 },
100 {
101 .drm = DRM_FORMAT_NV21,
102 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
103 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
104 },
105 {
106 .drm = DRM_FORMAT_NV16,
107 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
108 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
109 },
110 {
111 .drm = DRM_FORMAT_NV61,
112 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
113 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
114 },
115 };
116
117 static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
118 {
119 unsigned i;
120
121 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
122 if (hvs_formats[i].drm == drm_format)
123 return &hvs_formats[i];
124 }
125
126 return NULL;
127 }
128
129 static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
130 {
131 if (dst > src)
132 return VC4_SCALING_PPF;
133 else if (dst < src)
134 return VC4_SCALING_TPZ;
135 else
136 return VC4_SCALING_NONE;
137 }
138
139 static bool plane_enabled(struct drm_plane_state *state)
140 {
141 return state->fb && state->crtc;
142 }
143
144 static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
145 {
146 struct vc4_plane_state *vc4_state;
147
148 if (WARN_ON(!plane->state))
149 return NULL;
150
151 vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
152 if (!vc4_state)
153 return NULL;
154
155 memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
156
157 __drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
158
159 if (vc4_state->dlist) {
160 vc4_state->dlist = kmemdup(vc4_state->dlist,
161 vc4_state->dlist_count * 4,
162 GFP_KERNEL);
163 if (!vc4_state->dlist) {
164 kfree(vc4_state);
165 return NULL;
166 }
167 vc4_state->dlist_size = vc4_state->dlist_count;
168 }
169
170 return &vc4_state->base;
171 }
172
173 static void vc4_plane_destroy_state(struct drm_plane *plane,
174 struct drm_plane_state *state)
175 {
176 struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
177 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
178
179 if (vc4_state->lbm.allocated) {
180 unsigned long irqflags;
181
182 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
183 drm_mm_remove_node(&vc4_state->lbm);
184 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
185 }
186
187 kfree(vc4_state->dlist);
188 __drm_atomic_helper_plane_destroy_state(&vc4_state->base);
189 kfree(state);
190 }
191
192 /* Called during init to allocate the plane's atomic state. */
193 static void vc4_plane_reset(struct drm_plane *plane)
194 {
195 struct vc4_plane_state *vc4_state;
196
197 WARN_ON(plane->state);
198
199 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
200 if (!vc4_state)
201 return;
202
203 plane->state = &vc4_state->base;
204 plane->state->alpha = DRM_BLEND_ALPHA_OPAQUE;
205 vc4_state->base.plane = plane;
206 }
207
208 static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
209 {
210 if (vc4_state->dlist_count == vc4_state->dlist_size) {
211 u32 new_size = max(4u, vc4_state->dlist_count * 2);
212 u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
213
214 if (!new_dlist)
215 return;
216 memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
217
218 kfree(vc4_state->dlist);
219 vc4_state->dlist = new_dlist;
220 vc4_state->dlist_size = new_size;
221 }
222
223 vc4_state->dlist[vc4_state->dlist_count++] = val;
224 }
225
226 /* Returns the scl0/scl1 field based on whether the dimensions need to
227 * be up/down/non-scaled.
228 *
229 * This is a replication of a table from the spec.
230 */
231 static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
232 {
233 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
234
235 switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
236 case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
237 return SCALER_CTL0_SCL_H_PPF_V_PPF;
238 case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
239 return SCALER_CTL0_SCL_H_TPZ_V_PPF;
240 case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
241 return SCALER_CTL0_SCL_H_PPF_V_TPZ;
242 case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
243 return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
244 case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
245 return SCALER_CTL0_SCL_H_PPF_V_NONE;
246 case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
247 return SCALER_CTL0_SCL_H_NONE_V_PPF;
248 case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
249 return SCALER_CTL0_SCL_H_NONE_V_TPZ;
250 case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
251 return SCALER_CTL0_SCL_H_TPZ_V_NONE;
252 default:
253 case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
254 /* The unity case is independently handled by
255 * SCALER_CTL0_UNITY.
