]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/iommu/arm-smmu-v3.c
powerpc/perf: Avoid spurious PMU interrupts after idle
[mirror_ubuntu-zesty-kernel.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2 * IOMMU API for ARM architected SMMUv3 implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 *
16 * Copyright (C) 2015 ARM Limited
17 *
18 * Author: Will Deacon <will.deacon@arm.com>
19 *
20 * This driver is powered by bad coffee and bombay mix.
21 */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0 0x0
46 #define IDR0_ST_LVL_SHIFT 27
47 #define IDR0_ST_LVL_MASK 0x3
48 #define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT 24
50 #define IDR0_STALL_MODEL_MASK 0x3
51 #define IDR0_STALL_MODEL_STALL (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT 21
54 #define IDR0_TTENDIAN_MASK 0x3
55 #define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L (1 << 19)
59 #define IDR0_VMID16 (1 << 18)
60 #define IDR0_PRI (1 << 16)
61 #define IDR0_SEV (1 << 14)
62 #define IDR0_MSI (1 << 13)
63 #define IDR0_ASID16 (1 << 12)
64 #define IDR0_ATS (1 << 10)
65 #define IDR0_HYP (1 << 9)
66 #define IDR0_COHACC (1 << 4)
67 #define IDR0_TTF_SHIFT 2
68 #define IDR0_TTF_MASK 0x3
69 #define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64 (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P (1 << 1)
72 #define IDR0_S2P (1 << 0)
73
74 #define ARM_SMMU_IDR1 0x4
75 #define IDR1_TABLES_PRESET (1 << 30)
76 #define IDR1_QUEUES_PRESET (1 << 29)
77 #define IDR1_REL (1 << 28)
78 #define IDR1_CMDQ_SHIFT 21
79 #define IDR1_CMDQ_MASK 0x1f
80 #define IDR1_EVTQ_SHIFT 16
81 #define IDR1_EVTQ_MASK 0x1f
82 #define IDR1_PRIQ_SHIFT 11
83 #define IDR1_PRIQ_MASK 0x1f
84 #define IDR1_SSID_SHIFT 6
85 #define IDR1_SSID_MASK 0x1f
86 #define IDR1_SID_SHIFT 0
87 #define IDR1_SID_MASK 0x3f
88
89 #define ARM_SMMU_IDR5 0x14
90 #define IDR5_STALL_MAX_SHIFT 16
91 #define IDR5_STALL_MAX_MASK 0xffff
92 #define IDR5_GRAN64K (1 << 6)
93 #define IDR5_GRAN16K (1 << 5)
94 #define IDR5_GRAN4K (1 << 4)
95 #define IDR5_OAS_SHIFT 0
96 #define IDR5_OAS_MASK 0x7
97 #define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0 0x20
105 #define CR0_CMDQEN (1 << 3)
106 #define CR0_EVTQEN (1 << 2)
107 #define CR0_PRIQEN (1 << 1)
108 #define CR0_SMMUEN (1 << 0)
109
110 #define ARM_SMMU_CR0ACK 0x24
111
112 #define ARM_SMMU_CR1 0x28
113 #define CR1_SH_NSH 0
114 #define CR1_SH_OSH 2
115 #define CR1_SH_ISH 3
116 #define CR1_CACHE_NC 0
117 #define CR1_CACHE_WB 1
118 #define CR1_CACHE_WT 2
119 #define CR1_TABLE_SH_SHIFT 10
120 #define CR1_TABLE_OC_SHIFT 8
121 #define CR1_TABLE_IC_SHIFT 6
122 #define CR1_QUEUE_SH_SHIFT 4
123 #define CR1_QUEUE_OC_SHIFT 2
124 #define CR1_QUEUE_IC_SHIFT 0
125
126 #define ARM_SMMU_CR2 0x2c
127 #define CR2_PTM (1 << 2)
128 #define CR2_RECINVSID (1 << 1)
129 #define CR2_E2H (1 << 0)
130
131 #define ARM_SMMU_GBPA 0x44
132 #define GBPA_ABORT (1 << 20)
133 #define GBPA_UPDATE (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL 0x50
136 #define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK 0x54
141
142 #define ARM_SMMU_GERROR 0x60
143 #define GERROR_SFM_ERR (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR (1 << 2)
150 #define GERROR_CMDQ_ERR (1 << 0)
151 #define GERROR_ERR_MASK 0xfd
152
153 #define ARM_SMMU_GERRORN 0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0 0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1 0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2 0x74
158
159 #define ARM_SMMU_STRTAB_BASE 0x80
160 #define STRTAB_BASE_RA (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT 6
162 #define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG 0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT 6
168 #define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT 16
170 #define STRTAB_BASE_CFG_FMT_MASK 0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE 0x90
175 #define ARM_SMMU_CMDQ_PROD 0x98
176 #define ARM_SMMU_CMDQ_CONS 0x9c
177
178 #define ARM_SMMU_EVTQ_BASE 0xa0
179 #define ARM_SMMU_EVTQ_PROD 0x100a8
180 #define ARM_SMMU_EVTQ_CONS 0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
184
185 #define ARM_SMMU_PRIQ_BASE 0xc0
186 #define ARM_SMMU_PRIQ_PROD 0x100c8
187 #define ARM_SMMU_PRIQ_CONS 0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT 2
194 #define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT 4
196 #define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT 0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG (1 << 31)
205 #define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p) ((q)->base + \
207 Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT 5
211 #define Q_BASE_ADDR_MASK 0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT 0
213 #define Q_BASE_LOG2SIZE_MASK 0x1fUL
214
215 /*
216 * Stream table.
