]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - drivers/infiniband/hw/hfi1/sdma.c
block: Cleanup license notice
[mirror_ubuntu-disco-kernel.git] / drivers / infiniband / hw / hfi1 / sdma.c
1 /*
2 * Copyright(c) 2015 - 2018 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "qp.h"
60 #include "sdma.h"
61 #include "iowait.h"
62 #include "trace.h"
63
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
68
69 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70 module_param(sdma_descq_cnt, uint, S_IRUGO);
71 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
72
73 static uint sdma_idle_cnt = 250;
74 module_param(sdma_idle_cnt, uint, S_IRUGO);
75 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
76
77 uint mod_num_sdma;
78 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
80
81 static uint sdma_desct_intr = SDMA_DESC_INTR;
82 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
84
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
89
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92 (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93 | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94 | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95 | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96 | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97 | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98 | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99 | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100 | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101 | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102 | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103 | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104 | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105 | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106 | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107 | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108 | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109 | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
110
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
116
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
122
123 static const char * const sdma_state_names[] = {
124 [sdma_state_s00_hw_down] = "s00_HwDown",
125 [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait",
126 [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127 [sdma_state_s20_idle] = "s20_Idle",
128 [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait",
129 [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait",
130 [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait",
131 [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait",
132 [sdma_state_s80_hw_freeze] = "s80_HwFreeze",
133 [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean",
134 [sdma_state_s99_running] = "s99_Running",
135 };
136
137 #ifdef CONFIG_SDMA_VERBOSITY
138 static const char * const sdma_event_names[] = {
139 [sdma_event_e00_go_hw_down] = "e00_GoHwDown",
140 [sdma_event_e10_go_hw_start] = "e10_GoHwStart",
141 [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142 [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143 [sdma_event_e30_go_running] = "e30_GoRunning",
144 [sdma_event_e40_sw_cleaned] = "e40_SwCleaned",
145 [sdma_event_e50_hw_cleaned] = "e50_HwCleaned",
146 [sdma_event_e60_hw_halted] = "e60_HwHalted",
147 [sdma_event_e70_go_idle] = "e70_GoIdle",
148 [sdma_event_e80_hw_freeze] = "e80_HwFreeze",
149 [sdma_event_e81_hw_frozen] = "e81_HwFrozen",
150 [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze",
151 [sdma_event_e85_link_down] = "e85_LinkDown",
152 [sdma_event_e90_sw_halted] = "e90_SwHalted",
153 };
154 #endif
155
156 static const struct sdma_set_state_action sdma_action_table[] = {
157 [sdma_state_s00_hw_down] = {
158 .go_s99_running_tofalse = 1,
159 .op_enable = 0,
160 .op_intenable = 0,
161 .op_halt = 0,
162 .op_cleanup = 0,
163 },
164 [sdma_state_s10_hw_start_up_halt_wait] = {
165 .op_enable = 0,
166 .op_intenable = 0,
167 .op_halt = 1,
168 .op_cleanup = 0,
169 },
170 [sdma_state_s15_hw_start_up_clean_wait] = {
171 .op_enable = 0,
172 .op_intenable = 1,
173 .op_halt = 0,
174 .op_cleanup = 1,
175 },
176 [sdma_state_s20_idle] = {
177 .op_enable = 0,
178 .op_intenable = 1,
179 .op_halt = 0,
180 .op_cleanup = 0,
181 },
182 [sdma_state_s30_sw_clean_up_wait] = {
183 .op_enable = 0,
184 .op_intenable = 0,
185 .op_halt = 0,
186 .op_cleanup = 0,
187 },
188 [sdma_state_s40_hw_clean_up_wait] = {
189 .op_enable = 0,
190 .op_intenable = 0,
191 .op_halt = 0,
192 .op_cleanup = 1,
193 },
194 [sdma_state_s50_hw_halt_wait] = {
195 .op_enable = 0,
196 .op_intenable = 0,
197 .op_halt = 0,
198 .op_cleanup = 0,
199 },
200 [sdma_state_s60_idle_halt_wait] = {
201 .go_s99_running_tofalse = 1,
202 .op_enable = 0,
203 .op_intenable = 0,
204 .op_halt = 1,
205 .op_cleanup = 0,
206 },
207 [sdma_state_s80_hw_freeze] = {
208 .op_enable = 0,
209 .op_intenable = 0,
210 .op_halt = 0,
211 .op_cleanup = 0,
212 },
213 [sdma_state_s82_freeze_sw_clean] = {
214 .op_enable = 0,
215 .op_intenable = 0,
216 .op_halt = 0,
217 .op_cleanup = 0,
218 },
219 [sdma_state_s99_running] = {
220 .op_enable = 1,
221 .op_intenable = 1,
222 .op_halt = 0,
223 .op_cleanup = 0,
224 .go_s99_running_totrue = 1,
225 },
226 };
227
228 #define SDMA_TAIL_UPDATE_THRESH 0x1F
229
230 /* declare all statics here rather than keep sorting */
231 static void sdma_complete(struct kref *);
232 static void sdma_finalput(struct sdma_state *);
233 static void sdma_get(struct sdma_state *);
234 static void sdma_hw_clean_up_task(unsigned long);
235 static void sdma_put(struct sdma_state *);
236 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237 static void sdma_start_hw_clean_up(struct sdma_engine *);
238 static void sdma_sw_clean_up_task(unsigned long);
239 static void sdma_sendctrl(struct sdma_engine *, unsigned);
240 static void init_sdma_regs(struct sdma_engine *, u32, uint);
241 static void sdma_process_event(
242 struct sdma_engine *sde,
243 enum sdma_events event);
244 static void __sdma_process_event(
245 struct sdma_engine *sde,
246 enum sdma_events event);
247 static void dump_sdma_state(struct sdma_engine *sde);
248 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
249 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
250 static void sdma_flush_descq(struct sdma_engine *sde);
251
252 /**
253 * sdma_state_name() - return state string from enum
254 * @state: state
255 */
256 static const char *sdma_state_name(enum sdma_states state)
257 {
258 return sdma_state_names[state];
259 }
260
261 static void sdma_get(struct sdma_state *ss)
262 {
263 kref_get(&ss->kref);
264 }
265
266 static void sdma_complete(struct kref *kref)
267 {
268 struct sdma_state *ss =
269 container_of(kref, struct sdma_state, kref);
270
271 complete(&ss->comp);
272 }
273
274 static void sdma_put(struct sdma_state *ss)
275 {
276 kref_put(&ss->kref, sdma_complete);
277 }
278
279 static void sdma_finalput(struct sdma_state *ss)
280 {
281 sdma_put(ss);
282 wait_for_completion(&ss->comp);
283 }
284
285 static inline void write_sde_csr(
286 struct sdma_engine *sde,
287 u32 offset0,
288 u64 value)
289 {
290 write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
291 }
292
293 static inline u64 read_sde_csr(
294 struct sdma_engine *sde,
295 u32 offset0)
296 {
297 return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
298 }
299
300 /*
301 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302 * sdma engine 'sde' to drop to 0.
303 */
304 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
305 int pause)
306 {
307 u64 off = 8 * sde->this_idx;
308 struct hfi1_devdata *dd = sde->dd;
309 int lcnt = 0;
310 u64 reg_prev;
311 u64 reg = 0;
312
313 while (1) {
314 reg_prev = reg;
315 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
316
317 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
319 if (reg == 0)
320 break;
321 /* counter is reest if accupancy count changes */
322 if (reg != reg_prev)
323 lcnt = 0;
324 if (lcnt++ > 500) {
325 /* timed out - bounce the link */
326 dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
327 __func__, sde->this_idx, (u32)reg);
328 queue_work(dd->pport->link_wq,
329 &dd->pport->link_bounce_work);
330 break;
331 }
332 udelay(1);
333 }
334 }
335
336 /*
337 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338 * and pause for credit return.
339 */
340 void sdma_wait(struct hfi1_devdata *dd)
341 {
342 int i;
343
344 for (i = 0; i < dd->num_sdma; i++) {
345 struct sdma_engine *sde = &dd->per_sdma[i];
346
347 sdma_wait_for_packet_egress(sde, 0);
348 }
349 }
350
351 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
352 {
353 u64 reg;
354
355 if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
356 return;
357 reg = cnt;
358 reg &= SD(DESC_CNT_CNT_MASK);
359 reg <<= SD(DESC_CNT_CNT_SHIFT);
360 write_sde_csr(sde, SD(DESC_CNT), reg);
361 }
362
363 static inline void complete_tx(struct sdma_engine *sde,
364 struct sdma_txreq *tx,
365 int res)
366 {
367 /* protect against complete modifying */
368 struct iowait *wait = tx->wait;
369 callback_t complete = tx->complete;
370
371 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
372 trace_hfi1_sdma_out_sn(sde, tx->sn);
373 if (WARN_ON_ONCE(sde->head_sn != tx->sn))
374 dd_dev_err(sde->dd, "expected %llu got %llu\n",
375 sde->head_sn, tx->sn);
376 sde->head_sn++;
377 #endif
378 __sdma_txclean(sde->dd, tx);
379 if (complete)
380 (*complete)(tx, res);
381 if (iowait_sdma_dec(wait))
382 iowait_drain_wakeup(wait);
383 }
384
385 /*
386 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
387 *
388 * Depending on timing there can be txreqs in two places:
389 * - in the descq ring
390 * - in the flush list
391 *
392 * To avoid ordering issues the descq ring needs to be flushed
393 * first followed by the flush list.
394 *
395 * This routine is called from two places
396 * - From a work queue item
397 * - Directly from the state machine just before setting the
398 * state to running
399 *
400 * Must be called with head_lock held
401 *
402 */
403 static void sdma_flush(struct sdma_engine *sde)
404 {
405 struct sdma_txreq *txp, *txp_next;
406 LIST_HEAD(flushlist);
407 unsigned long flags;
408
409 /* flush from head to tail */
410 sdma_flush_descq(sde);
411 spin_lock_irqsave(&sde->flushlist_lock, flags);
412 /* copy flush list */
413 list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
414 list_del_init(&txp->list);
415 list_add_tail(&txp->list, &flushlist);
416 }
417 spin_unlock_irqrestore(&sde->flushlist_lock, flags);
418 /* flush from flush list */
419 list_for_each_entry_safe(txp, txp_next, &flushlist, list)
420 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
421 }
422
423 /*
424 * Fields a work request for flushing the descq ring
425 * and the flush list
426 *
427 * If the engine has been brought to running during
428 * the scheduling delay, the flush is ignored, assuming
429 * that the process of bringing the engine to running
430 * would have done this flush prior to going to running.
431 *
432 */
433 static void sdma_field_flush(struct work_struct *work)
434 {
435 unsigned long flags;
436 struct sdma_engine *sde =
437 container_of(work, struct sdma_engine, flush_worker);
438
439 write_seqlock_irqsave(&sde->head_lock, flags);
440 if (!__sdma_running(sde))
441 sdma_flush(sde);
442 write_sequnlock_irqrestore(&sde->head_lock, flags);
443 }
444
445 static void sdma_err_halt_wait(struct work_struct *work)
446 {
447 struct sdma_engine *sde = container_of(work, struct sdma_engine,
448 err_halt_worker);
449 u64 statuscsr;
450 unsigned long timeout;
451
452 timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
453 while (1) {
454 statuscsr = read_sde_csr(sde, SD(STATUS));
455 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
456 if (statuscsr)
457 break;
458 if (time_after(jiffies, timeout)) {
459 dd_dev_err(sde->dd,
460 "SDMA engine %d - timeout waiting for engine to halt\n",
461 sde->this_idx);
462 /*
463 * Continue anyway. This could happen if there was
464 * an uncorrectable error in the wrong spot.