256 */
257 return 0;
258 }
259 }
260
261 static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
262 {
263 struct drm_plane *plane = state->plane;
264 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
265 struct drm_framebuffer *fb = state->fb;
266 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
267 u32 subpixel_src_mask = (1 << 16) - 1;
268 u32 format = fb->format->format;
269 int num_planes = fb->format->num_planes;
270 u32 h_subsample = 1;
271 u32 v_subsample = 1;
272 int i;
273
274 for (i = 0; i < num_planes; i++)
275 vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
276
277 /* We don't support subpixel source positioning for scaling. */
278 if ((state->src_x & subpixel_src_mask) ||
279 (state->src_y & subpixel_src_mask) ||
280 (state->src_w & subpixel_src_mask) ||
281 (state->src_h & subpixel_src_mask)) {
282 return -EINVAL;
283 }
284
285 vc4_state->src_x = state->src_x >> 16;
286 vc4_state->src_y = state->src_y >> 16;
287 vc4_state->src_w[0] = state->src_w >> 16;
288 vc4_state->src_h[0] = state->src_h >> 16;
289
290 vc4_state->crtc_x = state->crtc_x;
291 vc4_state->crtc_y = state->crtc_y;
292 vc4_state->crtc_w = state->crtc_w;
293 vc4_state->crtc_h = state->crtc_h;
294
295 vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
296 vc4_state->crtc_w);
297 vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
298 vc4_state->crtc_h);
299
300 if (num_planes > 1) {
301 vc4_state->is_yuv = true;
302
303 h_subsample = drm_format_horz_chroma_subsampling(format);
304 v_subsample = drm_format_vert_chroma_subsampling(format);
305 vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
306 vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
307
308 vc4_state->x_scaling[1] =
309 vc4_get_scaling_mode(vc4_state->src_w[1],
310 vc4_state->crtc_w);
311 vc4_state->y_scaling[1] =
312 vc4_get_scaling_mode(vc4_state->src_h[1],
313 vc4_state->crtc_h);
314
315 /* YUV conversion requires that scaling be enabled,
316 * even on a plane that's otherwise 1:1. Choose TPZ
317 * for simplicity.
318 */
319 if (vc4_state->x_scaling[0] == VC4_SCALING_NONE)
320 vc4_state->x_scaling[0] = VC4_SCALING_TPZ;
321 if (vc4_state->y_scaling[0] == VC4_SCALING_NONE)
322 vc4_state->y_scaling[0] = VC4_SCALING_TPZ;
323 }
324
325 vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
326 vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
327 vc4_state->x_scaling[1] == VC4_SCALING_NONE &&
328 vc4_state->y_scaling[1] == VC4_SCALING_NONE);
329
330 /* No configuring scaling on the cursor plane, since it gets
331 non-vblank-synced updates, and scaling requires requires
332 LBM changes which have to be vblank-synced.
333 */
334 if (plane->type == DRM_PLANE_TYPE_CURSOR && !vc4_state->is_unity)
335 return -EINVAL;
336
337 /* Clamp the on-screen start x/y to 0. The hardware doesn't
338 * support negative y, and negative x wastes bandwidth.
339 */
340 if (vc4_state->crtc_x < 0) {
341 for (i = 0; i < num_planes; i++) {
342 u32 cpp = fb->format->cpp[i];
343 u32 subs = ((i == 0) ? 1 : h_subsample);
344
345 vc4_state->offsets[i] += (cpp *
346 (-vc4_state->crtc_x) / subs);
347 }
348 vc4_state->src_w[0] += vc4_state->crtc_x;
349 vc4_state->src_w[1] += vc4_state->crtc_x / h_subsample;
350 vc4_state->crtc_x = 0;
351 }
352
353 if (vc4_state->crtc_y < 0) {
354 for (i = 0; i < num_planes; i++) {
355 u32 subs = ((i == 0) ? 1 : v_subsample);
356
357 vc4_state->offsets[i] += (fb->pitches[i] *
358 (-vc4_state->crtc_y) / subs);
359 }
360 vc4_state->src_h[0] += vc4_state->crtc_y;
361 vc4_state->src_h[1] += vc4_state->crtc_y / v_subsample;
362 vc4_state->crtc_y = 0;
363 }
364
365 return 0;
366 }
367
368 static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
369 {
370 u32 scale, recip;
371
372 scale = (1 << 16) * src / dst;
373
374 /* The specs note that while the reciprocal would be defined
375 * as (1<<32)/scale, ~0 is close enough.