217 *
218 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219 * 2lvl: 128k L1 entries,
220 * 256 lazy entries per table (each table covers a PCI bus)
221 */
222 #define STRTAB_L1_SZ_SHIFT 20
223 #define STRTAB_SPLIT 8
224
225 #define STRTAB_L1_DESC_DWORDS 1
226 #define STRTAB_L1_DESC_SPAN_SHIFT 0
227 #define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT 6
229 #define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS 8
232 #define STRTAB_STE_0_V (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT 1
234 #define STRTAB_STE_0_CFG_MASK 0x7UL
235 #define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT 4
241 #define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT 6
243 #define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT 59
245 #define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC 0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT 2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB 3UL
251 #define STRTAB_STE_1_S1C_SH_NSH 0UL
252 #define STRTAB_STE_1_S1C_SH_OSH 2UL
253 #define STRTAB_STE_1_S1C_SH_ISH 3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT 2
255 #define STRTAB_STE_1_S1COR_SHIFT 4
256 #define STRTAB_STE_1_S1CSH_SHIFT 6
257
258 #define STRTAB_STE_1_S1STALLD (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT 0UL
261 #define STRTAB_STE_1_EATS_TRANS 1UL
262 #define STRTAB_STE_1_EATS_S1CHK 2UL
263 #define STRTAB_STE_1_EATS_SHIFT 28
264
265 #define STRTAB_STE_1_STRW_NSEL1 0UL
266 #define STRTAB_STE_1_STRW_EL2 2UL
267 #define STRTAB_STE_1_STRW_SHIFT 30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING 1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT 44
271
272 #define STRTAB_STE_1_PRIVCFG_UNPRIV 2UL
273 #define STRTAB_STE_1_PRIVCFG_SHIFT 48
274
275 #define STRTAB_STE_2_S2VMID_SHIFT 0
276 #define STRTAB_STE_2_S2VMID_MASK 0xffffUL
277 #define STRTAB_STE_2_VTCR_SHIFT 32
278 #define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
279 #define STRTAB_STE_2_S2AA64 (1UL << 51)
280 #define STRTAB_STE_2_S2ENDI (1UL << 52)
281 #define STRTAB_STE_2_S2PTW (1UL << 54)
282 #define STRTAB_STE_2_S2R (1UL << 58)
283
284 #define STRTAB_STE_3_S2TTB_SHIFT 4
285 #define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
286
287 /* Context descriptor (stage-1 only) */
288 #define CTXDESC_CD_DWORDS 8
289 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
290 #define ARM64_TCR_T0SZ_SHIFT 0
291 #define ARM64_TCR_T0SZ_MASK 0x1fUL
292 #define CTXDESC_CD_0_TCR_TG0_SHIFT 6
293 #define ARM64_TCR_TG0_SHIFT 14
294 #define ARM64_TCR_TG0_MASK 0x3UL
295 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
296 #define ARM64_TCR_IRGN0_SHIFT 8
297 #define ARM64_TCR_IRGN0_MASK 0x3UL
298 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
299 #define ARM64_TCR_ORGN0_SHIFT 10
300 #define ARM64_TCR_ORGN0_MASK 0x3UL
301 #define CTXDESC_CD_0_TCR_SH0_SHIFT 12
302 #define ARM64_TCR_SH0_SHIFT 12
303 #define ARM64_TCR_SH0_MASK 0x3UL
304 #define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
305 #define ARM64_TCR_EPD0_SHIFT 7
306 #define ARM64_TCR_EPD0_MASK 0x1UL
307 #define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
308 #define ARM64_TCR_EPD1_SHIFT 23
309 #define ARM64_TCR_EPD1_MASK 0x1UL
310
311 #define CTXDESC_CD_0_ENDI (1UL << 15)
312 #define CTXDESC_CD_0_V (1UL << 31)
313
314 #define CTXDESC_CD_0_TCR_IPS_SHIFT 32
315 #define ARM64_TCR_IPS_SHIFT 32
316 #define ARM64_TCR_IPS_MASK 0x7UL
317 #define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
318 #define ARM64_TCR_TBI0_SHIFT 37
319 #define ARM64_TCR_TBI0_MASK 0x1UL
320
321 #define CTXDESC_CD_0_AA64 (1UL << 41)
322 #define CTXDESC_CD_0_R (1UL << 45)
323 #define CTXDESC_CD_0_A (1UL << 46)
324 #define CTXDESC_CD_0_ASET_SHIFT 47
325 #define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
326 #define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
327 #define CTXDESC_CD_0_ASID_SHIFT 48
328 #define CTXDESC_CD_0_ASID_MASK 0xffffUL
329
330 #define CTXDESC_CD_1_TTB0_SHIFT 4
331 #define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
332
333 #define CTXDESC_CD_3_MAIR_SHIFT 0
334
335 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
336 #define ARM_SMMU_TCR2CD(tcr, fld) \
337 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
338 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
339
340 /* Command queue */
341 #define CMDQ_ENT_DWORDS 2
342 #define CMDQ_MAX_SZ_SHIFT 8
343
344 #define CMDQ_ERR_SHIFT 24
345 #define CMDQ_ERR_MASK 0x7f
346 #define CMDQ_ERR_CERROR_NONE_IDX 0
347 #define CMDQ_ERR_CERROR_ILL_IDX 1
348 #define CMDQ_ERR_CERROR_ABT_IDX 2
349
350 #define CMDQ_0_OP_SHIFT 0
351 #define CMDQ_0_OP_MASK 0xffUL
352 #define CMDQ_0_SSV (1UL << 11)
353
354 #define CMDQ_PREFETCH_0_SID_SHIFT 32
355 #define CMDQ_PREFETCH_1_SIZE_SHIFT 0
356 #define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
357
358 #define CMDQ_CFGI_0_SID_SHIFT 32
359 #define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
360 #define CMDQ_CFGI_1_LEAF (1UL << 0)
361 #define CMDQ_CFGI_1_RANGE_SHIFT 0
362 #define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
363
364 #define CMDQ_TLBI_0_VMID_SHIFT 32
365 #define CMDQ_TLBI_0_ASID_SHIFT 48
366 #define CMDQ_TLBI_1_LEAF (1UL << 0)
367 #define CMDQ_TLBI_1_VA_MASK ~0xfffUL
368 #define CMDQ_TLBI_1_IPA_MASK 0xfffffffff000UL
369
370 #define CMDQ_PRI_0_SSID_SHIFT 12
371 #define CMDQ_PRI_0_SSID_MASK 0xfffffUL
372 #define CMDQ_PRI_0_SID_SHIFT 32
373 #define CMDQ_PRI_0_SID_MASK 0xffffffffUL
374 #define CMDQ_PRI_1_GRPID_SHIFT 0
375 #define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
376 #define CMDQ_PRI_1_RESP_SHIFT 12
377 #define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
378 #define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
379 #define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
380
381 #define CMDQ_SYNC_0_CS_SHIFT 12
382 #define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
383 #define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
384
385 /* Event queue */
386 #define EVTQ_ENT_DWORDS 4
387 #define EVTQ_MAX_SZ_SHIFT 7
388
389 #define EVTQ_0_ID_SHIFT 0
390 #define EVTQ_0_ID_MASK 0xffUL
391
392 /* PRI queue */
393 #define PRIQ_ENT_DWORDS 2
394 #define PRIQ_MAX_SZ_SHIFT 8
395
396 #define PRIQ_0_SID_SHIFT 0
397 #define PRIQ_0_SID_MASK 0xffffffffUL
398 #define PRIQ_0_SSID_SHIFT 32
399 #define PRIQ_0_SSID_MASK 0xfffffUL
400 #define PRIQ_0_PERM_PRIV (1UL << 58)
401 #define PRIQ_0_PERM_EXEC (1UL << 59)
402 #define PRIQ_0_PERM_READ (1UL << 60)
403 #define PRIQ_0_PERM_WRITE (1UL << 61)
404 #define PRIQ_0_PRG_LAST (1UL << 62)
405 #define PRIQ_0_SSID_V (1UL << 63)
406
407 #define PRIQ_1_PRG_IDX_SHIFT 0
408 #define PRIQ_1_PRG_IDX_MASK 0x1ffUL
409 #define PRIQ_1_ADDR_SHIFT 12
410 #define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
411
412 /* High-level queue structures */
413 #define ARM_SMMU_POLL_TIMEOUT_US 100
414
415 #define MSI_IOVA_BASE 0x8000000
416 #define MSI_IOVA_LENGTH 0x100000
417
418 static bool disable_bypass;
419 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
420 MODULE_PARM_DESC(disable_bypass,
421 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
422
423 enum pri_resp {
424 PRI_RESP_DENY,
425 PRI_RESP_FAIL,
426 PRI_RESP_SUCC,
427 };
428
429 enum arm_smmu_msi_index {
430 EVTQ_MSI_INDEX,
431 GERROR_MSI_INDEX,
432 PRIQ_MSI_INDEX,
433 ARM_SMMU_MAX_MSIS,
434 };
435