465 */
466 break;
467 }
468 usleep_range(80, 120);
469 }
470
471 sdma_process_event(sde, sdma_event_e15_hw_halt_done);
472 }
473
474 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
475 {
476 if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
477 unsigned index;
478 struct hfi1_devdata *dd = sde->dd;
479
480 for (index = 0; index < dd->num_sdma; index++) {
481 struct sdma_engine *curr_sdma = &dd->per_sdma[index];
482
483 if (curr_sdma != sde)
484 curr_sdma->progress_check_head =
485 curr_sdma->descq_head;
486 }
487 dd_dev_err(sde->dd,
488 "SDMA engine %d - check scheduled\n",
489 sde->this_idx);
490 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
491 }
492 }
493
494 static void sdma_err_progress_check(struct timer_list *t)
495 {
496 unsigned index;
497 struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
498
499 dd_dev_err(sde->dd, "SDE progress check event\n");
500 for (index = 0; index < sde->dd->num_sdma; index++) {
501 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
502 unsigned long flags;
503
504 /* check progress on each engine except the current one */
505 if (curr_sde == sde)
506 continue;
507 /*
508 * We must lock interrupts when acquiring sde->lock,
509 * to avoid a deadlock if interrupt triggers and spins on
510 * the same lock on same CPU
511 */
512 spin_lock_irqsave(&curr_sde->tail_lock, flags);
513 write_seqlock(&curr_sde->head_lock);
514
515 /* skip non-running queues */
516 if (curr_sde->state.current_state != sdma_state_s99_running) {
517 write_sequnlock(&curr_sde->head_lock);
518 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
519 continue;
520 }
521
522 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
523 (curr_sde->descq_head ==
524 curr_sde->progress_check_head))
525 __sdma_process_event(curr_sde,
526 sdma_event_e90_sw_halted);
527 write_sequnlock(&curr_sde->head_lock);
528 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
529 }
530 schedule_work(&sde->err_halt_worker);
531 }
532
533 static void sdma_hw_clean_up_task(unsigned long opaque)
534 {
535 struct sdma_engine *sde = (struct sdma_engine *)opaque;
536 u64 statuscsr;
537
538 while (1) {
539 #ifdef CONFIG_SDMA_VERBOSITY
540 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
541 sde->this_idx, slashstrip(__FILE__), __LINE__,
542 __func__);
543 #endif
544 statuscsr = read_sde_csr(sde, SD(STATUS));
545 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
546 if (statuscsr)
547 break;
548 udelay(10);
549 }
550
551 sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
552 }
553
554 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
555 {
556 return sde->tx_ring[sde->tx_head & sde->sdma_mask];
557 }
558
559 /*
560 * flush ring for recovery
561 */
562 static void sdma_flush_descq(struct sdma_engine *sde)
563 {
564 u16 head, tail;
565 int progress = 0;
566 struct sdma_txreq *txp = get_txhead(sde);
567
568 /* The reason for some of the complexity of this code is that
569 * not all descriptors have corresponding txps. So, we have to
570 * be able to skip over descs until we wander into the range of
571 * the next txp on the list.
572 */
573 head = sde->descq_head & sde->sdma_mask;
574 tail = sde->descq_tail & sde->sdma_mask;
575 while (head != tail) {
576 /* advance head, wrap if needed */
577 head = ++sde->descq_head & sde->sdma_mask;
578 /* if now past this txp's descs, do the callback */
579 if (txp && txp->next_descq_idx == head) {
580 /* remove from list */
581 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
582 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
583 trace_hfi1_sdma_progress(sde, head, tail, txp);
584 txp = get_txhead(sde);
585 }
586 progress++;
587 }
588 if (progress)
589 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
590 }
591
592 static void sdma_sw_clean_up_task(unsigned long opaque)
593 {
594 struct sdma_engine *sde = (struct sdma_engine *)opaque;
595 unsigned long flags;
596
597 spin_lock_irqsave(&sde->tail_lock, flags);
598 write_seqlock(&sde->head_lock);
599
600 /*
601 * At this point, the following should always be true:
602 * - We are halted, so no more descriptors are getting retired.
603 * - We are not running, so no one is submitting new work.
604 * - Only we can send the e40_sw_cleaned, so we can't start
605 * running again until we say so. So, the active list and
606 * descq are ours to play with.
607 */
608
609 /*
610 * In the error clean up sequence, software clean must be called
611 * before the hardware clean so we can use the hardware head in
612 * the progress routine. A hardware clean or SPC unfreeze will
613 * reset the hardware head.
614 *
615 * Process all retired requests. The progress routine will use the
616 * latest physical hardware head - we are not running so speed does
617 * not matter.
618 */
619 sdma_make_progress(sde, 0);
620
621 sdma_flush(sde);
622
623 /*
624 * Reset our notion of head and tail.
625 * Note that the HW registers have been reset via an earlier
626 * clean up.
627 */
628 sde->descq_tail = 0;
629 sde->descq_head = 0;
630 sde->desc_avail = sdma_descq_freecnt(sde);
631 *sde->head_dma = 0;
632
633 __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
634
635 write_sequnlock(&sde->head_lock);
636 spin_unlock_irqrestore(&sde->tail_lock, flags);
637 }
638
639 static void sdma_sw_tear_down(struct sdma_engine *sde)
640 {
641 struct sdma_state *ss = &sde->state;
642
643 /* Releasing this reference means the state machine has stopped. */
644 sdma_put(ss);
645
646 /* stop waiting for all unfreeze events to complete */
647 atomic_set(&sde->dd->sdma_unfreeze_count, -1);
648 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
649 }
650
651 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
652 {
653 tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
654 }
655
656 static void sdma_set_state(struct sdma_engine *sde,
657 enum sdma_states next_state)
658 {
659 struct sdma_state *ss = &sde->state;
660 const struct sdma_set_state_action *action = sdma_action_table;
661 unsigned op = 0;
662
663 trace_hfi1_sdma_state(
664 sde,
665 sdma_state_names[ss->current_state],
666 sdma_state_names[next_state]);
667
668 /* debugging bookkeeping */
669 ss->previous_state = ss->current_state;
670 ss->previous_op = ss->current_op;
671 ss->current_state = next_state;
672
673 if (ss->previous_state != sdma_state_s99_running &&
674 next_state == sdma_state_s99_running)
675 sdma_flush(sde);
676
677 if (action[next_state].op_enable)
678 op |= SDMA_SENDCTRL_OP_ENABLE;
679
680 if (action[next_state].op_intenable)
681 op |= SDMA_SENDCTRL_OP_INTENABLE;
682
683 if (action[next_state].op_halt)
684 op |= SDMA_SENDCTRL_OP_HALT;
685
686 if (action[next_state].op_cleanup)
687 op |= SDMA_SENDCTRL_OP_CLEANUP;
688
689 if (action[next_state].go_s99_running_tofalse)
690 ss->go_s99_running = 0;
691
692 if (action[next_state].go_s99_running_totrue)
693 ss->go_s99_running = 1;
694
695 ss->current_op = op;
696 sdma_sendctrl(sde, ss->current_op);
697 }
698
699 /**
700 * sdma_get_descq_cnt() - called when device probed
701 *
702 * Return a validated descq count.
703 *
704 * This is currently only used in the verbs initialization to build the tx
705 * list.
706 *
707 * This will probably be deleted in favor of a more scalable approach to
708 * alloc tx's.
709 *
710 */
711 u16 sdma_get_descq_cnt(void)
712 {
713 u16 count = sdma_descq_cnt;
714
715 if (!count)
716 return SDMA_DESCQ_CNT;
717 /* count must be a power of 2 greater than 64 and less than
718 * 32768. Otherwise return default.
719 */
720 if (!is_power_of_2(count))
721 return SDMA_DESCQ_CNT;
722 if (count < 64 || count > 32768)
723 return SDMA_DESCQ_CNT;
724 return count;
725 }
726
727 /**
728 * sdma_engine_get_vl() - return vl for a given sdma engine
729 * @sde: sdma engine
730 *
731 * This function returns the vl mapped to a given engine, or an error if
732 * the mapping can't be found. The mapping fields are protected by RCU.
733 */
734 int sdma_engine_get_vl(struct sdma_engine *sde)
735 {
736 struct hfi1_devdata *dd = sde->dd;
737 struct sdma_vl_map *m;
738 u8 vl;
739
740 if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
741 return -EINVAL;
742
743 rcu_read_lock();
744 m = rcu_dereference(dd->sdma_map);
745 if (unlikely(!m)) {
746 rcu_read_unlock();
747 return -EINVAL;
748 }
749 vl = m->engine_to_vl[sde->this_idx];
750 rcu_read_unlock();
751
752 return vl;
753 }
754
755 /**
756 * sdma_select_engine_vl() - select sdma engine
757 * @dd: devdata
758 * @selector: a spreading factor
759 * @vl: this vl
760 *
761 *
762 * This function returns an engine based on the selector and a vl. The
763 * mapping fields are protected by RCU.
764 */
765 struct sdma_engine *sdma_select_engine_vl(
766 struct hfi1_devdata *dd,
767 u32 selector,
768 u8 vl)
769 {
770 struct sdma_vl_map *m;
771 struct sdma_map_elem *e;
772 struct sdma_engine *rval;
773
774 /* NOTE This should only happen if SC->VL changed after the initial
775 * checks on the QP/AH
776 * Default will return engine 0 below
777 */
778 if (vl >= num_vls) {
779 rval = NULL;
780 goto done;
781 }
782
783 rcu_read_lock();
784 m = rcu_dereference(dd->sdma_map);
785 if (unlikely(!m)) {
786 rcu_read_unlock();
787 return &dd->per_sdma[0];
788 }
789 e = m->map[vl & m->mask];
790 rval = e->sde[selector & e->mask];
791 rcu_read_unlock();
792
793 done:
794 rval = !rval ? &dd->per_sdma[0] : rval;
795 trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
796 return rval;
797 }
798
799 /**
800 * sdma_select_engine_sc() - select sdma engine
801 * @dd: devdata
802 * @selector: a spreading factor
803 * @sc5: the 5 bit sc
804 *
805 *
806 * This function returns an engine based on the selector and an sc.
807 */
808 struct sdma_engine *sdma_select_engine_sc(
809 struct hfi1_devdata *dd,
810 u32 selector,
811 u8 sc5)
812 {
813 u8 vl = sc_to_vlt(dd, sc5);
814
815 return sdma_select_engine_vl(dd, selector, vl);
816 }
817
818 struct sdma_rht_map_elem {
819 u32 mask;
820 u8 ctr;
821 struct sdma_engine *sde[0];
822 };
823
824 struct sdma_rht_node {
825 unsigned long cpu_id;
826 struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
827 struct rhash_head node;
828 };
829
830 #define NR_CPUS_HINT 192
831
832 static const struct rhashtable_params sdma_rht_params = {
833 .nelem_hint = NR_CPUS_HINT,
834 .head_offset = offsetof(struct sdma_rht_node, node),
835 .key_offset = offsetof(struct sdma_rht_node, cpu_id),
836 .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
837 .max_size = NR_CPUS,
838 .min_size = 8,
839 .automatic_shrinking = true,
840 };
841
842 /*
843 * sdma_select_user_engine() - select sdma engine based on user setup
844 * @dd: devdata
845 * @selector: a spreading factor
846 * @vl: this vl
847 *
848 * This function returns an sdma engine for a user sdma request.
849 * User defined sdma engine affinity setting is honored when applicable,
850 * otherwise system default sdma engine mapping is used. To ensure correct
851 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
852 */
853 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
854 u32 selector, u8 vl)
855 {
856 struct sdma_rht_node *rht_node;
857 struct sdma_engine *sde = NULL;
858 const struct cpumask *current_mask = &current->cpus_allowed;
859 unsigned long cpu_id;
860
861 /*
862 * To ensure that always the same sdma engine(s) will be
863 * selected make sure the process is pinned to this CPU only.