376 */
377 recip = ~0 / scale;
378
379 vc4_dlist_write(vc4_state,
380 VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
381 VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
382 vc4_dlist_write(vc4_state,
383 VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
384 }
385
386 static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
387 {
388 u32 scale = (1 << 16) * src / dst;
389
390 vc4_dlist_write(vc4_state,
391 SCALER_PPF_AGC |
392 VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
393 VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
394 }
395
396 static u32 vc4_lbm_size(struct drm_plane_state *state)
397 {
398 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
399 /* This is the worst case number. One of the two sizes will
400 * be used depending on the scaling configuration.
401 */
402 u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w);
403 u32 lbm;
404
405 if (!vc4_state->is_yuv) {
406 if (vc4_state->is_unity)
407 return 0;
408 else if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
409 lbm = pix_per_line * 8;
410 else {
411 /* In special cases, this multiplier might be 12. */
412 lbm = pix_per_line * 16;
413 }
414 } else {
415 /* There are cases for this going down to a multiplier
416 * of 2, but according to the firmware source, the
417 * table in the docs is somewhat wrong.
418 */
419 lbm = pix_per_line * 16;
420 }
421
422 lbm = roundup(lbm, 32);
423
424 return lbm;
425 }
426
427 static void vc4_write_scaling_parameters(struct drm_plane_state *state,
428 int channel)
429 {
430 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
431
432 /* Ch0 H-PPF Word 0: Scaling Parameters */
433 if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
434 vc4_write_ppf(vc4_state,
435 vc4_state->src_w[channel], vc4_state->crtc_w);
436 }
437
438 /* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
439 if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
440 vc4_write_ppf(vc4_state,
441 vc4_state->src_h[channel], vc4_state->crtc_h);
442 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
443 }
444
445 /* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
446 if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
447 vc4_write_tpz(vc4_state,
448 vc4_state->src_w[channel], vc4_state->crtc_w);
449 }
450
451 /* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
452 if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
453 vc4_write_tpz(vc4_state,
454 vc4_state->src_h[channel], vc4_state->crtc_h);
455 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
456 }
457 }
458
459 /* Writes out a full display list for an active plane to the plane's
460 * private dlist state.
461 */
462 static int vc4_plane_mode_set(struct drm_plane *plane,
463 struct drm_plane_state *state)
464 {
465 struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
466 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
467 struct drm_framebuffer *fb = state->fb;
468 u32 ctl0_offset = vc4_state->dlist_count;
469 const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
470 int num_planes = drm_format_num_planes(format->drm);
471 bool mix_plane_alpha;
472 bool covers_screen;
473 u32 scl0, scl1, pitch0;
474 u32 lbm_size, tiling;
475 unsigned long irqflags;
476 int ret, i;
477
478 ret = vc4_plane_setup_clipping_and_scaling(state);
479 if (ret)
480 return ret;
481
482 /* Allocate the LBM memory that the HVS will use for temporary
483 * storage due to our scaling/format conversion.
484 */
485 lbm_size = vc4_lbm_size(state);
486 if (lbm_size) {
487 if (!vc4_state->lbm.allocated) {
488 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
489 ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
490 &vc4_state->lbm,
491 lbm_size, 32, 0, 0);
492 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
493 } else {
494 WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
495 }
496 }
497
498 if (ret)
499 return ret;
500
501 /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB
502 * and 4:4:4, scl1 should be set to scl0 so both channels of
503 * the scaler do the same thing. For YUV, the Y plane needs
504 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
505 * the scl fields here.
506 */
507 if (num_planes == 1) {
508 scl0 = vc4_get_scl_field(state, 0);
509 scl1 = scl0;
510 } else {
511 scl0 = vc4_get_scl_field(state, 1);
512 scl1 = vc4_get_scl_field(state, 0);
513 }
514
515 switch (fb->modifier) {
516 case DRM_FORMAT_MOD_LINEAR:
517 tiling = SCALER_CTL0_TILING_LINEAR;
518 pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
519 break;
520
521 case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
522 /* For T-tiled, the FB pitch is "how many bytes from
523 * one row to the next, such that pitch * tile_h ==
524 * tile_size * tiles_per_row."