436 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
437 [EVTQ_MSI_INDEX] = {
438 ARM_SMMU_EVTQ_IRQ_CFG0,
439 ARM_SMMU_EVTQ_IRQ_CFG1,
440 ARM_SMMU_EVTQ_IRQ_CFG2,
441 },
442 [GERROR_MSI_INDEX] = {
443 ARM_SMMU_GERROR_IRQ_CFG0,
444 ARM_SMMU_GERROR_IRQ_CFG1,
445 ARM_SMMU_GERROR_IRQ_CFG2,
446 },
447 [PRIQ_MSI_INDEX] = {
448 ARM_SMMU_PRIQ_IRQ_CFG0,
449 ARM_SMMU_PRIQ_IRQ_CFG1,
450 ARM_SMMU_PRIQ_IRQ_CFG2,
451 },
452 };
453
454 struct arm_smmu_cmdq_ent {
455 /* Common fields */
456 u8 opcode;
457 bool substream_valid;
458
459 /* Command-specific fields */
460 union {
461 #define CMDQ_OP_PREFETCH_CFG 0x1
462 struct {
463 u32 sid;
464 u8 size;
465 u64 addr;
466 } prefetch;
467
468 #define CMDQ_OP_CFGI_STE 0x3
469 #define CMDQ_OP_CFGI_ALL 0x4
470 struct {
471 u32 sid;
472 union {
473 bool leaf;
474 u8 span;
475 };
476 } cfgi;
477
478 #define CMDQ_OP_TLBI_NH_ASID 0x11
479 #define CMDQ_OP_TLBI_NH_VA 0x12
480 #define CMDQ_OP_TLBI_EL2_ALL 0x20
481 #define CMDQ_OP_TLBI_S12_VMALL 0x28
482 #define CMDQ_OP_TLBI_S2_IPA 0x2a
483 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
484 struct {
485 u16 asid;
486 u16 vmid;
487 bool leaf;
488 u64 addr;
489 } tlbi;
490
491 #define CMDQ_OP_PRI_RESP 0x41
492 struct {
493 u32 sid;
494 u32 ssid;
495 u16 grpid;
496 enum pri_resp resp;
497 } pri;
498
499 #define CMDQ_OP_CMD_SYNC 0x46
500 };
501 };
502
503 struct arm_smmu_queue {
504 int irq; /* Wired interrupt */
505
506 __le64 *base;
507 dma_addr_t base_dma;
508 u64 q_base;
509
510 size_t ent_dwords;
511 u32 max_n_shift;
512 u32 prod;
513 u32 cons;
514
515 u32 __iomem *prod_reg;
516 u32 __iomem *cons_reg;
517 };
518
519 struct arm_smmu_cmdq {
520 struct arm_smmu_queue q;
521 spinlock_t lock;
522 };
523
524 struct arm_smmu_evtq {
525 struct arm_smmu_queue q;
526 u32 max_stalls;
527 };
528
529 struct arm_smmu_priq {
530 struct arm_smmu_queue q;
531 };
532
533 /* High-level stream table and context descriptor structures */
534 struct arm_smmu_strtab_l1_desc {
535 u8 span;
536
537 __le64 *l2ptr;
538 dma_addr_t l2ptr_dma;
539 };
540
541 struct arm_smmu_s1_cfg {
542 __le64 *cdptr;
543 dma_addr_t cdptr_dma;
544
545 struct arm_smmu_ctx_desc {
546 u16 asid;
547 u64 ttbr;
548 u64 tcr;
549 u64 mair;
550 } cd;
551 };
552
553 struct arm_smmu_s2_cfg {
554 u16 vmid;
555 u64 vttbr;
556 u64 vtcr;
557 };
558
559 struct arm_smmu_strtab_ent {
560 /*
561 * An STE is "assigned" if the master emitting the corresponding SID
562 * is attached to a domain. The behaviour of an unassigned STE is
563 * determined by the disable_bypass parameter, whereas an assigned
564 * STE behaves according to s1_cfg/s2_cfg, which themselves are
565 * configured according to the domain type.
566 */
567 bool assigned;
568 struct arm_smmu_s1_cfg *s1_cfg;
569 struct arm_smmu_s2_cfg *s2_cfg;
570 };
571
572 struct arm_smmu_strtab_cfg {
573 __le64 *strtab;
574 dma_addr_t strtab_dma;
575 struct arm_smmu_strtab_l1_desc *l1_desc;
576 unsigned int num_l1_ents;
577
578 u64 strtab_base;
579 u32 strtab_base_cfg;
580 };
581
582 /* An SMMUv3 instance */
583 struct arm_smmu_device {
584 struct device *dev;
585 void __iomem *base;
586
587 #define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
588 #define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
589 #define ARM_SMMU_FEAT_TT_LE (1 << 2)
590 #define ARM_SMMU_FEAT_TT_BE (1 << 3)
591 #define ARM_SMMU_FEAT_PRI (1 << 4)
592 #define ARM_SMMU_FEAT_ATS (1 << 5)
593 #define ARM_SMMU_FEAT_SEV (1 << 6)
594 #define ARM_SMMU_FEAT_MSI (1 << 7)
595 #define ARM_SMMU_FEAT_COHERENCY (1 << 8)
596 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
597 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
598 #define ARM_SMMU_FEAT_STALLS (1 << 11)
599 #define ARM_SMMU_FEAT_HYP (1 << 12)
600 u32 features;
601
602 #define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
603 u32 options;
604
605 struct arm_smmu_cmdq cmdq;
606 struct arm_smmu_evtq evtq;
607 struct arm_smmu_priq priq;
608
609 int gerr_irq;
610
611 unsigned long ias; /* IPA */
612 unsigned long oas; /* PA */
613 unsigned long pgsize_bitmap;
614
615 #define ARM_SMMU_MAX_ASIDS (1 << 16)
616 unsigned int asid_bits;
617 DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
618
619 #define ARM_SMMU_MAX_VMIDS (1 << 16)
620 unsigned int vmid_bits;
621 DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
622
623 unsigned int ssid_bits;
624 unsigned int sid_bits;
625
626 struct arm_smmu_strtab_cfg strtab_cfg;
627
628 /* IOMMU core code handle */
629 struct iommu_device iommu;
630 };
631
632 /* SMMU private data for each master */
633 struct arm_smmu_master_data {
634 struct arm_smmu_device *smmu;
635 struct arm_smmu_strtab_ent ste;
636 };
637
638 /* SMMU private data for an IOMMU domain */
639 enum arm_smmu_domain_stage {
640 ARM_SMMU_DOMAIN_S1 = 0,
641 ARM_SMMU_DOMAIN_S2,
642 ARM_SMMU_DOMAIN_NESTED,
643 ARM_SMMU_DOMAIN_BYPASS,
644 };
645
646 struct arm_smmu_domain {
647 struct arm_smmu_device *smmu;
648 struct mutex init_mutex; /* Protects smmu pointer */
649
650 struct io_pgtable_ops *pgtbl_ops;
651 spinlock_t pgtbl_lock;
652
653 enum arm_smmu_domain_stage stage;
654 union {
655 struct arm_smmu_s1_cfg s1_cfg;
656 struct arm_smmu_s2_cfg s2_cfg;
657 };
658
659 struct iommu_domain domain;
660 };
661
662 struct arm_smmu_option_prop {
663 u32 opt;
664 const char *prop;
665 };
666
667 static struct arm_smmu_option_prop arm_smmu_options[] = {
668 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
669 { 0, NULL},
670 };
671
672 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
673 {
674 return container_of(dom, struct arm_smmu_domain, domain);
675 }
676
677 static void parse_driver_options(struct arm_smmu_device *smmu)
678 {
679 int i = 0;
680
681 do {
682 if (of_property_read_bool(smmu->dev->of_node,
683 arm_smmu_options[i].prop)) {
684 smmu->options |= arm_smmu_options[i].opt;
685 dev_notice(smmu->dev, "option %s\n",
686 arm_smmu_options[i].prop);
687 }
688 } while (arm_smmu_options[++i].opt);
689 }
690
691 /* Low-level queue manipulation functions */
692 static bool queue_full(struct arm_smmu_queue *q)
693 {
694 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
695 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
696 }
697
698 static bool queue_empty(struct arm_smmu_queue *q)
699 {
700 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
701 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
702 }
703
704 static void queue_sync_cons(struct arm_smmu_queue *q)
705 {
706 q->cons = readl_relaxed(q->cons_reg);
707 }
708
709 static void queue_inc_cons(struct arm_smmu_queue *q)
710 {
711 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
712
713 q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
714 writel(q->cons, q->cons_reg);
715 }
716
717 static int queue_sync_prod(struct arm_smmu_queue *q)
718 {
719 int ret = 0;
720 u32 prod = readl_relaxed(q->prod_reg);
721
722 if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
723 ret = -EOVERFLOW;
724
725 q->prod = prod;
726 return ret;
727 }
728
729 static void queue_inc_prod(struct arm_smmu_queue *q)
730 {
731 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
732
733 q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
734 writel(q->prod, q->prod_reg);
735 }
736
737 /*
738 * Wait for the SMMU to consume items. If drain is true, wait until the queue
739 * is empty. Otherwise, wait until there is at least one free slot.