864 */
865 if (cpumask_weight(current_mask) != 1)
866 goto out;
867
868 cpu_id = smp_processor_id();
869 rcu_read_lock();
870 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
871 sdma_rht_params);
872
873 if (rht_node && rht_node->map[vl]) {
874 struct sdma_rht_map_elem *map = rht_node->map[vl];
875
876 sde = map->sde[selector & map->mask];
877 }
878 rcu_read_unlock();
879
880 if (sde)
881 return sde;
882
883 out:
884 return sdma_select_engine_vl(dd, selector, vl);
885 }
886
887 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
888 {
889 int i;
890
891 for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
892 map->sde[map->ctr + i] = map->sde[i];
893 }
894
895 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
896 struct sdma_engine *sde)
897 {
898 unsigned int i, pow;
899
900 /* only need to check the first ctr entries for a match */
901 for (i = 0; i < map->ctr; i++) {
902 if (map->sde[i] == sde) {
903 memmove(&map->sde[i], &map->sde[i + 1],
904 (map->ctr - i - 1) * sizeof(map->sde[0]));
905 map->ctr--;
906 pow = roundup_pow_of_two(map->ctr ? : 1);
907 map->mask = pow - 1;
908 sdma_populate_sde_map(map);
909 break;
910 }
911 }
912 }
913
914 /*
915 * Prevents concurrent reads and writes of the sdma engine cpu_mask
916 */
917 static DEFINE_MUTEX(process_to_sde_mutex);
918
919 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
920 size_t count)
921 {
922 struct hfi1_devdata *dd = sde->dd;
923 cpumask_var_t mask, new_mask;
924 unsigned long cpu;
925 int ret, vl, sz;
926 struct sdma_rht_node *rht_node;
927
928 vl = sdma_engine_get_vl(sde);
929 if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
930 return -EINVAL;
931
932 ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
933 if (!ret)
934 return -ENOMEM;
935
936 ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
937 if (!ret) {
938 free_cpumask_var(mask);
939 return -ENOMEM;
940 }
941 ret = cpulist_parse(buf, mask);
942 if (ret)
943 goto out_free;
944
945 if (!cpumask_subset(mask, cpu_online_mask)) {
946 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
947 ret = -EINVAL;
948 goto out_free;
949 }
950
951 sz = sizeof(struct sdma_rht_map_elem) +
952 (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
953
954 mutex_lock(&process_to_sde_mutex);
955
956 for_each_cpu(cpu, mask) {
957 /* Check if we have this already mapped */
958 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
959 cpumask_set_cpu(cpu, new_mask);
960 continue;
961 }
962
963 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
964 sdma_rht_params);
965 if (!rht_node) {
966 rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
967 if (!rht_node) {
968 ret = -ENOMEM;
969 goto out;
970 }
971
972 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
973 if (!rht_node->map[vl]) {
974 kfree(rht_node);
975 ret = -ENOMEM;
976 goto out;
977 }
978 rht_node->cpu_id = cpu;
979 rht_node->map[vl]->mask = 0;
980 rht_node->map[vl]->ctr = 1;
981 rht_node->map[vl]->sde[0] = sde;
982
983 ret = rhashtable_insert_fast(dd->sdma_rht,
984 &rht_node->node,
985 sdma_rht_params);
986 if (ret) {
987 kfree(rht_node->map[vl]);
988 kfree(rht_node);
989 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
990 cpu);
991 goto out;
992 }
993
994 } else {
995 int ctr, pow;
996
997 /* Add new user mappings */
998 if (!rht_node->map[vl])
999 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1000
1001 if (!rht_node->map[vl]) {
1002 ret = -ENOMEM;
1003 goto out;
1004 }
1005
1006 rht_node->map[vl]->ctr++;
1007 ctr = rht_node->map[vl]->ctr;
1008 rht_node->map[vl]->sde[ctr - 1] = sde;
1009 pow = roundup_pow_of_two(ctr);
1010 rht_node->map[vl]->mask = pow - 1;
1011
1012 /* Populate the sde map table */
1013 sdma_populate_sde_map(rht_node->map[vl]);
1014 }
1015 cpumask_set_cpu(cpu, new_mask);
1016 }
1017
1018 /* Clean up old mappings */
1019 for_each_cpu(cpu, cpu_online_mask) {
1020 struct sdma_rht_node *rht_node;
1021
1022 /* Don't cleanup sdes that are set in the new mask */
1023 if (cpumask_test_cpu(cpu, mask))
1024 continue;
1025
1026 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1027 sdma_rht_params);
1028 if (rht_node) {
1029 bool empty = true;
1030 int i;
1031
1032 /* Remove mappings for old sde */
1033 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1034 if (rht_node->map[i])
1035 sdma_cleanup_sde_map(rht_node->map[i],
1036 sde);
1037
1038 /* Free empty hash table entries */
1039 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1040 if (!rht_node->map[i])
1041 continue;
1042
1043 if (rht_node->map[i]->ctr) {
1044 empty = false;
1045 break;
1046 }
1047 }
1048
1049 if (empty) {
1050 ret = rhashtable_remove_fast(dd->sdma_rht,
1051 &rht_node->node,
1052 sdma_rht_params);
1053 WARN_ON(ret);
1054
1055 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1056 kfree(rht_node->map[i]);
1057
1058 kfree(rht_node);
1059 }
1060 }
1061 }
1062
1063 cpumask_copy(&sde->cpu_mask, new_mask);
1064 out:
1065 mutex_unlock(&process_to_sde_mutex);
1066 out_free:
1067 free_cpumask_var(mask);
1068 free_cpumask_var(new_mask);
1069 return ret ? : strnlen(buf, PAGE_SIZE);
1070 }
1071
1072 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1073 {
1074 mutex_lock(&process_to_sde_mutex);
1075 if (cpumask_empty(&sde->cpu_mask))
1076 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1077 else
1078 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1079 mutex_unlock(&process_to_sde_mutex);
1080 return strnlen(buf, PAGE_SIZE);
1081 }
1082
1083 static void sdma_rht_free(void *ptr, void *arg)
1084 {
1085 struct sdma_rht_node *rht_node = ptr;
1086 int i;
1087
1088 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1089 kfree(rht_node->map[i]);
1090
1091 kfree(rht_node);
1092 }
1093
1094 /**
1095 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1096 * @s: seq file
1097 * @dd: hfi1_devdata
1098 * @cpuid: cpu id
1099 *
1100 * This routine dumps the process to sde mappings per cpu
1101 */
1102 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1103 struct hfi1_devdata *dd,
1104 unsigned long cpuid)
1105 {
1106 struct sdma_rht_node *rht_node;
1107 int i, j;
1108
1109 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1110 sdma_rht_params);
1111 if (!rht_node)
1112 return;
1113
1114 seq_printf(s, "cpu%3lu: ", cpuid);
1115 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1116 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1117 continue;
1118
1119 seq_printf(s, " vl%d: [", i);
1120
1121 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1122 if (!rht_node->map[i]->sde[j])
1123 continue;
1124
1125 if (j > 0)
1126 seq_puts(s, ",");
1127
1128 seq_printf(s, " sdma%2d",
1129 rht_node->map[i]->sde[j]->this_idx);
1130 }
1131 seq_puts(s, " ]");
1132 }
1133
1134 seq_puts(s, "\n");
1135 }
1136
1137 /*
1138 * Free the indicated map struct
1139 */
1140 static void sdma_map_free(struct sdma_vl_map *m)
1141 {
1142 int i;
1143
1144 for (i = 0; m && i < m->actual_vls; i++)
1145 kfree(m->map[i]);
1146 kfree(m);
1147 }
1148
1149 /*
1150 * Handle RCU callback
1151 */
1152 static void sdma_map_rcu_callback(struct rcu_head *list)
1153 {
1154 struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1155
1156 sdma_map_free(m);
1157 }
1158
1159 /**
1160 * sdma_map_init - called when # vls change
1161 * @dd: hfi1_devdata
1162 * @port: port number
1163 * @num_vls: number of vls
1164 * @vl_engines: per vl engine mapping (optional)
1165 *
1166 * This routine changes the mapping based on the number of vls.
1167 *
1168 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1169 * implies auto computing the loading and giving each VLs a uniform
1170 * distribution of engines per VL.
1171 *
1172 * The auto algorithm computes the sde_per_vl and the number of extra
1173 * engines. Any extra engines are added from the last VL on down.
1174 *
1175 * rcu locking is used here to control access to the mapping fields.
1176 *
1177 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1178 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1179 * up to the next highest power of 2 and the first entry is reused
1180 * in a round robin fashion.
1181 *
1182 * If an error occurs the map change is not done and the mapping is
1183 * not changed.
1184 *
1185 */
1186 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1187 {
1188 int i, j;
1189 int extra, sde_per_vl;
1190 int engine = 0;
1191 u8 lvl_engines[OPA_MAX_VLS];
1192 struct sdma_vl_map *oldmap, *newmap;
1193
1194 if (!(dd->flags & HFI1_HAS_SEND_DMA))
1195 return 0;
1196
1197 if (!vl_engines) {
1198 /* truncate divide */
1199 sde_per_vl = dd->num_sdma / num_vls;
1200 /* extras */
1201 extra = dd->num_sdma % num_vls;
1202 vl_engines = lvl_engines;
1203 /* add extras from last vl down */
1204 for (i = num_vls - 1; i >= 0; i--, extra--)
1205 vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1206 }
1207 /* build new map */
1208 newmap = kzalloc(
1209 sizeof(struct sdma_vl_map) +
1210 roundup_pow_of_two(num_vls) *
1211 sizeof(struct sdma_map_elem *),
1212 GFP_KERNEL);
1213 if (!newmap)
1214 goto bail;
1215 newmap->actual_vls = num_vls;
1216 newmap->vls = roundup_pow_of_two(num_vls);
1217 newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1218 /* initialize back-map */
1219 for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1220 newmap->engine_to_vl[i] = -1;
1221 for (i = 0; i < newmap->vls; i++) {
1222 /* save for wrap around */
1223 int first_engine = engine;
1224
1225 if (i < newmap->actual_vls) {
1226 int sz = roundup_pow_of_two(vl_engines[i]);
1227
1228 /* only allocate once */
1229 newmap->map[i] = kzalloc(
1230 sizeof(struct sdma_map_elem) +
1231 sz * sizeof(struct sdma_engine *),
1232 GFP_KERNEL);
1233 if (!newmap->map[i])
1234 goto bail;
1235 newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1236 /* assign engines */
1237 for (j = 0; j < sz; j++) {
1238 newmap->map[i]->sde[j] =
1239 &dd->per_sdma[engine];
1240 if (++engine >= first_engine + vl_engines[i])
1241 /* wrap back to first engine */
1242 engine = first_engine;
1243 }
1244 /* assign back-map */
1245 for (j = 0; j < vl_engines[i]; j++)
1246 newmap->engine_to_vl[first_engine + j] = i;
1247 } else {
1248 /* just re-use entry without allocating */
1249 newmap->map[i] = newmap->map[i % num_vls];
1250 }
1251 engine = first_engine + vl_engines[i];
1252 }
1253 /* newmap in hand, save old map */
1254 spin_lock_irq(&dd->sde_map_lock);
1255 oldmap = rcu_dereference_protected(dd->sdma_map,
1256 lockdep_is_held(&dd->sde_map_lock));
1257
1258 /* publish newmap */
1259 rcu_assign_pointer(dd->sdma_map, newmap);
1260
1261 spin_unlock_irq(&dd->sde_map_lock);
1262 /* success, free any old map after grace period */
1263 if (oldmap)
1264 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1265 return 0;
1266 bail:
1267 /* free any partial allocation */
1268 sdma_map_free(newmap);
1269 return -ENOMEM;
1270 }
1271
1272 /**
1273 * sdma_clean() Clean up allocated memory
1274 * @dd: struct hfi1_devdata
1275 * @num_engines: num sdma engines
1276 *
1277 * This routine can be called regardless of the success of
1278 * sdma_init()
1279 */
1280 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1281 {
1282 size_t i;
1283 struct sdma_engine *sde;
1284
1285 if (dd->sdma_pad_dma) {
1286 dma_free_coherent(&dd->pcidev->dev, 4,
1287 (void *)dd->sdma_pad_dma,
1288 dd->sdma_pad_phys);
1289 dd->sdma_pad_dma = NULL;
1290 dd->sdma_pad_phys = 0;
1291 }
1292 if (dd->sdma_heads_dma) {
1293 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1294 (void *)dd->sdma_heads_dma,
1295 dd->sdma_heads_phys);
1296 dd->sdma_heads_dma = NULL;
1297 dd->sdma_heads_phys = 0;
1298 }
1299 for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1300 sde = &dd->per_sdma[i];
1301
1302 sde->head_dma = NULL;
1303 sde->head_phys = 0;
1304
1305 if (sde->descq) {
1306 dma_free_coherent(
1307 &dd->pcidev->dev,
1308 sde->descq_cnt * sizeof(u64[2]),
1309 sde->descq,
1310 sde->descq_phys
1311 );
1312 sde->descq = NULL;
1313 sde->descq_phys = 0;
1314 }
1315 kvfree(sde->tx_ring);
1316 sde->tx_ring = NULL;
1317 }
1318 spin_lock_irq(&dd->sde_map_lock);
1319 sdma_map_free(rcu_access_pointer(dd->sdma_map));
1320 RCU_INIT_POINTER(dd->sdma_map, NULL);
1321 spin_unlock_irq(&dd->sde_map_lock);
1322 synchronize_rcu();
1323 kfree(dd->per_sdma);
1324 dd->per_sdma = NULL;
1325
1326 if (dd->sdma_rht) {
1327 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1328 kfree(dd->sdma_rht);
1329 dd->sdma_rht = NULL;
1330 }
1331 }
1332
1333 /**
1334 * sdma_init() - called when device probed
1335 * @dd: hfi1_devdata
1336 * @port: port number (currently only zero)
1337 *
1338 * Initializes each sde and its csrs.
1339 * Interrupts are not required to be enabled.