525 */
526 u32 tile_size_shift = 12; /* T tiles are 4kb */
527 u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
528 u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
529
530 tiling = SCALER_CTL0_TILING_256B_OR_T;
531
532 pitch0 = (VC4_SET_FIELD(0, SCALER_PITCH0_TILE_Y_OFFSET) |
533 VC4_SET_FIELD(0, SCALER_PITCH0_TILE_WIDTH_L) |
534 VC4_SET_FIELD(tiles_w, SCALER_PITCH0_TILE_WIDTH_R));
535 break;
536 }
537
538 default:
539 DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
540 (long long)fb->modifier);
541 return -EINVAL;
542 }
543
544 /* Control word */
545 vc4_dlist_write(vc4_state,
546 SCALER_CTL0_VALID |
547 (format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
548 (format->hvs << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
549 VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
550 (vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
551 VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
552 VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
553
554 /* Position Word 0: Image Positions and Alpha Value */
555 vc4_state->pos0_offset = vc4_state->dlist_count;
556 vc4_dlist_write(vc4_state,
557 VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
558 VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
559 VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
560
561 /* Position Word 1: Scaled Image Dimensions. */
562 if (!vc4_state->is_unity) {
563 vc4_dlist_write(vc4_state,
564 VC4_SET_FIELD(vc4_state->crtc_w,
565 SCALER_POS1_SCL_WIDTH) |
566 VC4_SET_FIELD(vc4_state->crtc_h,
567 SCALER_POS1_SCL_HEIGHT));
568 }
569
570 /* Don't waste cycles mixing with plane alpha if the set alpha
571 * is opaque or there is no per-pixel alpha information.
572 * In any case we use the alpha property value as the fixed alpha.
573 */
574 mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
575 fb->format->has_alpha;
576
577 /* Position Word 2: Source Image Size, Alpha */
578 vc4_state->pos2_offset = vc4_state->dlist_count;
579 vc4_dlist_write(vc4_state,
580 VC4_SET_FIELD(fb->format->has_alpha ?
581 SCALER_POS2_ALPHA_MODE_PIPELINE :
582 SCALER_POS2_ALPHA_MODE_FIXED,
583 SCALER_POS2_ALPHA_MODE) |
584 (mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
585 (fb->format->has_alpha ? SCALER_POS2_ALPHA_PREMULT : 0) |
586 VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) |
587 VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT));
588
589 /* Position Word 3: Context. Written by the HVS. */
590 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
591
592
593 /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
594 *
595 * The pointers may be any byte address.
596 */
597 vc4_state->ptr0_offset = vc4_state->dlist_count;
598 for (i = 0; i < num_planes; i++)
599 vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
600
601 /* Pointer Context Word 0/1/2: Written by the HVS */
602 for (i = 0; i < num_planes; i++)
603 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
604
605 /* Pitch word 0 */
606 vc4_dlist_write(vc4_state, pitch0);
607
608 /* Pitch word 1/2 */
609 for (i = 1; i < num_planes; i++) {
610 vc4_dlist_write(vc4_state,
611 VC4_SET_FIELD(fb->pitches[i], SCALER_SRC_PITCH));
612 }
613
614 /* Colorspace conversion words */
615 if (vc4_state->is_yuv) {
616 vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
617 vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
618 vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
619 }
620
621 if (!vc4_state->is_unity) {
622 /* LBM Base Address. */
623 if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
624 vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
625 vc4_dlist_write(vc4_state, vc4_state->lbm.start);
626 }
627
628 if (num_planes > 1) {
629 /* Emit Cb/Cr as channel 0 and Y as channel
630 * 1. This matches how we set up scl0/scl1
631 * above.
632 */
633 vc4_write_scaling_parameters(state, 1);
634 }
635 vc4_write_scaling_parameters(state, 0);
636
637 /* If any PPF setup was done, then all the kernel
638 * pointers get uploaded.
639 */
640 if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
641 vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
642 vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
643 vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
644 u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
645 SCALER_PPF_KERNEL_OFFSET);
646
647 /* HPPF plane 0 */
648 vc4_dlist_write(vc4_state, kernel);
649 /* VPPF plane 0 */
650 vc4_dlist_write(vc4_state, kernel);
651 /* HPPF plane 1 */
652 vc4_dlist_write(vc4_state, kernel);
653 /* VPPF plane 1 */
654 vc4_dlist_write(vc4_state, kernel);
655 }
656 }
657
658 vc4_state->dlist[ctl0_offset] |=
659 VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
660
661 /* crtc_* are already clipped coordinates. */
662 covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
663 vc4_state->crtc_w == state->crtc->mode.hdisplay &&
664 vc4_state->crtc_h == state->crtc->mode.vdisplay;
665 /* Background fill might be necessary when the plane has per-pixel
666 * alpha content or a non-opaque plane alpha and could blend from the
667 * background or does not cover the entire screen.