740 */
741 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
742 {
743 ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
744
745 while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
746 if (ktime_compare(ktime_get(), timeout) > 0)
747 return -ETIMEDOUT;
748
749 if (wfe) {
750 wfe();
751 } else {
752 cpu_relax();
753 udelay(1);
754 }
755 }
756
757 return 0;
758 }
759
760 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
761 {
762 int i;
763
764 for (i = 0; i < n_dwords; ++i)
765 *dst++ = cpu_to_le64(*src++);
766 }
767
768 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
769 {
770 if (queue_full(q))
771 return -ENOSPC;
772
773 queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
774 queue_inc_prod(q);
775 return 0;
776 }
777
778 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
779 {
780 int i;
781
782 for (i = 0; i < n_dwords; ++i)
783 *dst++ = le64_to_cpu(*src++);
784 }
785
786 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
787 {
788 if (queue_empty(q))
789 return -EAGAIN;
790
791 queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
792 queue_inc_cons(q);
793 return 0;
794 }
795
796 /* High-level queue accessors */
797 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
798 {
799 memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
800 cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
801
802 switch (ent->opcode) {
803 case CMDQ_OP_TLBI_EL2_ALL:
804 case CMDQ_OP_TLBI_NSNH_ALL:
805 break;
806 case CMDQ_OP_PREFETCH_CFG:
807 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
808 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
809 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
810 break;
811 case CMDQ_OP_CFGI_STE:
812 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
813 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
814 break;
815 case CMDQ_OP_CFGI_ALL:
816 /* Cover the entire SID range */
817 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
818 break;
819 case CMDQ_OP_TLBI_NH_VA:
820 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
821 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
822 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
823 break;
824 case CMDQ_OP_TLBI_S2_IPA:
825 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
826 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
827 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
828 break;
829 case CMDQ_OP_TLBI_NH_ASID:
830 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
831 /* Fallthrough */
832 case CMDQ_OP_TLBI_S12_VMALL:
833 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
834 break;
835 case CMDQ_OP_PRI_RESP:
836 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
837 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
838 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
839 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
840 switch (ent->pri.resp) {
841 case PRI_RESP_DENY:
842 cmd[1] |= CMDQ_PRI_1_RESP_DENY;
843 break;
844 case PRI_RESP_FAIL:
845 cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
846 break;
847 case PRI_RESP_SUCC:
848 cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
849 break;
850 default:
851 return -EINVAL;
852 }
853 break;
854 case CMDQ_OP_CMD_SYNC:
855 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
856 break;
857 default:
858 return -ENOENT;
859 }
860
861 return 0;
862 }
863
864 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
865 {
866 static const char *cerror_str[] = {
867 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
868 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
869 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
870 };
871
872 int i;
873 u64 cmd[CMDQ_ENT_DWORDS];
874 struct arm_smmu_queue *q = &smmu->cmdq.q;
875 u32 cons = readl_relaxed(q->cons_reg);
876 u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
877 struct arm_smmu_cmdq_ent cmd_sync = {
878 .opcode = CMDQ_OP_CMD_SYNC,
879 };
880
881 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
882 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown");
883
884 switch (idx) {
885 case CMDQ_ERR_CERROR_ABT_IDX:
886 dev_err(smmu->dev, "retrying command fetch\n");
887 case CMDQ_ERR_CERROR_NONE_IDX:
888 return;
889 case CMDQ_ERR_CERROR_ILL_IDX:
890 /* Fallthrough */
891 default:
892 break;
893 }
894
895 /*
896 * We may have concurrent producers, so we need to be careful
897 * not to touch any of the shadow cmdq state.
898 */
899 queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
900 dev_err(smmu->dev, "skipping command in error state:\n");
901 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
902 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
903
904 /* Convert the erroneous command into a CMD_SYNC */
905 if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
906 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
907 return;
908 }
909
910 queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
911 }
912
913 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
914 struct arm_smmu_cmdq_ent *ent)
915 {
916 u64 cmd[CMDQ_ENT_DWORDS];
917 unsigned long flags;
918 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
919 struct arm_smmu_queue *q = &smmu->cmdq.q;
920
921 if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
922 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
923 ent->opcode);
924 return;
925 }
926
927 spin_lock_irqsave(&smmu->cmdq.lock, flags);
928 while (queue_insert_raw(q, cmd) == -ENOSPC) {
929 if (queue_poll_cons(q, false, wfe))
930 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
931 }
932
933 if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
934 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
935 spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
936 }
937
938 /* Context descriptor manipulation functions */
939 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
940 {
941 u64 val = 0;
942
943 /* Repack the TCR. Just care about TTBR0 for now */
944 val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
945 val |= ARM_SMMU_TCR2CD(tcr, TG0);
946 val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
947 val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
948 val |= ARM_SMMU_TCR2CD(tcr, SH0);
949 val |= ARM_SMMU_TCR2CD(tcr, EPD0);
950 val |= ARM_SMMU_TCR2CD(tcr, EPD1);
951 val |= ARM_SMMU_TCR2CD(tcr, IPS);
952 val |= ARM_SMMU_TCR2CD(tcr, TBI0);
953
954 return val;
955 }
956
957 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
958 struct arm_smmu_s1_cfg *cfg)
959 {
960 u64 val;
961
962 /*
963 * We don't need to issue any invalidation here, as we'll invalidate
964 * the STE when installing the new entry anyway.