1340 *
1341 * Returns:
1342 * 0 - success, -errno on failure
1343 */
1344 int sdma_init(struct hfi1_devdata *dd, u8 port)
1345 {
1346 unsigned this_idx;
1347 struct sdma_engine *sde;
1348 struct rhashtable *tmp_sdma_rht;
1349 u16 descq_cnt;
1350 void *curr_head;
1351 struct hfi1_pportdata *ppd = dd->pport + port;
1352 u32 per_sdma_credits;
1353 uint idle_cnt = sdma_idle_cnt;
1354 size_t num_engines = chip_sdma_engines(dd);
1355 int ret = -ENOMEM;
1356
1357 if (!HFI1_CAP_IS_KSET(SDMA)) {
1358 HFI1_CAP_CLEAR(SDMA_AHG);
1359 return 0;
1360 }
1361 if (mod_num_sdma &&
1362 /* can't exceed chip support */
1363 mod_num_sdma <= chip_sdma_engines(dd) &&
1364 /* count must be >= vls */
1365 mod_num_sdma >= num_vls)
1366 num_engines = mod_num_sdma;
1367
1368 dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1369 dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1370 dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1371 chip_sdma_mem_size(dd));
1372
1373 per_sdma_credits =
1374 chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1375
1376 /* set up freeze waitqueue */
1377 init_waitqueue_head(&dd->sdma_unfreeze_wq);
1378 atomic_set(&dd->sdma_unfreeze_count, 0);
1379
1380 descq_cnt = sdma_get_descq_cnt();
1381 dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1382 num_engines, descq_cnt);
1383
1384 /* alloc memory for array of send engines */
1385 dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1386 GFP_KERNEL, dd->node);
1387 if (!dd->per_sdma)
1388 return ret;
1389
1390 idle_cnt = ns_to_cclock(dd, idle_cnt);
1391 if (idle_cnt)
1392 dd->default_desc1 =
1393 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1394 else
1395 dd->default_desc1 =
1396 SDMA_DESC1_INT_REQ_FLAG;
1397
1398 if (!sdma_desct_intr)
1399 sdma_desct_intr = SDMA_DESC_INTR;
1400
1401 /* Allocate memory for SendDMA descriptor FIFOs */
1402 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1403 sde = &dd->per_sdma[this_idx];
1404 sde->dd = dd;
1405 sde->ppd = ppd;
1406 sde->this_idx = this_idx;
1407 sde->descq_cnt = descq_cnt;
1408 sde->desc_avail = sdma_descq_freecnt(sde);
1409 sde->sdma_shift = ilog2(descq_cnt);
1410 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1411
1412 /* Create a mask specifically for each interrupt source */
1413 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1414 this_idx);
1415 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1416 this_idx);
1417 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1418 this_idx);
1419 /* Create a combined mask to cover all 3 interrupt sources */
1420 sde->imask = sde->int_mask | sde->progress_mask |
1421 sde->idle_mask;
1422
1423 spin_lock_init(&sde->tail_lock);
1424 seqlock_init(&sde->head_lock);
1425 spin_lock_init(&sde->senddmactrl_lock);
1426 spin_lock_init(&sde->flushlist_lock);
1427 seqlock_init(&sde->waitlock);
1428 /* insure there is always a zero bit */
1429 sde->ahg_bits = 0xfffffffe00000000ULL;
1430
1431 sdma_set_state(sde, sdma_state_s00_hw_down);
1432
1433 /* set up reference counting */
1434 kref_init(&sde->state.kref);
1435 init_completion(&sde->state.comp);
1436
1437 INIT_LIST_HEAD(&sde->flushlist);
1438 INIT_LIST_HEAD(&sde->dmawait);
1439
1440 sde->tail_csr =
1441 get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1442
1443 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1444 (unsigned long)sde);
1445
1446 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1447 (unsigned long)sde);
1448 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1449 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1450
1451 sde->progress_check_head = 0;
1452
1453 timer_setup(&sde->err_progress_check_timer,
1454 sdma_err_progress_check, 0);
1455
1456 sde->descq = dma_zalloc_coherent(
1457 &dd->pcidev->dev,
1458 descq_cnt * sizeof(u64[2]),
1459 &sde->descq_phys,
1460 GFP_KERNEL
1461 );
1462 if (!sde->descq)
1463 goto bail;
1464 sde->tx_ring =
1465 kvzalloc_node(array_size(descq_cnt,
1466 sizeof(struct sdma_txreq *)),
1467 GFP_KERNEL, dd->node);
1468 if (!sde->tx_ring)
1469 goto bail;
1470 }
1471
1472 dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1473 /* Allocate memory for DMA of head registers to memory */
1474 dd->sdma_heads_dma = dma_zalloc_coherent(
1475 &dd->pcidev->dev,
1476 dd->sdma_heads_size,
1477 &dd->sdma_heads_phys,
1478 GFP_KERNEL
1479 );
1480 if (!dd->sdma_heads_dma) {
1481 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1482 goto bail;
1483 }
1484
1485 /* Allocate memory for pad */
1486 dd->sdma_pad_dma = dma_zalloc_coherent(
1487 &dd->pcidev->dev,
1488 sizeof(u32),
1489 &dd->sdma_pad_phys,
1490 GFP_KERNEL
1491 );
1492 if (!dd->sdma_pad_dma) {
1493 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1494 goto bail;
1495 }
1496
1497 /* assign each engine to different cacheline and init registers */
1498 curr_head = (void *)dd->sdma_heads_dma;
1499 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1500 unsigned long phys_offset;
1501
1502 sde = &dd->per_sdma[this_idx];
1503
1504 sde->head_dma = curr_head;
1505 curr_head += L1_CACHE_BYTES;
1506 phys_offset = (unsigned long)sde->head_dma -
1507 (unsigned long)dd->sdma_heads_dma;
1508 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1509 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1510 }
1511 dd->flags |= HFI1_HAS_SEND_DMA;
1512 dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1513 dd->num_sdma = num_engines;
1514 ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1515 if (ret < 0)
1516 goto bail;
1517
1518 tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1519 if (!tmp_sdma_rht) {
1520 ret = -ENOMEM;
1521 goto bail;
1522 }
1523
1524 ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1525 if (ret < 0)
1526 goto bail;
1527 dd->sdma_rht = tmp_sdma_rht;
1528
1529 dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1530 return 0;
1531
1532 bail:
1533 sdma_clean(dd, num_engines);
1534 return ret;
1535 }
1536
1537 /**
1538 * sdma_all_running() - called when the link goes up
1539 * @dd: hfi1_devdata
1540 *
1541 * This routine moves all engines to the running state.
1542 */
1543 void sdma_all_running(struct hfi1_devdata *dd)
1544 {
1545 struct sdma_engine *sde;
1546 unsigned int i;
1547
1548 /* move all engines to running */
1549 for (i = 0; i < dd->num_sdma; ++i) {
1550 sde = &dd->per_sdma[i];
1551 sdma_process_event(sde, sdma_event_e30_go_running);
1552 }
1553 }
1554
1555 /**
1556 * sdma_all_idle() - called when the link goes down
1557 * @dd: hfi1_devdata
1558 *
1559 * This routine moves all engines to the idle state.
1560 */
1561 void sdma_all_idle(struct hfi1_devdata *dd)
1562 {
1563 struct sdma_engine *sde;
1564 unsigned int i;
1565
1566 /* idle all engines */
1567 for (i = 0; i < dd->num_sdma; ++i) {
1568 sde = &dd->per_sdma[i];
1569 sdma_process_event(sde, sdma_event_e70_go_idle);
1570 }
1571 }
1572
1573 /**
1574 * sdma_start() - called to kick off state processing for all engines
1575 * @dd: hfi1_devdata
1576 *
1577 * This routine is for kicking off the state processing for all required
1578 * sdma engines. Interrupts need to be working at this point.
1579 *
1580 */
1581 void sdma_start(struct hfi1_devdata *dd)
1582 {
1583 unsigned i;
1584 struct sdma_engine *sde;
1585
1586 /* kick off the engines state processing */
1587 for (i = 0; i < dd->num_sdma; ++i) {
1588 sde = &dd->per_sdma[i];
1589 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1590 }
1591 }
1592
1593 /**
1594 * sdma_exit() - used when module is removed
1595 * @dd: hfi1_devdata
1596 */
1597 void sdma_exit(struct hfi1_devdata *dd)
1598 {
1599 unsigned this_idx;
1600 struct sdma_engine *sde;
1601
1602 for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1603 ++this_idx) {
1604 sde = &dd->per_sdma[this_idx];
1605 if (!list_empty(&sde->dmawait))
1606 dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1607 sde->this_idx);
1608 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1609
1610 del_timer_sync(&sde->err_progress_check_timer);
1611
1612 /*
1613 * This waits for the state machine to exit so it is not
1614 * necessary to kill the sdma_sw_clean_up_task to make sure
1615 * it is not running.
1616 */
1617 sdma_finalput(&sde->state);
1618 }
1619 }
1620
1621 /*
1622 * unmap the indicated descriptor
1623 */
1624 static inline void sdma_unmap_desc(
1625 struct hfi1_devdata *dd,
1626 struct sdma_desc *descp)
1627 {
1628 switch (sdma_mapping_type(descp)) {
1629 case SDMA_MAP_SINGLE:
1630 dma_unmap_single(
1631 &dd->pcidev->dev,
1632 sdma_mapping_addr(descp),
1633 sdma_mapping_len(descp),
1634 DMA_TO_DEVICE);
1635 break;
1636 case SDMA_MAP_PAGE:
1637 dma_unmap_page(
1638 &dd->pcidev->dev,
1639 sdma_mapping_addr(descp),
1640 sdma_mapping_len(descp),
1641 DMA_TO_DEVICE);
1642 break;
1643 }
1644 }
1645
1646 /*
1647 * return the mode as indicated by the first
1648 * descriptor in the tx.
1649 */
1650 static inline u8 ahg_mode(struct sdma_txreq *tx)
1651 {
1652 return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1653 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1654 }
1655
1656 /**
1657 * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1658 * @dd: hfi1_devdata for unmapping
1659 * @tx: tx request to clean
1660 *
1661 * This is used in the progress routine to clean the tx or
1662 * by the ULP to toss an in-process tx build.
1663 *
1664 * The code can be called multiple times without issue.
1665 *
1666 */
1667 void __sdma_txclean(
1668 struct hfi1_devdata *dd,
1669 struct sdma_txreq *tx)
1670 {
1671 u16 i;
1672
1673 if (tx->num_desc) {
1674 u8 skip = 0, mode = ahg_mode(tx);
1675
1676 /* unmap first */
1677 sdma_unmap_desc(dd, &tx->descp[0]);
1678 /* determine number of AHG descriptors to skip */
1679 if (mode > SDMA_AHG_APPLY_UPDATE1)
1680 skip = mode >> 1;
1681 for (i = 1 + skip; i < tx->num_desc; i++)
1682 sdma_unmap_desc(dd, &tx->descp[i]);
1683 tx->num_desc = 0;
1684 }
1685 kfree(tx->coalesce_buf);
1686 tx->coalesce_buf = NULL;
1687 /* kmalloc'ed descp */
1688 if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1689 tx->desc_limit = ARRAY_SIZE(tx->descs);
1690 kfree(tx->descp);
1691 }
1692 }
1693
1694 static inline u16 sdma_gethead(struct sdma_engine *sde)
1695 {
1696 struct hfi1_devdata *dd = sde->dd;
1697 int use_dmahead;
1698 u16 hwhead;
1699
1700 #ifdef CONFIG_SDMA_VERBOSITY
1701 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1702 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1703 #endif
1704
1705 retry:
1706 use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1707 (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1708 hwhead = use_dmahead ?
1709 (u16)le64_to_cpu(*sde->head_dma) :
1710 (u16)read_sde_csr(sde, SD(HEAD));
1711
1712 if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1713 u16 cnt;
1714 u16 swtail;
1715 u16 swhead;
1716 int sane;
1717
1718 swhead = sde->descq_head & sde->sdma_mask;
1719 /* this code is really bad for cache line trading */
1720 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1721 cnt = sde->descq_cnt;
1722
1723 if (swhead < swtail)
1724 /* not wrapped */
1725 sane = (hwhead >= swhead) & (hwhead <= swtail);
1726 else if (swhead > swtail)
1727 /* wrapped around */
1728 sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1729 (hwhead <= swtail);
1730 else
1731 /* empty */
1732 sane = (hwhead == swhead);
1733
1734 if (unlikely(!sane)) {
1735 dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1736 sde->this_idx,
1737 use_dmahead ? "dma" : "kreg",
1738 hwhead, swhead, swtail, cnt);
1739 if (use_dmahead) {
1740 /* try one more time, using csr */
1741 use_dmahead = 0;
1742 goto retry;
1743 }
1744 /* proceed as if no progress */
1745 hwhead = swhead;
1746 }
1747 }
1748 return hwhead;
1749 }
1750
1751 /*
1752 * This is called when there are send DMA descriptors that might be
1753 * available.
1754 *
1755 * This is called with head_lock held.
1756 */
1757 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1758 {
1759 struct iowait *wait, *nw;
1760 struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1761 uint i, n = 0, seq, max_idx = 0;
1762 u8 max_starved_cnt = 0;
1763
1764 #ifdef CONFIG_SDMA_VERBOSITY
1765 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1766 slashstrip(__FILE__), __LINE__, __func__);
1767 dd_dev_err(sde->dd, "avail: %u\n", avail);
1768 #endif
1769
1770 do {
1771 seq = read_seqbegin(&sde->waitlock);
1772 if (!list_empty(&sde->dmawait)) {
1773 /* at least one item */
1774 write_seqlock(&sde->waitlock);
1775 /* Harvest waiters wanting DMA descriptors */
1776 list_for_each_entry_safe(
1777 wait,
1778 nw,
1779 &sde->dmawait,
1780 list) {
1781 u32 num_desc;
1782
1783 if (!wait->wakeup)
1784 continue;
1785 if (n == ARRAY_SIZE(waits))
1786 break;
1787 num_desc = iowait_get_all_desc(wait);
1788 if (num_desc > avail)
1789 break;
1790 avail -= num_desc;
1791 /* Find the most starved wait memeber */
1792 iowait_starve_find_max(wait, &max_starved_cnt,
1793 n, &max_idx);
1794 list_del_init(&wait->list);
1795 waits[n++] = wait;
1796 }
1797 write_sequnlock(&sde->waitlock);
1798 break;
1799 }
1800 } while (read_seqretry(&sde->waitlock, seq));
1801
1802 /* Schedule the most starved one first */
1803 if (n)
1804 waits[max_idx]->wakeup(waits[max_idx], SDMA_AVAIL_REASON);
1805
1806 for (i = 0; i < n; i++)
1807 if (i != max_idx)
1808 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1809 }
1810
1811 /* head_lock must be held */
1812 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1813 {
1814 struct sdma_txreq *txp = NULL;
1815 int progress = 0;
1816 u16 hwhead, swhead;
1817 int idle_check_done = 0;
1818
1819 hwhead = sdma_gethead(sde);
1820
1821 /* The reason for some of the complexity of this code is that
1822 * not all descriptors have corresponding txps. So, we have to
1823 * be able to skip over descs until we wander into the range of
1824 * the next txp on the list.