668 */
669 vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
670 state->alpha != DRM_BLEND_ALPHA_OPAQUE;
671
672 return 0;
673 }
674
675 /* If a modeset involves changing the setup of a plane, the atomic
676 * infrastructure will call this to validate a proposed plane setup.
677 * However, if a plane isn't getting updated, this (and the
678 * corresponding vc4_plane_atomic_update) won't get called. Thus, we
679 * compute the dlist here and have all active plane dlists get updated
680 * in the CRTC's flush.
681 */
682 static int vc4_plane_atomic_check(struct drm_plane *plane,
683 struct drm_plane_state *state)
684 {
685 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
686
687 vc4_state->dlist_count = 0;
688
689 if (plane_enabled(state))
690 return vc4_plane_mode_set(plane, state);
691 else
692 return 0;
693 }
694
695 static void vc4_plane_atomic_update(struct drm_plane *plane,
696 struct drm_plane_state *old_state)
697 {
698 /* No contents here. Since we don't know where in the CRTC's
699 * dlist we should be stored, our dlist is uploaded to the
700 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
701 * time.
702 */
703 }
704
705 u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
706 {
707 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
708 int i;
709
710 vc4_state->hw_dlist = dlist;
711
712 /* Can't memcpy_toio() because it needs to be 32-bit writes. */
713 for (i = 0; i < vc4_state->dlist_count; i++)
714 writel(vc4_state->dlist[i], &dlist[i]);
715
716 return vc4_state->dlist_count;
717 }
718
719 u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
720 {
721 const struct vc4_plane_state *vc4_state =
722 container_of(state, typeof(*vc4_state), base);
723
724 return vc4_state->dlist_count;
725 }
726
727 /* Updates the plane to immediately (well, once the FIFO needs
728 * refilling) scan out from at a new framebuffer.
729 */
730 void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
731 {
732 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
733 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
734 uint32_t addr;
735
736 /* We're skipping the address adjustment for negative origin,
737 * because this is only called on the primary plane.
738 */
739 WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
740 addr = bo->paddr + fb->offsets[0];
741
742 /* Write the new address into the hardware immediately. The
743 * scanout will start from this address as soon as the FIFO
744 * needs to refill with pixels.
745 */
746 writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
747
748 /* Also update the CPU-side dlist copy, so that any later
749 * atomic updates that don't do a new modeset on our plane
750 * also use our updated address.
751 */
752 vc4_state->dlist[vc4_state->ptr0_offset] = addr;
753 }
754
755 static void vc4_plane_atomic_async_update(struct drm_plane *plane,
756 struct drm_plane_state *state)
757 {
758 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
759
760 if (plane->state->fb != state->fb) {
761 vc4_plane_async_set_fb(plane, state->fb);
762 drm_atomic_set_fb_for_plane(plane->state, state->fb);
763 }
764
765 /* Set the cursor's position on the screen. This is the
766 * expected change from the drm_mode_cursor_universal()
767 * helper.
768 */
769 plane->state->crtc_x = state->crtc_x;
770 plane->state->crtc_y = state->crtc_y;
771
772 /* Allow changing the start position within the cursor BO, if
773 * that matters.
774 */
775 plane->state->src_x = state->src_x;
776 plane->state->src_y = state->src_y;
777
778 /* Update the display list based on the new crtc_x/y. */
779 vc4_plane_atomic_check(plane, plane->state);
780
781 /* Note that we can't just call vc4_plane_write_dlist()
782 * because that would smash the context data that the HVS is
783 * currently using.