965 */
966 val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
967 #ifdef __BIG_ENDIAN
968 CTXDESC_CD_0_ENDI |
969 #endif
970 CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
971 CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
972 CTXDESC_CD_0_V;
973 cfg->cdptr[0] = cpu_to_le64(val);
974
975 val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
976 cfg->cdptr[1] = cpu_to_le64(val);
977
978 cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
979 }
980
981 /* Stream table manipulation functions */
982 static void
983 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
984 {
985 u64 val = 0;
986
987 val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
988 << STRTAB_L1_DESC_SPAN_SHIFT;
989 val |= desc->l2ptr_dma &
990 STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
991
992 *dst = cpu_to_le64(val);
993 }
994
995 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
996 {
997 struct arm_smmu_cmdq_ent cmd = {
998 .opcode = CMDQ_OP_CFGI_STE,
999 .cfgi = {
1000 .sid = sid,
1001 .leaf = true,
1002 },
1003 };
1004
1005 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1006 cmd.opcode = CMDQ_OP_CMD_SYNC;
1007 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1008 }
1009
1010 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
1011 __le64 *dst, struct arm_smmu_strtab_ent *ste)
1012 {
1013 /*
1014 * This is hideously complicated, but we only really care about
1015 * three cases at the moment:
1016 *
1017 * 1. Invalid (all zero) -> bypass/fault (init)
1018 * 2. Bypass/fault -> translation/bypass (attach)
1019 * 3. Translation/bypass -> bypass/fault (detach)
1020 *
1021 * Given that we can't update the STE atomically and the SMMU
1022 * doesn't read the thing in a defined order, that leaves us
1023 * with the following maintenance requirements:
1024 *
1025 * 1. Update Config, return (init time STEs aren't live)
1026 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1027 * 3. Update Config, sync
1028 */
1029 u64 val = le64_to_cpu(dst[0]);
1030 bool ste_live = false;
1031 struct arm_smmu_cmdq_ent prefetch_cmd = {
1032 .opcode = CMDQ_OP_PREFETCH_CFG,
1033 .prefetch = {
1034 .sid = sid,
1035 },
1036 };
1037
1038 if (val & STRTAB_STE_0_V) {
1039 u64 cfg;
1040
1041 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1042 switch (cfg) {
1043 case STRTAB_STE_0_CFG_BYPASS:
1044 break;
1045 case STRTAB_STE_0_CFG_S1_TRANS:
1046 case STRTAB_STE_0_CFG_S2_TRANS:
1047 ste_live = true;
1048 break;
1049 case STRTAB_STE_0_CFG_ABORT:
1050 if (disable_bypass)
1051 break;
1052 default:
1053 BUG(); /* STE corruption */
1054 }
1055 }
1056
1057 /* Nuke the existing STE_0 value, as we're going to rewrite it */
1058 val = STRTAB_STE_0_V;
1059
1060 /* Bypass/fault */
1061 if (!ste->assigned || !(ste->s1_cfg || ste->s2_cfg)) {
1062 if (!ste->assigned && disable_bypass)
1063 val |= STRTAB_STE_0_CFG_ABORT;
1064 else
1065 val |= STRTAB_STE_0_CFG_BYPASS;
1066
1067 dst[0] = cpu_to_le64(val);
1068 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1069 << STRTAB_STE_1_SHCFG_SHIFT);
1070 dst[2] = 0; /* Nuke the VMID */
1071 if (ste_live)
1072 arm_smmu_sync_ste_for_sid(smmu, sid);
1073 return;
1074 }
1075
1076 if (ste->s1_cfg) {
1077 BUG_ON(ste_live);
1078 dst[1] = cpu_to_le64(
1079 STRTAB_STE_1_S1C_CACHE_WBRA
1080 << STRTAB_STE_1_S1CIR_SHIFT |
1081 STRTAB_STE_1_S1C_CACHE_WBRA
1082 << STRTAB_STE_1_S1COR_SHIFT |
1083 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1084 #ifdef CONFIG_PCI_ATS
1085 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1086 #endif
1087 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT |
1088 STRTAB_STE_1_PRIVCFG_UNPRIV <<
1089 STRTAB_STE_1_PRIVCFG_SHIFT);
1090
1091 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1092 dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1093
1094 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1095 << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1096 STRTAB_STE_0_CFG_S1_TRANS;
1097 }
1098
1099 if (ste->s2_cfg) {
1100 BUG_ON(ste_live);
1101 dst[2] = cpu_to_le64(
1102 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1103 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1104 << STRTAB_STE_2_VTCR_SHIFT |
1105 #ifdef __BIG_ENDIAN
1106 STRTAB_STE_2_S2ENDI |
1107 #endif
1108 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1109 STRTAB_STE_2_S2R);
1110
1111 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1112 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1113
1114 val |= STRTAB_STE_0_CFG_S2_TRANS;
1115 }
1116
1117 arm_smmu_sync_ste_for_sid(smmu, sid);
1118 dst[0] = cpu_to_le64(val);
1119 arm_smmu_sync_ste_for_sid(smmu, sid);
1120
1121 /* It's likely that we'll want to use the new STE soon */
1122 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1123 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1124 }
1125
1126 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1127 {
1128 unsigned int i;
1129 struct arm_smmu_strtab_ent ste = { .assigned = false };
1130
1131 for (i = 0; i < nent; ++i) {
1132 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1133 strtab += STRTAB_STE_DWORDS;
1134 }
1135 }
1136
1137 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1138 {
1139 size_t size;
1140 void *strtab;
1141 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1142 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1143
1144 if (desc->l2ptr)
1145 return 0;
1146
1147 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1148 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1149
1150 desc->span = STRTAB_SPLIT + 1;
1151 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1152 GFP_KERNEL | __GFP_ZERO);
1153 if (!desc->l2ptr) {
1154 dev_err(smmu->dev,
1155 "failed to allocate l2 stream table for SID %u\n",
1156 sid);
1157 return -ENOMEM;
1158 }
1159
1160 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1161 arm_smmu_write_strtab_l1_desc(strtab, desc);
1162 return 0;
1163 }
1164
1165 /* IRQ and event handlers */
1166 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1167 {
1168 int i;
1169 struct arm_smmu_device *smmu = dev;
1170 struct arm_smmu_queue *q = &smmu->evtq.q;
1171 u64 evt[EVTQ_ENT_DWORDS];
1172
1173 do {
1174 while (!queue_remove_raw(q, evt)) {
1175 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1176
1177 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1178 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1179 dev_info(smmu->dev, "\t0x%016llx\n",
1180 (unsigned long long)evt[i]);
1181
1182 }
1183
1184 /*
1185 * Not much we can do on overflow, so scream and pretend we're
1186 * trying harder.
1187 */
1188 if (queue_sync_prod(q) == -EOVERFLOW)
1189 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1190 } while (!queue_empty(q));
1191
1192 /* Sync our overflow flag, as we believe we're up to speed */
1193 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1194 return IRQ_HANDLED;
1195 }
1196
1197 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1198 {
1199 u32 sid, ssid;
1200 u16 grpid;
1201 bool ssv, last;
1202
1203 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1204 ssv = evt[0] & PRIQ_0_SSID_V;
1205 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1206 last = evt[0] & PRIQ_0_PRG_LAST;
1207 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1208
1209 dev_info(smmu->dev, "unexpected PRI request received:\n");
1210 dev_info(smmu->dev,
1211 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1212 sid, ssid, grpid, last ? "L" : "",
1213 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1214 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1215 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1216 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1217 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1218
1219 if (last) {
1220 struct arm_smmu_cmdq_ent cmd = {
1221 .opcode = CMDQ_OP_PRI_RESP,
1222 .substream_valid = ssv,
1223 .pri = {
1224 .sid = sid,
1225 .ssid = ssid,
1226 .grpid = grpid,
1227 .resp = PRI_RESP_DENY,
1228 },
1229 };
1230
1231 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1232 }
1233 }
1234
1235 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1236 {
1237 struct arm_smmu_device *smmu = dev;
1238 struct arm_smmu_queue *q = &smmu->priq.q;
1239 u64 evt[PRIQ_ENT_DWORDS];
1240
1241 do {
1242 while (!queue_remove_raw(q, evt))
1243 arm_smmu_handle_ppr(smmu, evt);
1244
1245 if (queue_sync_prod(q) == -EOVERFLOW)
1246 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1247 } while (!queue_empty(q));
1248
1249 /* Sync our overflow flag, as we believe we're up to speed */