1825 */
1826
1827 retry:
1828 txp = get_txhead(sde);
1829 swhead = sde->descq_head & sde->sdma_mask;
1830 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1831 while (swhead != hwhead) {
1832 /* advance head, wrap if needed */
1833 swhead = ++sde->descq_head & sde->sdma_mask;
1834
1835 /* if now past this txp's descs, do the callback */
1836 if (txp && txp->next_descq_idx == swhead) {
1837 /* remove from list */
1838 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1839 complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1840 /* see if there is another txp */
1841 txp = get_txhead(sde);
1842 }
1843 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1844 progress++;
1845 }
1846
1847 /*
1848 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1849 * to updates to the the dma_head location in host memory. The head
1850 * value read might not be fully up to date. If there are pending
1851 * descriptors and the SDMA idle interrupt fired then read from the
1852 * CSR SDMA head instead to get the latest value from the hardware.
1853 * The hardware SDMA head should be read at most once in this invocation
1854 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1855 */
1856 if ((status & sde->idle_mask) && !idle_check_done) {
1857 u16 swtail;
1858
1859 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1860 if (swtail != hwhead) {
1861 hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1862 idle_check_done = 1;
1863 goto retry;
1864 }
1865 }
1866
1867 sde->last_status = status;
1868 if (progress)
1869 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1870 }
1871
1872 /*
1873 * sdma_engine_interrupt() - interrupt handler for engine
1874 * @sde: sdma engine
1875 * @status: sdma interrupt reason
1876 *
1877 * Status is a mask of the 3 possible interrupts for this engine. It will
1878 * contain bits _only_ for this SDMA engine. It will contain at least one
1879 * bit, it may contain more.
1880 */
1881 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1882 {
1883 trace_hfi1_sdma_engine_interrupt(sde, status);
1884 write_seqlock(&sde->head_lock);
1885 sdma_set_desc_cnt(sde, sdma_desct_intr);
1886 if (status & sde->idle_mask)
1887 sde->idle_int_cnt++;
1888 else if (status & sde->progress_mask)
1889 sde->progress_int_cnt++;
1890 else if (status & sde->int_mask)
1891 sde->sdma_int_cnt++;
1892 sdma_make_progress(sde, status);
1893 write_sequnlock(&sde->head_lock);
1894 }
1895
1896 /**
1897 * sdma_engine_error() - error handler for engine
1898 * @sde: sdma engine
1899 * @status: sdma interrupt reason
1900 */
1901 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1902 {
1903 unsigned long flags;
1904
1905 #ifdef CONFIG_SDMA_VERBOSITY
1906 dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1907 sde->this_idx,
1908 (unsigned long long)status,
1909 sdma_state_names[sde->state.current_state]);
1910 #endif
1911 spin_lock_irqsave(&sde->tail_lock, flags);
1912 write_seqlock(&sde->head_lock);
1913 if (status & ALL_SDMA_ENG_HALT_ERRS)
1914 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1915 if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1916 dd_dev_err(sde->dd,
1917 "SDMA (%u) engine error: 0x%llx state %s\n",
1918 sde->this_idx,
1919 (unsigned long long)status,
1920 sdma_state_names[sde->state.current_state]);
1921 dump_sdma_state(sde);
1922 }
1923 write_sequnlock(&sde->head_lock);
1924 spin_unlock_irqrestore(&sde->tail_lock, flags);
1925 }
1926
1927 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1928 {
1929 u64 set_senddmactrl = 0;
1930 u64 clr_senddmactrl = 0;
1931 unsigned long flags;
1932
1933 #ifdef CONFIG_SDMA_VERBOSITY
1934 dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1935 sde->this_idx,
1936 (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1937 (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1938 (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1939 (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1940 #endif
1941
1942 if (op & SDMA_SENDCTRL_OP_ENABLE)
1943 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1944 else
1945 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1946
1947 if (op & SDMA_SENDCTRL_OP_INTENABLE)
1948 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1949 else
1950 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1951
1952 if (op & SDMA_SENDCTRL_OP_HALT)
1953 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1954 else
1955 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1956
1957 spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1958
1959 sde->p_senddmactrl |= set_senddmactrl;
1960 sde->p_senddmactrl &= ~clr_senddmactrl;
1961
1962 if (op & SDMA_SENDCTRL_OP_CLEANUP)
1963 write_sde_csr(sde, SD(CTRL),
1964 sde->p_senddmactrl |
1965 SD(CTRL_SDMA_CLEANUP_SMASK));
1966 else
1967 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1968
1969 spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1970
1971 #ifdef CONFIG_SDMA_VERBOSITY
1972 sdma_dumpstate(sde);
1973 #endif
1974 }
1975
1976 static void sdma_setlengen(struct sdma_engine *sde)
1977 {
1978 #ifdef CONFIG_SDMA_VERBOSITY
1979 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1980 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1981 #endif
1982
1983 /*
1984 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1985 * count to enable generation checking and load the internal
1986 * generation counter.
1987 */
1988 write_sde_csr(sde, SD(LEN_GEN),
1989 (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
1990 write_sde_csr(sde, SD(LEN_GEN),
1991 ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1992 (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
1993 }
1994
1995 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1996 {
1997 /* Commit writes to memory and advance the tail on the chip */
1998 smp_wmb(); /* see get_txhead() */
1999 writeq(tail, sde->tail_csr);
2000 }
2001
2002 /*
2003 * This is called when changing to state s10_hw_start_up_halt_wait as
2004 * a result of send buffer errors or send DMA descriptor errors.
2005 */
2006 static void sdma_hw_start_up(struct sdma_engine *sde)
2007 {
2008 u64 reg;
2009
2010 #ifdef CONFIG_SDMA_VERBOSITY
2011 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2012 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2013 #endif
2014
2015 sdma_setlengen(sde);
2016 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2017 *sde->head_dma = 0;
2018
2019 reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2020 SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2021 write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2022 }
2023
2024 /*
2025 * set_sdma_integrity
2026 *
2027 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2028 */
2029 static void set_sdma_integrity(struct sdma_engine *sde)
2030 {
2031 struct hfi1_devdata *dd = sde->dd;
2032
2033 write_sde_csr(sde, SD(CHECK_ENABLE),
2034 hfi1_pkt_base_sdma_integrity(dd));
2035 }
2036
2037 static void init_sdma_regs(
2038 struct sdma_engine *sde,
2039 u32 credits,
2040 uint idle_cnt)
2041 {
2042 u8 opval, opmask;
2043 #ifdef CONFIG_SDMA_VERBOSITY
2044 struct hfi1_devdata *dd = sde->dd;
2045
2046 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2047 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2048 #endif
2049
2050 write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2051 sdma_setlengen(sde);
2052 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2053 write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2054 write_sde_csr(sde, SD(DESC_CNT), 0);
2055 write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2056 write_sde_csr(sde, SD(MEMORY),
2057 ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2058 ((u64)(credits * sde->this_idx) <<
2059 SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2060 write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2061 set_sdma_integrity(sde);
2062 opmask = OPCODE_CHECK_MASK_DISABLED;
2063 opval = OPCODE_CHECK_VAL_DISABLED;
2064 write_sde_csr(sde, SD(CHECK_OPCODE),
2065 (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2066 (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2067 }
2068
2069 #ifdef CONFIG_SDMA_VERBOSITY
2070
2071 #define sdma_dumpstate_helper0(reg) do { \
2072 csr = read_csr(sde->dd, reg); \
2073 dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
2074 } while (0)
2075
2076 #define sdma_dumpstate_helper(reg) do { \
2077 csr = read_sde_csr(sde, reg); \
2078 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2079 #reg, sde->this_idx, csr); \
2080 } while (0)
2081
2082 #define sdma_dumpstate_helper2(reg) do { \
2083 csr = read_csr(sde->dd, reg + (8 * i)); \
2084 dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
2085 #reg, i, csr); \
2086 } while (0)
2087
2088 void sdma_dumpstate(struct sdma_engine *sde)
2089 {
2090 u64 csr;
2091 unsigned i;
2092
2093 sdma_dumpstate_helper(SD(CTRL));
2094 sdma_dumpstate_helper(SD(STATUS));
2095 sdma_dumpstate_helper0(SD(ERR_STATUS));
2096 sdma_dumpstate_helper0(SD(ERR_MASK));
2097 sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2098 sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2099
2100 for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2101 sdma_dumpstate_helper2(CCE_INT_STATUS);
2102 sdma_dumpstate_helper2(CCE_INT_MASK);
2103 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2104 }
2105
2106 sdma_dumpstate_helper(SD(TAIL));
2107 sdma_dumpstate_helper(SD(HEAD));
2108 sdma_dumpstate_helper(SD(PRIORITY_THLD));
2109 sdma_dumpstate_helper(SD(IDLE_CNT));
2110 sdma_dumpstate_helper(SD(RELOAD_CNT));
2111 sdma_dumpstate_helper(SD(DESC_CNT));
2112 sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2113 sdma_dumpstate_helper(SD(MEMORY));
2114 sdma_dumpstate_helper0(SD(ENGINES));
2115 sdma_dumpstate_helper0(SD(MEM_SIZE));
2116 /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
2117 sdma_dumpstate_helper(SD(BASE_ADDR));
2118 sdma_dumpstate_helper(SD(LEN_GEN));
2119 sdma_dumpstate_helper(SD(HEAD_ADDR));
2120 sdma_dumpstate_helper(SD(CHECK_ENABLE));
2121 sdma_dumpstate_helper(SD(CHECK_VL));
2122 sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2123 sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2124 sdma_dumpstate_helper(SD(CHECK_SLID));
2125 sdma_dumpstate_helper(SD(CHECK_OPCODE));
2126 }
2127 #endif
2128
2129 static void dump_sdma_state(struct sdma_engine *sde)
2130 {
2131 struct hw_sdma_desc *descqp;
2132 u64 desc[2];
2133 u64 addr;
2134 u8 gen;
2135 u16 len;
2136 u16 head, tail, cnt;
2137
2138 head = sde->descq_head & sde->sdma_mask;
2139 tail = sde->descq_tail & sde->sdma_mask;
2140 cnt = sdma_descq_freecnt(sde);
2141
2142 dd_dev_err(sde->dd,
2143 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2144 sde->this_idx, head, tail, cnt,
2145 !list_empty(&sde->flushlist));
2146
2147 /* print info for each entry in the descriptor queue */
2148 while (head != tail) {
2149 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2150
2151 descqp = &sde->descq[head];
2152 desc[0] = le64_to_cpu(descqp->qw[0]);
2153 desc[1] = le64_to_cpu(descqp->qw[1]);
2154 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2155 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2156 'H' : '-';
2157 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2158 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2159 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2160 & SDMA_DESC0_PHY_ADDR_MASK;
2161 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2162 & SDMA_DESC1_GENERATION_MASK;
2163 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2164 & SDMA_DESC0_BYTE_COUNT_MASK;
2165 dd_dev_err(sde->dd,
2166 "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2167 head, flags, addr, gen, len);
2168 dd_dev_err(sde->dd,
2169 "\tdesc0:0x%016llx desc1 0x%016llx\n",
2170 desc[0], desc[1]);
2171 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2172 dd_dev_err(sde->dd,
2173 "\taidx: %u amode: %u alen: %u\n",
2174 (u8)((desc[1] &
2175 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2176 SDMA_DESC1_HEADER_INDEX_SHIFT),
2177 (u8)((desc[1] &
2178 SDMA_DESC1_HEADER_MODE_SMASK) >>
2179 SDMA_DESC1_HEADER_MODE_SHIFT),
2180 (u8)((desc[1] &
2181 SDMA_DESC1_HEADER_DWS_SMASK) >>
2182 SDMA_DESC1_HEADER_DWS_SHIFT));
2183 head++;
2184 head &= sde->sdma_mask;
2185 }
2186 }
2187
2188 #define SDE_FMT \
2189 "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2190 /**
2191 * sdma_seqfile_dump_sde() - debugfs dump of sde
2192 * @s: seq file
2193 * @sde: send dma engine to dump
2194 *
2195 * This routine dumps the sde to the indicated seq file.