784 */
785 writel(vc4_state->dlist[vc4_state->pos0_offset],
786 &vc4_state->hw_dlist[vc4_state->pos0_offset]);
787 writel(vc4_state->dlist[vc4_state->pos2_offset],
788 &vc4_state->hw_dlist[vc4_state->pos2_offset]);
789 writel(vc4_state->dlist[vc4_state->ptr0_offset],
790 &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
791 }
792
793 static int vc4_plane_atomic_async_check(struct drm_plane *plane,
794 struct drm_plane_state *state)
795 {
796 /* No configuring new scaling in the fast path. */
797 if (plane->state->crtc_w != state->crtc_w ||
798 plane->state->crtc_h != state->crtc_h ||
799 plane->state->src_w != state->src_w ||
800 plane->state->src_h != state->src_h)
801 return -EINVAL;
802
803 return 0;
804 }
805
806 static int vc4_prepare_fb(struct drm_plane *plane,
807 struct drm_plane_state *state)
808 {
809 struct vc4_bo *bo;
810 struct dma_fence *fence;
811 int ret;
812
813 if ((plane->state->fb == state->fb) || !state->fb)
814 return 0;
815
816 bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
817
818 ret = vc4_bo_inc_usecnt(bo);
819 if (ret)
820 return ret;
821
822 fence = reservation_object_get_excl_rcu(bo->resv);
823 drm_atomic_set_fence_for_plane(state, fence);
824
825 return 0;
826 }
827
828 static void vc4_cleanup_fb(struct drm_plane *plane,
829 struct drm_plane_state *state)
830 {
831 struct vc4_bo *bo;
832
833 if (plane->state->fb == state->fb || !state->fb)
834 return;
835
836 bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
837 vc4_bo_dec_usecnt(bo);
838 }
839
840 static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
841 .atomic_check = vc4_plane_atomic_check,
842 .atomic_update = vc4_plane_atomic_update,
843 .prepare_fb = vc4_prepare_fb,
844 .cleanup_fb = vc4_cleanup_fb,
845 .atomic_async_check = vc4_plane_atomic_async_check,
846 .atomic_async_update = vc4_plane_atomic_async_update,
847 };
848
849 static void vc4_plane_destroy(struct drm_plane *plane)
850 {
851 drm_plane_helper_disable(plane);
852 drm_plane_cleanup(plane);
853 }
854
855 static bool vc4_format_mod_supported(struct drm_plane *plane,
856 uint32_t format,
857 uint64_t modifier)
858 {
859 /* Support T_TILING for RGB formats only. */
860 switch (format) {
861 case DRM_FORMAT_XRGB8888:
862 case DRM_FORMAT_ARGB8888:
863 case DRM_FORMAT_ABGR8888:
864 case DRM_FORMAT_XBGR8888:
865 case DRM_FORMAT_RGB565:
866 case DRM_FORMAT_BGR565:
867 case DRM_FORMAT_ARGB1555:
868 case DRM_FORMAT_XRGB1555:
869 return true;
870 case DRM_FORMAT_YUV422:
871 case DRM_FORMAT_YVU422:
872 case DRM_FORMAT_YUV420:
873 case DRM_FORMAT_YVU420:
874 case DRM_FORMAT_NV12:
875 case DRM_FORMAT_NV16:
876 default:
877 return (modifier == DRM_FORMAT_MOD_LINEAR);
878 }
879 }
880
881 static const struct drm_plane_funcs vc4_plane_funcs = {
882 .update_plane = drm_atomic_helper_update_plane,
883 .disable_plane = drm_atomic_helper_disable_plane,
884 .destroy = vc4_plane_destroy,
885 .set_property = NULL,
886 .reset = vc4_plane_reset,
887 .atomic_duplicate_state = vc4_plane_duplicate_state,
888 .atomic_destroy_state = vc4_plane_destroy_state,
889 .format_mod_supported = vc4_format_mod_supported,
890 };
891
892 struct drm_plane *vc4_plane_init(struct drm_device *dev,
893 enum drm_plane_type type)
894 {
895 struct drm_plane *plane = NULL;
896 struct vc4_plane *vc4_plane;
897 u32 formats[ARRAY_SIZE(hvs_formats)];
898 u32 num_formats = 0;
899 int ret = 0;
900 unsigned i;
901 static const uint64_t modifiers[] = {
902 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
903 DRM_FORMAT_MOD_LINEAR,
904 DRM_FORMAT_MOD_INVALID
905 };
906
907 vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
908 GFP_KERNEL);
909 if (!vc4_plane)
910 return ERR_PTR(-ENOMEM);
911
912 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
913 /* Don't allow YUV in cursor planes, since that means
914 * tuning on the scaler, which we don't allow for the
915 * cursor.
916 */
917 if (type != DRM_PLANE_TYPE_CURSOR ||
918 hvs_formats[i].hvs < HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE) {
919 formats[num_formats++] = hvs_formats[i].drm;
920 }
921 }
922 plane = &vc4_plane->base;
923 ret = drm_universal_plane_init(dev, plane, 0,
924 &vc4_plane_funcs,
925 formats, num_formats,
926 modifiers, type, NULL);
927
928 drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
929
930 drm_plane_create_alpha_property(plane);
931
932 return plane;
933 }