1250 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1251 return IRQ_HANDLED;
1252 }
1253
1254 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1255 {
1256 /* We don't actually use CMD_SYNC interrupts for anything */
1257 return IRQ_HANDLED;
1258 }
1259
1260 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1261
1262 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1263 {
1264 u32 gerror, gerrorn, active;
1265 struct arm_smmu_device *smmu = dev;
1266
1267 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1268 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1269
1270 active = gerror ^ gerrorn;
1271 if (!(active & GERROR_ERR_MASK))
1272 return IRQ_NONE; /* No errors pending */
1273
1274 dev_warn(smmu->dev,
1275 "unexpected global error reported (0x%08x), this could be serious\n",
1276 active);
1277
1278 if (active & GERROR_SFM_ERR) {
1279 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1280 arm_smmu_device_disable(smmu);
1281 }
1282
1283 if (active & GERROR_MSI_GERROR_ABT_ERR)
1284 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1285
1286 if (active & GERROR_MSI_PRIQ_ABT_ERR)
1287 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1288
1289 if (active & GERROR_MSI_EVTQ_ABT_ERR)
1290 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1291
1292 if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1293 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1294 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1295 }
1296
1297 if (active & GERROR_PRIQ_ABT_ERR)
1298 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1299
1300 if (active & GERROR_EVTQ_ABT_ERR)
1301 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1302
1303 if (active & GERROR_CMDQ_ERR)
1304 arm_smmu_cmdq_skip_err(smmu);
1305
1306 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1307 return IRQ_HANDLED;
1308 }
1309
1310 /* IO_PGTABLE API */
1311 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1312 {
1313 struct arm_smmu_cmdq_ent cmd;
1314
1315 cmd.opcode = CMDQ_OP_CMD_SYNC;
1316 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1317 }
1318
1319 static void arm_smmu_tlb_sync(void *cookie)
1320 {
1321 struct arm_smmu_domain *smmu_domain = cookie;
1322 __arm_smmu_tlb_sync(smmu_domain->smmu);
1323 }
1324
1325 static void arm_smmu_tlb_inv_context(void *cookie)
1326 {
1327 struct arm_smmu_domain *smmu_domain = cookie;
1328 struct arm_smmu_device *smmu = smmu_domain->smmu;
1329 struct arm_smmu_cmdq_ent cmd;
1330
1331 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1332 cmd.opcode = CMDQ_OP_TLBI_NH_ASID;
1333 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1334 cmd.tlbi.vmid = 0;
1335 } else {
1336 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1337 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1338 }
1339
1340 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1341 __arm_smmu_tlb_sync(smmu);
1342 }
1343
1344 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1345 size_t granule, bool leaf, void *cookie)
1346 {
1347 struct arm_smmu_domain *smmu_domain = cookie;
1348 struct arm_smmu_device *smmu = smmu_domain->smmu;
1349 struct arm_smmu_cmdq_ent cmd = {
1350 .tlbi = {
1351 .leaf = leaf,
1352 .addr = iova,
1353 },
1354 };
1355
1356 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1357 cmd.opcode = CMDQ_OP_TLBI_NH_VA;
1358 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1359 } else {
1360 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1361 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1362 }
1363
1364 do {
1365 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1366 cmd.tlbi.addr += granule;
1367 } while (size -= granule);
1368 }
1369
1370 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1371 .tlb_flush_all = arm_smmu_tlb_inv_context,
1372 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
1373 .tlb_sync = arm_smmu_tlb_sync,
1374 };
1375
1376 /* IOMMU API */
1377 static bool arm_smmu_capable(enum iommu_cap cap)
1378 {
1379 switch (cap) {
1380 case IOMMU_CAP_CACHE_COHERENCY:
1381 return true;
1382 case IOMMU_CAP_NOEXEC:
1383 return true;
1384 default:
1385 return false;
1386 }
1387 }
1388
1389 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1390 {
1391 struct arm_smmu_domain *smmu_domain;
1392
1393 if (type != IOMMU_DOMAIN_UNMANAGED &&
1394 type != IOMMU_DOMAIN_DMA &&
1395 type != IOMMU_DOMAIN_IDENTITY)
1396 return NULL;
1397
1398 /*
1399 * Allocate the domain and initialise some of its data structures.
1400 * We can't really do anything meaningful until we've added a
1401 * master.
1402 */
1403 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1404 if (!smmu_domain)
1405 return NULL;
1406
1407 if (type == IOMMU_DOMAIN_DMA &&
1408 iommu_get_dma_cookie(&smmu_domain->domain)) {
1409 kfree(smmu_domain);
1410 return NULL;
1411 }
1412
1413 mutex_init(&smmu_domain->init_mutex);
1414 spin_lock_init(&smmu_domain->pgtbl_lock);
1415 return &smmu_domain->domain;
1416 }
1417
1418 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1419 {
1420 int idx, size = 1 << span;
1421
1422 do {
1423 idx = find_first_zero_bit(map, size);
1424 if (idx == size)
1425 return -ENOSPC;
1426 } while (test_and_set_bit(idx, map));
1427
1428 return idx;
1429 }
1430
1431 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1432 {
1433 clear_bit(idx, map);
1434 }
1435
1436 static void arm_smmu_domain_free(struct iommu_domain *domain)
1437 {
1438 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1439 struct arm_smmu_device *smmu = smmu_domain->smmu;
1440
1441 iommu_put_dma_cookie(domain);
1442 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1443
1444 /* Free the CD and ASID, if we allocated them */
1445 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1446 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1447
1448 if (cfg->cdptr) {
1449 dmam_free_coherent(smmu_domain->smmu->dev,
1450 CTXDESC_CD_DWORDS << 3,
1451 cfg->cdptr,
1452 cfg->cdptr_dma);
1453
1454 arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1455 }
1456 } else {
1457 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1458 if (cfg->vmid)
1459 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1460 }
1461
1462 kfree(smmu_domain);
1463 }
1464
1465 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1466 struct io_pgtable_cfg *pgtbl_cfg)
1467 {
1468 int ret;
1469 int asid;
1470 struct arm_smmu_device *smmu = smmu_domain->smmu;
1471 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1472
1473 asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1474 if (asid < 0)
1475 return asid;
1476
1477 cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1478 &cfg->cdptr_dma,
1479 GFP_KERNEL | __GFP_ZERO);
1480 if (!cfg->cdptr) {
1481 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1482 ret = -ENOMEM;
1483 goto out_free_asid;
1484 }
1485
1486 cfg->cd.asid = (u16)asid;
1487 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1488 cfg->cd.tcr = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1489 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1490 return 0;
1491
1492 out_free_asid:
1493 arm_smmu_bitmap_free(smmu->asid_map, asid);
1494 return ret;
1495 }
1496
1497 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1498 struct io_pgtable_cfg *pgtbl_cfg)
1499 {
1500 int vmid;
1501 struct arm_smmu_device *smmu = smmu_domain->smmu;
1502 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1503
1504 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1505 if (vmid < 0)
1506 return vmid;
1507
1508 cfg->vmid = (u16)vmid;
1509 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1510 cfg->vtcr = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1511 return 0;
1512 }
1513
1514 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1515 {
1516 int ret;
1517 unsigned long ias, oas;
1518 enum io_pgtable_fmt fmt;
1519 struct io_pgtable_cfg pgtbl_cfg;
1520 struct io_pgtable_ops *pgtbl_ops;
1521 int (*finalise_stage_fn)(struct arm_smmu_domain *,
1522 struct io_pgtable_cfg *);
1523 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1524 struct arm_smmu_device *smmu = smmu_domain->smmu;
1525
1526 if (domain->type == IOMMU_DOMAIN_IDENTITY) {
1527 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
1528 return 0;
1529 }
1530
1531 /* Restrict the stage to what we can actually support */
1532 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1533 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1534 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1535 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1536
1537 switch (smmu_domain->stage) {
1538 case ARM_SMMU_DOMAIN_S1:
1539 ias = VA_BITS;
1540 oas = smmu->ias;
1541 fmt = ARM_64_LPAE_S1;
1542 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1543 break;
1544 case ARM_SMMU_DOMAIN_NESTED:
1545 case ARM_SMMU_DOMAIN_S2:
1546 ias = smmu->ias;
1547 oas = smmu->oas;
1548 fmt = ARM_64_LPAE_S2;
1549 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1550 break;
1551 default:
1552 return -EINVAL;
1553 }
1554
1555 pgtbl_cfg = (struct io_pgtable_cfg) {
1556 .pgsize_bitmap = smmu->pgsize_bitmap,
1557 .ias = ias,
1558 .oas = oas,
1559 .tlb = &arm_smmu_gather_ops,
1560 .iommu_dev = smmu->dev,
1561 };
1562
1563 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1564 if (!pgtbl_ops)
1565 return -ENOMEM;
1566
1567 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1568 domain->geometry.aperture_end = (1UL << ias) - 1;
1569 domain->geometry.force_aperture = true;
1570 smmu_domain->pgtbl_ops = pgtbl_ops;
1571
1572 ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1573 if (ret < 0)
1574 free_io_pgtable_ops(pgtbl_ops);
1575
1576 return ret;
1577 }
1578
1579 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1580 {
1581 __le64 *step;
1582 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1583
1584 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1585 struct arm_smmu_strtab_l1_desc *l1_desc;
1586 int idx;
1587
1588 /* Two-level walk */
1589 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1590 l1_desc = &cfg->l1_desc[idx];
1591 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1592 step = &l1_desc->l2ptr[idx];
1593 } else {
1594 /* Simple linear lookup */
1595 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1596 }
1597
1598 return step;
1599 }
1600
1601 static void arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1602 {
1603 int i;
1604 struct arm_smmu_master_data *master = fwspec->iommu_priv;
1605 struct arm_smmu_device *smmu = master->smmu;
1606
1607 for (i = 0; i < fwspec->num_ids; ++i) {
1608 u32 sid = fwspec->ids[i];
1609 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1610
1611 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1612 }
1613 }
1614
1615 static void arm_smmu_detach_dev(struct device *dev)
1616 {
1617 struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1618
1619 master->ste.assigned = false;
1620 arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1621 }
1622
1623 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1624 {
1625 int ret = 0;
1626 struct arm_smmu_device *smmu;
1627 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1628 struct arm_smmu_master_data *master;
1629 struct arm_smmu_strtab_ent *ste;
1630
1631 if (!dev->iommu_fwspec)
1632 return -ENOENT;
1633
1634 master = dev->iommu_fwspec->iommu_priv;
1635 smmu = master->smmu;
1636 ste = &master->ste;
1637
1638 /* Already attached to a different domain? */
1639 if (ste->assigned)
1640 arm_smmu_detach_dev(dev);
1641
1642 mutex_lock(&smmu_domain->init_mutex);
1643
1644 if (!smmu_domain->smmu) {
1645 smmu_domain->smmu = smmu;
1646 ret = arm_smmu_domain_finalise(domain);
1647 if (ret) {
1648 smmu_domain->smmu = NULL;
1649 goto out_unlock;
1650 }
1651 } else if (smmu_domain->smmu != smmu) {
1652 dev_err(dev,
1653 "cannot attach to SMMU %s (upstream of %s)\n",
1654 dev_name(smmu_domain->smmu->dev),
1655 dev_name(smmu->dev));
1656 ret = -ENXIO;
1657 goto out_unlock;
1658 }
1659
1660 ste->assigned = true;
1661
1662 if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS) {
1663 ste->s1_cfg = NULL;
1664 ste->s2_cfg = NULL;
1665 } else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1666 ste->s1_cfg = &smmu_domain->s1_cfg;
1667 ste->s2_cfg = NULL;
1668 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1669 } else {
1670 ste->s1_cfg = NULL;
1671 ste->s2_cfg = &smmu_domain->s2_cfg;
1672 }
1673
1674 arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1675 out_unlock:
1676 mutex_unlock(&smmu_domain->init_mutex);
1677 return ret;
1678 }
1679
1680 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1681 phys_addr_t paddr, size_t size, int prot)
1682 {
1683 int ret;
1684 unsigned long flags;
1685 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1686 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1687
1688 if (!ops)
1689 return -ENODEV;
1690
1691 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1692 ret = ops->map(ops, iova, paddr, size, prot);
1693 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1694 return ret;
1695 }
1696
1697 static size_t
1698 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1699 {
1700 size_t ret;
1701 unsigned long flags;
1702 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1703 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1704
1705 if (!ops)
1706 return 0;
1707
1708 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1709 ret = ops->unmap(ops, iova, size);
1710 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1711 return ret;
1712 }
1713
1714 static phys_addr_t
1715 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1716 {
1717 phys_addr_t ret;
1718 unsigned long flags;
1719 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1720 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1721
1722 if (!ops)
1723 return 0;
1724
1725 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1726 ret = ops->iova_to_phys(ops, iova);
1727 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1728
1729 return ret;
1730 }
1731
1732 static struct platform_driver arm_smmu_driver;
1733
1734 static int arm_smmu_match_node(struct device *dev, void *data)
1735 {
1736 return dev->fwnode == data;
1737 }
1738
1739 static
1740 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1741 {
1742 struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1743 fwnode, arm_smmu_match_node);
1744 put_device(dev);
1745 return dev ? dev_get_drvdata(dev) : NULL;
1746 }
1747
1748 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1749 {
1750 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1751
1752 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1753 limit *= 1UL << STRTAB_SPLIT;
1754
1755 return sid < limit;
1756 }
1757
1758 static struct iommu_ops arm_smmu_ops;
1759
1760 static int arm_smmu_add_device(struct device *dev)
1761 {
1762 int i, ret;
1763 struct arm_smmu_device *smmu;
1764 struct arm_smmu_master_data *master;
1765 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1766 struct iommu_group *group;
1767
1768 if (!fwspec || fwspec->ops != &arm_smmu_ops)
1769 return -ENODEV;
1770 /*
1771 * We _can_ actually withstand dodgy bus code re-calling add_device()
1772 * without an intervening remove_device()/of_xlate() sequence, but
1773 * we're not going to do so quietly...
1774 */
1775 if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1776 master = fwspec->iommu_priv;
1777 smmu = master->smmu;
1778 } else {
1779 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1780 if (!smmu)
1781 return -ENODEV;
1782 master = kzalloc(sizeof(*master), GFP_KERNEL);
1783 if (!master)
1784 return -ENOMEM;
1785
1786 master->smmu = smmu;
1787 fwspec->iommu_priv = master;
1788 }
1789
1790 /* Check the SIDs are in range of the SMMU and our stream table */
1791 for (i = 0; i < fwspec->num_ids; i++) {
1792 u32 sid = fwspec->ids[i];
1793
1794 if (!arm_smmu_sid_in_range(smmu, sid))
1795 return -ERANGE;
1796
1797 /* Ensure l2 strtab is initialised */
1798 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1799 ret = arm_smmu_init_l2_strtab(smmu, sid);
1800 if (ret)
1801 return ret;
1802 }
1803 }
1804
1805 group = iommu_group_get_for_dev(dev);
1806 if (!IS_ERR(group)) {
1807 iommu_group_put(group);
1808 iommu_device_link(&smmu->iommu, dev);
1809 }
1810
1811 return PTR_ERR_OR_ZERO(group);
1812 }
1813
1814 static void arm_smmu_remove_device(struct device *dev)
1815 {
1816 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1817 struct arm_smmu_master_data *master;
1818 struct arm_smmu_device *smmu;
1819
1820 if (!fwspec || fwspec->ops != &arm_smmu_ops)
1821 return;
1822
1823 master = fwspec->iommu_priv;
1824 smmu = master->smmu;
1825 if (master && master->ste.assigned)
1826 arm_smmu_detach_dev(dev);
1827 iommu_group_remove_device(dev);
1828 iommu_device_unlink(&smmu->iommu, dev);
1829 kfree(master);
1830 iommu_fwspec_free(dev);
1831 }
1832
1833 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1834 {
1835 struct iommu_group *group;
1836
1837 /*
1838 * We don't support devices sharing stream IDs other than PCI RID
1839 * aliases, since the necessary ID-to-device lookup becomes rather
1840 * impractical given a potential sparse 32-bit stream ID space.