2196 */
2197 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2198 {
2199 u16 head, tail;
2200 struct hw_sdma_desc *descqp;
2201 u64 desc[2];
2202 u64 addr;
2203 u8 gen;
2204 u16 len;
2205
2206 head = sde->descq_head & sde->sdma_mask;
2207 tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2208 seq_printf(s, SDE_FMT, sde->this_idx,
2209 sde->cpu,
2210 sdma_state_name(sde->state.current_state),
2211 (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2212 (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2213 (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2214 (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2215 (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2216 (unsigned long long)le64_to_cpu(*sde->head_dma),
2217 (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2218 (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2219 (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2220 (unsigned long long)sde->last_status,
2221 (unsigned long long)sde->ahg_bits,
2222 sde->tx_tail,
2223 sde->tx_head,
2224 sde->descq_tail,
2225 sde->descq_head,
2226 !list_empty(&sde->flushlist),
2227 sde->descq_full_count,
2228 (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2229
2230 /* print info for each entry in the descriptor queue */
2231 while (head != tail) {
2232 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2233
2234 descqp = &sde->descq[head];
2235 desc[0] = le64_to_cpu(descqp->qw[0]);
2236 desc[1] = le64_to_cpu(descqp->qw[1]);
2237 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2238 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2239 'H' : '-';
2240 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2241 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2242 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2243 & SDMA_DESC0_PHY_ADDR_MASK;
2244 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2245 & SDMA_DESC1_GENERATION_MASK;
2246 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2247 & SDMA_DESC0_BYTE_COUNT_MASK;
2248 seq_printf(s,
2249 "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2250 head, flags, addr, gen, len);
2251 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2252 seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2253 (u8)((desc[1] &
2254 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2255 SDMA_DESC1_HEADER_INDEX_SHIFT),
2256 (u8)((desc[1] &
2257 SDMA_DESC1_HEADER_MODE_SMASK) >>
2258 SDMA_DESC1_HEADER_MODE_SHIFT));
2259 head = (head + 1) & sde->sdma_mask;
2260 }
2261 }
2262
2263 /*
2264 * add the generation number into
2265 * the qw1 and return
2266 */
2267 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2268 {
2269 u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2270
2271 qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2272 qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2273 << SDMA_DESC1_GENERATION_SHIFT;
2274 return qw1;
2275 }
2276
2277 /*
2278 * This routine submits the indicated tx
2279 *
2280 * Space has already been guaranteed and
2281 * tail side of ring is locked.
2282 *
2283 * The hardware tail update is done
2284 * in the caller and that is facilitated
2285 * by returning the new tail.
2286 *
2287 * There is special case logic for ahg
2288 * to not add the generation number for
2289 * up to 2 descriptors that follow the
2290 * first descriptor.
2291 *
2292 */
2293 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2294 {
2295 int i;
2296 u16 tail;
2297 struct sdma_desc *descp = tx->descp;
2298 u8 skip = 0, mode = ahg_mode(tx);
2299
2300 tail = sde->descq_tail & sde->sdma_mask;
2301 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2302 sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2303 trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2304 tail, &sde->descq[tail]);
2305 tail = ++sde->descq_tail & sde->sdma_mask;
2306 descp++;
2307 if (mode > SDMA_AHG_APPLY_UPDATE1)
2308 skip = mode >> 1;
2309 for (i = 1; i < tx->num_desc; i++, descp++) {
2310 u64 qw1;
2311
2312 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2313 if (skip) {
2314 /* edits don't have generation */
2315 qw1 = descp->qw[1];
2316 skip--;
2317 } else {
2318 /* replace generation with real one for non-edits */
2319 qw1 = add_gen(sde, descp->qw[1]);
2320 }
2321 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2322 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2323 tail, &sde->descq[tail]);
2324 tail = ++sde->descq_tail & sde->sdma_mask;
2325 }
2326 tx->next_descq_idx = tail;
2327 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2328 tx->sn = sde->tail_sn++;
2329 trace_hfi1_sdma_in_sn(sde, tx->sn);
2330 WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2331 #endif
2332 sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2333 sde->desc_avail -= tx->num_desc;
2334 return tail;
2335 }
2336
2337 /*
2338 * Check for progress
2339 */
2340 static int sdma_check_progress(
2341 struct sdma_engine *sde,
2342 struct iowait_work *wait,
2343 struct sdma_txreq *tx,
2344 bool pkts_sent)
2345 {
2346 int ret;
2347
2348 sde->desc_avail = sdma_descq_freecnt(sde);
2349 if (tx->num_desc <= sde->desc_avail)
2350 return -EAGAIN;
2351 /* pulse the head_lock */
2352 if (wait && iowait_ioww_to_iow(wait)->sleep) {
2353 unsigned seq;
2354
2355 seq = raw_seqcount_begin(
2356 (const seqcount_t *)&sde->head_lock.seqcount);
2357 ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2358 if (ret == -EAGAIN)
2359 sde->desc_avail = sdma_descq_freecnt(sde);
2360 } else {
2361 ret = -EBUSY;
2362 }
2363 return ret;
2364 }
2365
2366 /**
2367 * sdma_send_txreq() - submit a tx req to ring
2368 * @sde: sdma engine to use
2369 * @wait: SE wait structure to use when full (may be NULL)
2370 * @tx: sdma_txreq to submit
2371 * @pkts_sent: has any packet been sent yet?
2372 *
2373 * The call submits the tx into the ring. If a iowait structure is non-NULL
2374 * the packet will be queued to the list in wait.
2375 *
2376 * Return:
2377 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2378 * ring (wait == NULL)
2379 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2380 */
2381 int sdma_send_txreq(struct sdma_engine *sde,
2382 struct iowait_work *wait,
2383 struct sdma_txreq *tx,
2384 bool pkts_sent)
2385 {
2386 int ret = 0;
2387 u16 tail;
2388 unsigned long flags;
2389
2390 /* user should have supplied entire packet */
2391 if (unlikely(tx->tlen))
2392 return -EINVAL;
2393 tx->wait = iowait_ioww_to_iow(wait);
2394 spin_lock_irqsave(&sde->tail_lock, flags);
2395 retry:
2396 if (unlikely(!__sdma_running(sde)))
2397 goto unlock_noconn;
2398 if (unlikely(tx->num_desc > sde->desc_avail))
2399 goto nodesc;
2400 tail = submit_tx(sde, tx);
2401 if (wait)
2402 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2403 sdma_update_tail(sde, tail);
2404 unlock:
2405 spin_unlock_irqrestore(&sde->tail_lock, flags);
2406 return ret;
2407 unlock_noconn:
2408 if (wait)
2409 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2410 tx->next_descq_idx = 0;
2411 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2412 tx->sn = sde->tail_sn++;
2413 trace_hfi1_sdma_in_sn(sde, tx->sn);
2414 #endif
2415 spin_lock(&sde->flushlist_lock);
2416 list_add_tail(&tx->list, &sde->flushlist);
2417 spin_unlock(&sde->flushlist_lock);
2418 iowait_inc_wait_count(wait, tx->num_desc);
2419 schedule_work(&sde->flush_worker);
2420 ret = -ECOMM;
2421 goto unlock;
2422 nodesc:
2423 ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2424 if (ret == -EAGAIN) {
2425 ret = 0;
2426 goto retry;
2427 }
2428 sde->descq_full_count++;
2429 goto unlock;
2430 }
2431
2432 /**
2433 * sdma_send_txlist() - submit a list of tx req to ring
2434 * @sde: sdma engine to use
2435 * @wait: SE wait structure to use when full (may be NULL)
2436 * @tx_list: list of sdma_txreqs to submit
2437 * @count: pointer to a u16 which, after return will contain the total number of
2438 * sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2439 * whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2440 * which are added to SDMA engine flush list if the SDMA engine state is
2441 * not running.
2442 *
2443 * The call submits the list into the ring.
2444 *
2445 * If the iowait structure is non-NULL and not equal to the iowait list
2446 * the unprocessed part of the list will be appended to the list in wait.
2447 *
2448 * In all cases, the tx_list will be updated so the head of the tx_list is
2449 * the list of descriptors that have yet to be transmitted.
2450 *
2451 * The intent of this call is to provide a more efficient
2452 * way of submitting multiple packets to SDMA while holding the tail
2453 * side locking.
2454 *
2455 * Return:
2456 * 0 - Success,
2457 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2458 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2459 */
2460 int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2461 struct list_head *tx_list, u16 *count_out)
2462 {
2463 struct sdma_txreq *tx, *tx_next;
2464 int ret = 0;
2465 unsigned long flags;
2466 u16 tail = INVALID_TAIL;
2467 u32 submit_count = 0, flush_count = 0, total_count;
2468
2469 spin_lock_irqsave(&sde->tail_lock, flags);
2470 retry:
2471 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2472 tx->wait = iowait_ioww_to_iow(wait);
2473 if (unlikely(!__sdma_running(sde)))
2474 goto unlock_noconn;
2475 if (unlikely(tx->num_desc > sde->desc_avail))
2476 goto nodesc;
2477 if (unlikely(tx->tlen)) {
2478 ret = -EINVAL;
2479 goto update_tail;
2480 }
2481 list_del_init(&tx->list);
2482 tail = submit_tx(sde, tx);
2483 submit_count++;
2484 if (tail != INVALID_TAIL &&
2485 (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2486 sdma_update_tail(sde, tail);
2487 tail = INVALID_TAIL;
2488 }
2489 }
2490 update_tail:
2491 total_count = submit_count + flush_count;
2492 if (wait) {
2493 iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2494 iowait_starve_clear(submit_count > 0,
2495 iowait_ioww_to_iow(wait));
2496 }
2497 if (tail != INVALID_TAIL)
2498 sdma_update_tail(sde, tail);
2499 spin_unlock_irqrestore(&sde->tail_lock, flags);
2500 *count_out = total_count;
2501 return ret;
2502 unlock_noconn:
2503 spin_lock(&sde->flushlist_lock);
2504 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2505 tx->wait = iowait_ioww_to_iow(wait);
2506 list_del_init(&tx->list);
2507 tx->next_descq_idx = 0;
2508 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2509 tx->sn = sde->tail_sn++;
2510 trace_hfi1_sdma_in_sn(sde, tx->sn);
2511 #endif
2512 list_add_tail(&tx->list, &sde->flushlist);
2513 flush_count++;
2514 iowait_inc_wait_count(wait, tx->num_desc);
2515 }
2516 spin_unlock(&sde->flushlist_lock);
2517 schedule_work(&sde->flush_worker);
2518 ret = -ECOMM;
2519 goto update_tail;
2520 nodesc:
2521 ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2522 if (ret == -EAGAIN) {
2523 ret = 0;
2524 goto retry;
2525 }
2526 sde->descq_full_count++;
2527 goto update_tail;
2528 }
2529
2530 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2531 {
2532 unsigned long flags;
2533
2534 spin_lock_irqsave(&sde->tail_lock, flags);
2535 write_seqlock(&sde->head_lock);
2536
2537 __sdma_process_event(sde, event);
2538
2539 if (sde->state.current_state == sdma_state_s99_running)
2540 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2541
2542 write_sequnlock(&sde->head_lock);
2543 spin_unlock_irqrestore(&sde->tail_lock, flags);
2544 }
2545
2546 static void __sdma_process_event(struct sdma_engine *sde,
2547 enum sdma_events event)
2548 {
2549 struct sdma_state *ss = &sde->state;
2550 int need_progress = 0;
2551
2552 /* CONFIG SDMA temporary */
2553 #ifdef CONFIG_SDMA_VERBOSITY
2554 dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2555 sdma_state_names[ss->current_state],
2556 sdma_event_names[event]);
2557 #endif
2558
2559 switch (ss->current_state) {
2560 case sdma_state_s00_hw_down:
2561 switch (event) {
2562 case sdma_event_e00_go_hw_down:
2563 break;
2564 case sdma_event_e30_go_running:
2565 /*
2566 * If down, but running requested (usually result
2567 * of link up, then we need to start up.
2568 * This can happen when hw down is requested while
2569 * bringing the link up with traffic active on
2570 * 7220, e.g.
2571 */
2572 ss->go_s99_running = 1;
2573 /* fall through -- and start dma engine */
2574 case sdma_event_e10_go_hw_start:
2575 /* This reference means the state machine is started */
2576 sdma_get(&sde->state);
2577 sdma_set_state(sde,
2578 sdma_state_s10_hw_start_up_halt_wait);
2579 break;
2580 case sdma_event_e15_hw_halt_done:
2581 break;
2582 case sdma_event_e25_hw_clean_up_done:
2583 break;
2584 case sdma_event_e40_sw_cleaned:
2585 sdma_sw_tear_down(sde);
2586 break;
2587 case sdma_event_e50_hw_cleaned:
2588 break;
2589 case sdma_event_e60_hw_halted:
2590 break;
2591 case sdma_event_e70_go_idle:
2592 break;
2593 case sdma_event_e80_hw_freeze:
2594 break;
2595 case sdma_event_e81_hw_frozen:
2596 break;
2597 case sdma_event_e82_hw_unfreeze:
2598 break;
2599 case sdma_event_e85_link_down:
2600 break;
2601 case sdma_event_e90_sw_halted:
2602 break;
2603 }
2604 break;
2605
2606 case sdma_state_s10_hw_start_up_halt_wait:
2607 switch (event) {
2608 case sdma_event_e00_go_hw_down:
2609 sdma_set_state(sde, sdma_state_s00_hw_down);
2610 sdma_sw_tear_down(sde);
2611 break;
2612 case sdma_event_e10_go_hw_start:
2613 break;
2614 case sdma_event_e15_hw_halt_done:
2615 sdma_set_state(sde,
2616 sdma_state_s15_hw_start_up_clean_wait);
2617 sdma_start_hw_clean_up(sde);
2618 break;
2619 case sdma_event_e25_hw_clean_up_done:
2620 break;
2621 case sdma_event_e30_go_running:
2622 ss->go_s99_running = 1;
2623 break;
2624 case sdma_event_e40_sw_cleaned:
2625 break;
2626 case sdma_event_e50_hw_cleaned:
2627 break;
2628 case sdma_event_e60_hw_halted:
2629 schedule_work(&sde->err_halt_worker);
2630 break;
2631 case sdma_event_e70_go_idle:
2632 ss->go_s99_running = 0;
2633 break;
2634 case sdma_event_e80_hw_freeze:
2635 break;
2636 case sdma_event_e81_hw_frozen:
2637 break;
2638 case sdma_event_e82_hw_unfreeze:
2639 break;
2640 case sdma_event_e85_link_down:
2641 break;
2642 case sdma_event_e90_sw_halted:
2643 break;
2644 }
2645 break;
2646
2647 case sdma_state_s15_hw_start_up_clean_wait:
2648 switch (event) {
2649 case sdma_event_e00_go_hw_down:
2650 sdma_set_state(sde, sdma_state_s00_hw_down);
2651 sdma_sw_tear_down(sde);
2652 break;
2653 case sdma_event_e10_go_hw_start:
2654 break;
2655 case sdma_event_e15_hw_halt_done:
2656 break;
2657 case sdma_event_e25_hw_clean_up_done:
2658 sdma_hw_start_up(sde);
2659 sdma_set_state(sde, ss->go_s99_running ?
2660 sdma_state_s99_running :
2661 sdma_state_s20_idle);
2662 break;
2663 case sdma_event_e30_go_running:
2664 ss->go_s99_running = 1;
2665 break;
2666 case sdma_event_e40_sw_cleaned:
2667 break;
2668 case sdma_event_e50_hw_cleaned:
2669 break;
2670 case sdma_event_e60_hw_halted:
2671 break;
2672 case sdma_event_e70_go_idle:
2673 ss->go_s99_running = 0;
2674 break;
2675 case sdma_event_e80_hw_freeze:
2676 break;
2677 case sdma_event_e81_hw_frozen:
2678 break;
2679 case sdma_event_e82_hw_unfreeze:
2680 break;
2681 case sdma_event_e85_link_down:
2682 break;
2683 case sdma_event_e90_sw_halted:
2684 break;
2685 }
2686 break;
2687
2688 case sdma_state_s20_idle:
2689 switch (event) {
2690 case sdma_event_e00_go_hw_down:
2691 sdma_set_state(sde, sdma_state_s00_hw_down);
2692 sdma_sw_tear_down(sde);
2693 break;
2694 case sdma_event_e10_go_hw_start:
2695 break;
2696 case sdma_event_e15_hw_halt_done:
2697 break;
2698 case sdma_event_e25_hw_clean_up_done:
2699 break;
2700 case sdma_event_e30_go_running:
2701 sdma_set_state(sde, sdma_state_s99_running);
2702 ss->go_s99_running = 1;
2703 break;
2704 case sdma_event_e40_sw_cleaned:
2705 break;
2706 case sdma_event_e50_hw_cleaned:
2707 break;
2708 case sdma_event_e60_hw_halted:
2709 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2710 schedule_work(&sde->err_halt_worker);
2711 break;
2712 case sdma_event_e70_go_idle:
2713 break;
2714 case sdma_event_e85_link_down:
2715 /* fall through */
2716 case sdma_event_e80_hw_freeze:
2717 sdma_set_state(sde, sdma_state_s80_hw_freeze);
2718 atomic_dec(&sde->dd->sdma_unfreeze_count);
2719 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2720 break;
2721 case sdma_event_e81_hw_frozen:
2722 break;
2723 case sdma_event_e82_hw_unfreeze:
2724 break;
2725 case sdma_event_e90_sw_halted:
2726 break;
2727 }
2728 break;
2729
2730 case sdma_state_s30_sw_clean_up_wait:
2731 switch (event) {
2732 case sdma_event_e00_go_hw_down:
2733 sdma_set_state(sde, sdma_state_s00_hw_down);
2734 break;
2735 case sdma_event_e10_go_hw_start:
2736 break;
2737 case sdma_event_e15_hw_halt_done:
2738 break;
2739 case sdma_event_e25_hw_clean_up_done:
2740 break;
2741 case sdma_event_e30_go_running:
2742 ss->go_s99_running = 1;
2743 break;
2744 case sdma_event_e40_sw_cleaned:
2745 sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2746 sdma_start_hw_clean_up(sde);
2747 break;
2748 case sdma_event_e50_hw_cleaned:
2749 break;
2750 case sdma_event_e60_hw_halted:
2751 break;
2752 case sdma_event_e70_go_idle:
2753 ss->go_s99_running = 0;
2754 break;
2755 case sdma_event_e80_hw_freeze:
2756 break;
2757 case sdma_event_e81_hw_frozen:
2758 break;
2759 case sdma_event_e82_hw_unfreeze:
2760 break;
2761 case sdma_event_e85_link_down:
2762 ss->go_s99_running = 0;
2763 break;
2764 case sdma_event_e90_sw_halted:
2765 break;
2766 }
2767 break;
2768
2769 case sdma_state_s40_hw_clean_up_wait:
2770 switch (event) {
2771 case sdma_event_e00_go_hw_down:
2772 sdma_set_state(sde, sdma_state_s00_hw_down);
2773 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2774 break;
2775 case sdma_event_e10_go_hw_start:
2776 break;
2777 case sdma_event_e15_hw_halt_done:
2778 break;
2779 case sdma_event_e25_hw_clean_up_done:
2780 sdma_hw_start_up(sde);
2781 sdma_set_state(sde, ss->go_s99_running ?
2782 sdma_state_s99_running :
2783 sdma_state_s20_idle);
2784 break;
2785 case sdma_event_e30_go_running:
2786 ss->go_s99_running = 1;
2787 break;
2788 case sdma_event_e40_sw_cleaned:
2789 break;
2790 case sdma_event_e50_hw_cleaned:
2791 break;
2792 case sdma_event_e60_hw_halted:
2793 break;
2794 case sdma_event_e70_go_idle:
2795 ss->go_s99_running = 0;
2796 break;
2797 case sdma_event_e80_hw_freeze:
2798 break;
2799 case sdma_event_e81_hw_frozen:
2800 break;
2801 case sdma_event_e82_hw_unfreeze:
2802 break;
2803 case sdma_event_e85_link_down:
2804 ss->go_s99_running = 0;
2805 break;
2806 case sdma_event_e90_sw_halted:
2807 break;
2808 }
2809 break;
2810
2811 case sdma_state_s50_hw_halt_wait:
2812 switch (event) {
2813 case sdma_event_e00_go_hw_down:
2814 sdma_set_state(sde, sdma_state_s00_hw_down);
2815 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2816 break;
2817 case sdma_event_e10_go_hw_start:
2818 break;
2819 case sdma_event_e15_hw_halt_done:
2820 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2821 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2822 break;
2823 case sdma_event_e25_hw_clean_up_done:
2824 break;
2825 case sdma_event_e30_go_running:
2826 ss->go_s99_running = 1;
2827 break;
2828 case sdma_event_e40_sw_cleaned:
2829 break;
2830 case sdma_event_e50_hw_cleaned:
2831 break;
2832 case sdma_event_e60_hw_halted:
2833 schedule_work(&sde->err_halt_worker);
2834 break;
2835 case sdma_event_e70_go_idle:
2836 ss->go_s99_running = 0;
2837 break;
2838 case sdma_event_e80_hw_freeze:
2839 break;
2840 case sdma_event_e81_hw_frozen:
2841 break;
2842 case sdma_event_e82_hw_unfreeze:
2843 break;
2844 case sdma_event_e85_link_down:
2845 ss->go_s99_running = 0;
2846 break;
2847 case sdma_event_e90_sw_halted:
2848 break;
2849 }
2850 break;
2851
2852 case sdma_state_s60_idle_halt_wait:
2853 switch (event) {
2854 case sdma_event_e00_go_hw_down:
2855 sdma_set_state(sde, sdma_state_s00_hw_down);
2856 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2857 break;
2858 case sdma_event_e10_go_hw_start:
2859 break;
2860 case sdma_event_e15_hw_halt_done:
2861 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2862 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2863 break;
2864 case sdma_event_e25_hw_clean_up_done:
2865 break;
2866 case sdma_event_e30_go_running:
2867 ss->go_s99_running = 1;
2868 break;
2869 case sdma_event_e40_sw_cleaned:
2870 break;
2871 case sdma_event_e50_hw_cleaned:
2872 break;
2873 case sdma_event_e60_hw_halted:
2874 schedule_work(&sde->err_halt_worker);
2875 break;
2876 case sdma_event_e70_go_idle:
2877 ss->go_s99_running = 0;
2878 break;
2879 case sdma_event_e80_hw_freeze:
2880 break;
2881 case sdma_event_e81_hw_frozen:
2882 break;
2883 case sdma_event_e82_hw_unfreeze:
2884 break;
2885 case sdma_event_e85_link_down:
2886 break;
2887 case sdma_event_e90_sw_halted:
2888 break;
2889 }
2890 break;
2891
2892 case sdma_state_s80_hw_freeze:
2893 switch (event) {
2894 case sdma_event_e00_go_hw_down:
2895 sdma_set_state(sde, sdma_state_s00_hw_down);
2896 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2897 break;
2898 case sdma_event_e10_go_hw_start:
2899 break;
2900 case sdma_event_e15_hw_halt_done:
2901 break;
2902 case sdma_event_e25_hw_clean_up_done:
2903 break;
2904 case sdma_event_e30_go_running:
2905 ss->go_s99_running = 1;
2906 break;
2907 case sdma_event_e40_sw_cleaned:
2908 break;
2909 case sdma_event_e50_hw_cleaned:
2910 break;
2911 case sdma_event_e60_hw_halted:
2912 break;
2913 case sdma_event_e70_go_idle:
2914 ss->go_s99_running = 0;
2915 break;
2916 case sdma_event_e80_hw_freeze:
2917 break;
2918 case sdma_event_e81_hw_frozen:
2919 sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2920 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2921 break;
2922 case sdma_event_e82_hw_unfreeze:
2923 break;
2924 case sdma_event_e85_link_down:
2925 break;
2926 case sdma_event_e90_sw_halted:
2927 break;
2928 }
2929 break;
2930
2931 case sdma_state_s82_freeze_sw_clean:
2932 switch (event) {
2933 case sdma_event_e00_go_hw_down:
2934 sdma_set_state(sde, sdma_state_s00_hw_down);
2935 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2936 break;
2937 case sdma_event_e10_go_hw_start:
2938 break;
2939 case sdma_event_e15_hw_halt_done:
2940 break;
2941 case sdma_event_e25_hw_clean_up_done:
2942 break;
2943 case sdma_event_e30_go_running:
2944 ss->go_s99_running = 1;
2945 break;
2946 case sdma_event_e40_sw_cleaned:
2947 /* notify caller this engine is done cleaning */
2948 atomic_dec(&sde->dd->sdma_unfreeze_count);
2949 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2950 break;
2951 case sdma_event_e50_hw_cleaned:
2952 break;
2953 case sdma_event_e60_hw_halted:
2954 break;
2955 case sdma_event_e70_go_idle:
2956 ss->go_s99_running = 0;
2957 break;
2958 case sdma_event_e80_hw_freeze:
2959 break;
2960 case sdma_event_e81_hw_frozen:
2961 break;
2962 case sdma_event_e82_hw_unfreeze:
2963 sdma_hw_start_up(sde);
2964 sdma_set_state(sde, ss->go_s99_running ?
2965 sdma_state_s99_running :
2966 sdma_state_s20_idle);
2967 break;
2968 case sdma_event_e85_link_down:
2969 break;
2970 case sdma_event_e90_sw_halted:
2971 break;
2972 }
2973 break;
2974
2975 case sdma_state_s99_running:
2976 switch (event) {
2977 case sdma_event_e00_go_hw_down:
2978 sdma_set_state(sde, sdma_state_s00_hw_down);
2979 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2980 break;
2981 case sdma_event_e10_go_hw_start:
2982 break;
2983 case sdma_event_e15_hw_halt_done:
2984 break;
2985 case sdma_event_e25_hw_clean_up_done:
2986 break;
2987 case sdma_event_e30_go_running:
2988 break;
2989 case sdma_event_e40_sw_cleaned:
2990 break;
2991 case sdma_event_e50_hw_cleaned:
2992 break;
2993 case sdma_event_e60_hw_halted:
2994 need_progress = 1;
2995 sdma_err_progress_check_schedule(sde);
2996 /* fall through */
2997 case sdma_event_e90_sw_halted:
2998 /*
2999 * SW initiated halt does not perform engines
3000 * progress check
3001 */
3002 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3003 schedule_work(&sde->err_halt_worker);
3004 break;
3005 case sdma_event_e70_go_idle:
3006 sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3007 break;
3008 case sdma_event_e85_link_down:
3009 ss->go_s99_running = 0;
3010 /* fall through */
3011 case sdma_event_e80_hw_freeze:
3012 sdma_set_state(sde, sdma_state_s80_hw_freeze);
3013 atomic_dec(&sde->dd->sdma_unfreeze_count);
3014 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3015 break;
3016 case sdma_event_e81_hw_frozen:
3017 break;
3018 case sdma_event_e82_hw_unfreeze:
3019 break;
3020 }
3021 break;
3022 }
3023
3024 ss->last_event = event;
3025 if (need_progress)
3026 sdma_make_progress(sde, 0);
3027 }
3028
3029 /*
3030 * _extend_sdma_tx_descs() - helper to extend txreq
3031 *
3032 * This is called once the initial nominal allocation
3033 * of descriptors in the sdma_txreq is exhausted.
3034 *
3035 * The code will bump the allocation up to the max
3036 * of MAX_DESC (64) descriptors. There doesn't seem
3037 * much point in an interim step. The last descriptor
3038 * is reserved for coalesce buffer in order to support
3039 * cases where input packet has >MAX_DESC iovecs.
3040 *
3041 */
3042 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3043 {
3044 int i;
3045
3046 /* Handle last descriptor */
3047 if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3048 /* if tlen is 0, it is for padding, release last descriptor */
3049 if (!tx->tlen) {
3050 tx->desc_limit = MAX_DESC;
3051 } else if (!tx->coalesce_buf) {
3052 /* allocate coalesce buffer with space for padding */
3053 tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3054 GFP_ATOMIC);
3055 if (!tx->coalesce_buf)
3056 goto enomem;
3057 tx->coalesce_idx = 0;
3058 }
3059 return 0;
3060 }
3061
3062 if (unlikely(tx->num_desc == MAX_DESC))
3063 goto enomem;
3064
3065 tx->descp = kmalloc_array(
3066 MAX_DESC,
3067 sizeof(struct sdma_desc),
3068 GFP_ATOMIC);
3069 if (!tx->descp)
3070 goto enomem;
3071
3072 /* reserve last descriptor for coalescing */
3073 tx->desc_limit = MAX_DESC - 1;
3074 /* copy ones already built */
3075 for (i = 0; i < tx->num_desc; i++)
3076 tx->descp[i] = tx->descs[i];
3077 return 0;
3078 enomem:
3079 __sdma_txclean(dd, tx);
3080 return -ENOMEM;
3081 }
3082
3083 /*
3084 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3085 *
3086 * This is called once the initial nominal allocation of descriptors
3087 * in the sdma_txreq is exhausted.
3088 *
3089 * This function calls _extend_sdma_tx_descs to extend or allocate
3090 * coalesce buffer. If there is a allocated coalesce buffer, it will
3091 * copy the input packet data into the coalesce buffer. It also adds
3092 * coalesce buffer descriptor once when whole packet is received.
3093 *
3094 * Return:
3095 * <0 - error
3096 * 0 - coalescing, don't populate descriptor
3097 * 1 - continue with populating descriptor
3098 */
3099 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3100 int type, void *kvaddr, struct page *page,
3101 unsigned long offset, u16 len)
3102 {
3103 int pad_len, rval;
3104 dma_addr_t addr;
3105
3106 rval = _extend_sdma_tx_descs(dd, tx);
3107 if (rval) {
3108 __sdma_txclean(dd, tx);
3109 return rval;
3110 }
3111
3112 /* If coalesce buffer is allocated, copy data into it */
3113 if (tx->coalesce_buf) {
3114 if (type == SDMA_MAP_NONE) {
3115 __sdma_txclean(dd, tx);
3116 return -EINVAL;
3117 }
3118
3119 if (type == SDMA_MAP_PAGE) {
3120 kvaddr = kmap(page);
3121 kvaddr += offset;
3122 } else if (WARN_ON(!kvaddr)) {
3123 __sdma_txclean(dd, tx);
3124 return -EINVAL;
3125 }
3126
3127 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3128 tx->coalesce_idx += len;
3129 if (type == SDMA_MAP_PAGE)
3130 kunmap(page);
3131
3132 /* If there is more data, return */
3133 if (tx->tlen - tx->coalesce_idx)
3134 return 0;
3135
3136 /* Whole packet is received; add any padding */
3137 pad_len = tx->packet_len & (sizeof(u32) - 1);
3138 if (pad_len) {
3139 pad_len = sizeof(u32) - pad_len;
3140 memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3141 /* padding is taken care of for coalescing case */
3142 tx->packet_len += pad_len;
3143 tx->tlen += pad_len;
3144 }
3145
3146 /* dma map the coalesce buffer */
3147 addr = dma_map_single(&dd->pcidev->dev,
3148 tx->coalesce_buf,
3149 tx->tlen,
3150 DMA_TO_DEVICE);
3151
3152 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3153 __sdma_txclean(dd, tx);
3154 return -ENOSPC;
3155 }
3156
3157 /* Add descriptor for coalesce buffer */
3158 tx->desc_limit = MAX_DESC;
3159 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3160 addr, tx->tlen);
3161 }
3162
3163 return 1;
3164 }
3165
3166 /* Update sdes when the lmc changes */
3167 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3168 {
3169 struct sdma_engine *sde;
3170 int i;
3171 u64 sreg;
3172
3173 sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3174 SD(CHECK_SLID_MASK_SHIFT)) |
3175 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3176 SD(CHECK_SLID_VALUE_SHIFT));
3177
3178 for (i = 0; i < dd->num_sdma; i++) {
3179 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3180 i, (u32)sreg);
3181 sde = &dd->per_sdma[i];
3182 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3183 }
3184 }
3185
3186 /* tx not dword sized - pad */
3187 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3188 {
3189 int rval = 0;
3190
3191 tx->num_desc++;
3192 if ((unlikely(tx->num_desc == tx->desc_limit))) {
3193 rval = _extend_sdma_tx_descs(dd, tx);
3194 if (rval) {
3195 __sdma_txclean(dd, tx);
3196 return rval;
3197 }
3198 }
3199 /* finish the one just added */
3200 make_tx_sdma_desc(
3201 tx,
3202 SDMA_MAP_NONE,
3203 dd->sdma_pad_phys,
3204 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3205 _sdma_close_tx(dd, tx);
3206 return rval;
3207 }
3208
3209 /*
3210 * Add ahg to the sdma_txreq
3211 *
3212 * The logic will consume up to 3
3213 * descriptors at the beginning of
3214 * sdma_txreq.
3215 */
3216 void _sdma_txreq_ahgadd(
3217 struct sdma_txreq *tx,
3218 u8 num_ahg,
3219 u8 ahg_entry,
3220 u32 *ahg,
3221 u8 ahg_hlen)
3222 {
3223 u32 i, shift = 0, desc = 0;
3224 u8 mode;
3225
3226 WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3227 /* compute mode */
3228 if (num_ahg == 1)
3229 mode = SDMA_AHG_APPLY_UPDATE1;
3230 else if (num_ahg <= 5)
3231 mode = SDMA_AHG_APPLY_UPDATE2;
3232 else
3233 mode = SDMA_AHG_APPLY_UPDATE3;
3234 tx->num_desc++;
3235 /* initialize to consumed descriptors to zero */
3236 switch (mode) {
3237 case SDMA_AHG_APPLY_UPDATE3:
3238 tx->num_desc++;
3239 tx->descs[2].qw[0] = 0;
3240 tx->descs[2].qw[1] = 0;
3241 /* FALLTHROUGH */
3242 case SDMA_AHG_APPLY_UPDATE2:
3243 tx->num_desc++;
3244 tx->descs[1].qw[0] = 0;
3245 tx->descs[1].qw[1] = 0;
3246 break;
3247 }
3248 ahg_hlen >>= 2;
3249 tx->descs[0].qw[1] |=
3250 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3251 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3252 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3253 << SDMA_DESC1_HEADER_DWS_SHIFT) |
3254 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3255 << SDMA_DESC1_HEADER_MODE_SHIFT) |
3256 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3257 << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3258 for (i = 0; i < (num_ahg - 1); i++) {
3259 if (!shift && !(i & 2))
3260 desc++;
3261 tx->descs[desc].qw[!!(i & 2)] |=
3262 (((u64)ahg[i + 1])
3263 << shift);
3264 shift = (shift + 32) & 63;
3265 }
3266 }
3267
3268 /**
3269 * sdma_ahg_alloc - allocate an AHG entry
3270 * @sde: engine to allocate from
3271 *
3272 * Return:
3273 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3274 * -ENOSPC if an entry is not available
3275 */
3276 int sdma_ahg_alloc(struct sdma_engine *sde)
3277 {
3278 int nr;
3279 int oldbit;
3280
3281 if (!sde) {
3282 trace_hfi1_ahg_allocate(sde, -EINVAL);
3283 return -EINVAL;
3284 }
3285 while (1) {
3286 nr = ffz(READ_ONCE(sde->ahg_bits));
3287 if (nr > 31) {
3288 trace_hfi1_ahg_allocate(sde, -ENOSPC);
3289 return -ENOSPC;
3290 }
3291 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3292 if (!oldbit)
3293 break;
3294 cpu_relax();
3295 }
3296 trace_hfi1_ahg_allocate(sde, nr);
3297 return nr;
3298 }
3299
3300 /**
3301 * sdma_ahg_free - free an AHG entry
3302 * @sde: engine to return AHG entry
3303 * @ahg_index: index to free
3304 *
3305 * This routine frees the indicate AHG entry.
3306 */
3307 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3308 {
3309 if (!sde)
3310 return;
3311 trace_hfi1_ahg_deallocate(sde, ahg_index);
3312 if (ahg_index < 0 || ahg_index > 31)
3313 return;
3314 clear_bit(ahg_index, &sde->ahg_bits);
3315 }
3316
3317 /*
3318 * SPC freeze handling for SDMA engines. Called when the driver knows
3319 * the SPC is going into a freeze but before the freeze is fully
3320 * settled. Generally an error interrupt.
3321 *
3322 * This event will pull the engine out of running so no more entries can be
3323 * added to the engine's queue.
3324 */
3325 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3326 {
3327 int i;
3328 enum sdma_events event = link_down ? sdma_event_e85_link_down :
3329 sdma_event_e80_hw_freeze;
3330
3331 /* set up the wait but do not wait here */
3332 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3333
3334 /* tell all engines to stop running and wait */
3335 for (i = 0; i < dd->num_sdma; i++)
3336 sdma_process_event(&dd->per_sdma[i], event);
3337
3338 /* sdma_freeze() will wait for all engines to have stopped */
3339 }
3340
3341 /*
3342 * SPC freeze handling for SDMA engines. Called when the driver knows
3343 * the SPC is fully frozen.
3344 */
3345 void sdma_freeze(struct hfi1_devdata *dd)
3346 {
3347 int i;
3348 int ret;
3349
3350 /*
3351 * Make sure all engines have moved out of the running state before
3352 * continuing.
3353 */
3354 ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3355 atomic_read(&dd->sdma_unfreeze_count) <=
3356 0);
3357 /* interrupted or count is negative, then unloading - just exit */
3358 if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3359 return;
3360
3361 /* set up the count for the next wait */
3362 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3363
3364 /* tell all engines that the SPC is frozen, they can start cleaning */
3365 for (i = 0; i < dd->num_sdma; i++)
3366 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3367
3368 /*
3369 * Wait for everyone to finish software clean before exiting. The
3370 * software clean will read engine CSRs, so must be completed before
3371 * the next step, which will clear the engine CSRs.
3372 */
3373 (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3374 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3375 /* no need to check results - done no matter what */
3376 }
3377
3378 /*
3379 * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
3380 *
3381 * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
3382 * that is left is a software clean. We could do it after the SPC is fully
3383 * frozen, but then we'd have to add another state to wait for the unfreeze.
3384 * Instead, just defer the software clean until the unfreeze step.
3385 */
3386 void sdma_unfreeze(struct hfi1_devdata *dd)
3387 {
3388 int i;
3389
3390 /* tell all engines start freeze clean up */
3391 for (i = 0; i < dd->num_sdma; i++)
3392 sdma_process_event(&dd->per_sdma[i],
3393 sdma_event_e82_hw_unfreeze);
3394 }
3395
3396 /**
3397 * _sdma_engine_progress_schedule() - schedule progress on engine
3398 * @sde: sdma_engine to schedule progress
3399 *
3400 */
3401 void _sdma_engine_progress_schedule(
3402 struct sdma_engine *sde)
3403 {
3404 trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3405 /* assume we have selected a good cpu */
3406 write_csr(sde->dd,
3407 CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3408 sde->progress_mask);
3409 }