1841 */
1842 if (dev_is_pci(dev))
1843 group = pci_device_group(dev);
1844 else
1845 group = generic_device_group(dev);
1846
1847 return group;
1848 }
1849
1850 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1851 enum iommu_attr attr, void *data)
1852 {
1853 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1854
1855 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1856 return -EINVAL;
1857
1858 switch (attr) {
1859 case DOMAIN_ATTR_NESTING:
1860 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1861 return 0;
1862 default:
1863 return -ENODEV;
1864 }
1865 }
1866
1867 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1868 enum iommu_attr attr, void *data)
1869 {
1870 int ret = 0;
1871 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1872
1873 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1874 return -EINVAL;
1875
1876 mutex_lock(&smmu_domain->init_mutex);
1877
1878 switch (attr) {
1879 case DOMAIN_ATTR_NESTING:
1880 if (smmu_domain->smmu) {
1881 ret = -EPERM;
1882 goto out_unlock;
1883 }
1884
1885 if (*(int *)data)
1886 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1887 else
1888 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1889
1890 break;
1891 default:
1892 ret = -ENODEV;
1893 }
1894
1895 out_unlock:
1896 mutex_unlock(&smmu_domain->init_mutex);
1897 return ret;
1898 }
1899
1900 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1901 {
1902 return iommu_fwspec_add_ids(dev, args->args, 1);
1903 }
1904
1905 static void arm_smmu_get_resv_regions(struct device *dev,
1906 struct list_head *head)
1907 {
1908 struct iommu_resv_region *region;
1909 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1910
1911 region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1912 prot, IOMMU_RESV_MSI);
1913 if (!region)
1914 return;
1915
1916 list_add_tail(&region->list, head);
1917 }
1918
1919 static void arm_smmu_put_resv_regions(struct device *dev,
1920 struct list_head *head)
1921 {
1922 struct iommu_resv_region *entry, *next;
1923
1924 list_for_each_entry_safe(entry, next, head, list)
1925 kfree(entry);
1926 }
1927
1928 static struct iommu_ops arm_smmu_ops = {
1929 .capable = arm_smmu_capable,
1930 .domain_alloc = arm_smmu_domain_alloc,
1931 .domain_free = arm_smmu_domain_free,
1932 .attach_dev = arm_smmu_attach_dev,
1933 .map = arm_smmu_map,
1934 .unmap = arm_smmu_unmap,
1935 .map_sg = default_iommu_map_sg,
1936 .iova_to_phys = arm_smmu_iova_to_phys,
1937 .add_device = arm_smmu_add_device,
1938 .remove_device = arm_smmu_remove_device,
1939 .device_group = arm_smmu_device_group,
1940 .domain_get_attr = arm_smmu_domain_get_attr,
1941 .domain_set_attr = arm_smmu_domain_set_attr,
1942 .of_xlate = arm_smmu_of_xlate,
1943 .get_resv_regions = arm_smmu_get_resv_regions,
1944 .put_resv_regions = arm_smmu_put_resv_regions,
1945 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1946 };
1947
1948 /* Probing and initialisation functions */
1949 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1950 struct arm_smmu_queue *q,
1951 unsigned long prod_off,
1952 unsigned long cons_off,
1953 size_t dwords)
1954 {
1955 size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1956
1957 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1958 if (!q->base) {
1959 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1960 qsz);
1961 return -ENOMEM;
1962 }
1963
1964 q->prod_reg = smmu->base + prod_off;
1965 q->cons_reg = smmu->base + cons_off;
1966 q->ent_dwords = dwords;
1967
1968 q->q_base = Q_BASE_RWA;
1969 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1970 q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1971 << Q_BASE_LOG2SIZE_SHIFT;
1972
1973 q->prod = q->cons = 0;
1974 return 0;
1975 }
1976
1977 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1978 {
1979 int ret;
1980
1981 /* cmdq */
1982 spin_lock_init(&smmu->cmdq.lock);
1983 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1984 ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1985 if (ret)
1986 return ret;
1987
1988 /* evtq */
1989 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1990 ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1991 if (ret)
1992 return ret;
1993
1994 /* priq */
1995 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1996 return 0;
1997
1998 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1999 ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2000 }
2001
2002 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2003 {
2004 unsigned int i;
2005 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2006 size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2007 void *strtab = smmu->strtab_cfg.strtab;
2008
2009 cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2010 if (!cfg->l1_desc) {
2011 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2012 return -ENOMEM;
2013 }
2014
2015 for (i = 0; i < cfg->num_l1_ents; ++i) {
2016 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2017 strtab += STRTAB_L1_DESC_DWORDS << 3;
2018 }
2019
2020 return 0;
2021 }
2022
2023 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2024 {
2025 void *strtab;
2026 u64 reg;
2027 u32 size, l1size;
2028 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2029
2030 /* Calculate the L1 size, capped to the SIDSIZE. */
2031 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2032 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2033 cfg->num_l1_ents = 1 << size;
2034
2035 size += STRTAB_SPLIT;
2036 if (size < smmu->sid_bits)
2037 dev_warn(smmu->dev,
2038 "2-level strtab only covers %u/%u bits of SID\n",
2039 size, smmu->sid_bits);
2040
2041 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2042 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2043 GFP_KERNEL | __GFP_ZERO);
2044 if (!strtab) {
2045 dev_err(smmu->dev,
2046 "failed to allocate l1 stream table (%u bytes)\n",
2047 size);
2048 return -ENOMEM;
2049 }
2050 cfg->strtab = strtab;
2051
2052 /* Configure strtab_base_cfg for 2 levels */
2053 reg = STRTAB_BASE_CFG_FMT_2LVL;
2054 reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2055 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2056 reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2057 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2058 cfg->strtab_base_cfg = reg;
2059
2060 return arm_smmu_init_l1_strtab(smmu);
2061 }
2062
2063 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2064 {
2065 void *strtab;
2066 u64 reg;
2067 u32 size;
2068 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2069
2070 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2071 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2072 GFP_KERNEL | __GFP_ZERO);
2073 if (!strtab) {
2074 dev_err(smmu->dev,
2075 "failed to allocate linear stream table (%u bytes)\n",
2076 size);
2077 return -ENOMEM;
2078 }
2079 cfg->strtab = strtab;
2080 cfg->num_l1_ents = 1 << smmu->sid_bits;
2081
2082 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2083 reg = STRTAB_BASE_CFG_FMT_LINEAR;
2084 reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2085 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2086 cfg->strtab_base_cfg = reg;
2087
2088 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2089 return 0;
2090 }
2091
2092 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2093 {
2094 u64 reg;
2095 int ret;
2096
2097 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2098 ret = arm_smmu_init_strtab_2lvl(smmu);
2099 else
2100 ret = arm_smmu_init_strtab_linear(smmu);
2101
2102 if (ret)
2103 return ret;
2104
2105 /* Set the strtab base address */
2106 reg = smmu->strtab_cfg.strtab_dma &
2107 STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2108 reg |= STRTAB_BASE_RA;
2109 smmu->strtab_cfg.strtab_base = reg;
2110
2111 /* Allocate the first VMID for stage-2 bypass STEs */
2112 set_bit(0, smmu->vmid_map);
2113 return 0;
2114 }
2115
2116 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2117 {
2118 int ret;
2119
2120 ret = arm_smmu_init_queues(smmu);
2121 if (ret)
2122 return ret;
2123
2124 return arm_smmu_init_strtab(smmu);
2125 }
2126
2127 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2128 unsigned int reg_off, unsigned int ack_off)
2129 {
2130 u32 reg;
2131
2132 writel_relaxed(val, smmu->base + reg_off);
2133 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2134 1, ARM_SMMU_POLL_TIMEOUT_US);
2135 }
2136
2137 /* GBPA is "special" */
2138 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2139 {
2140 int ret;
2141 u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2142
2143 ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2144 1, ARM_SMMU_POLL_TIMEOUT_US);
2145 if (ret)
2146 return ret;
2147
2148 reg &= ~clr;
2149 reg |= set;
2150 writel_relaxed(reg | GBPA_UPDATE, gbpa);
2151 return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2152 1, ARM_SMMU_POLL_TIMEOUT_US);
2153 }
2154
2155 static void arm_smmu_free_msis(void *data)
2156 {
2157 struct device *dev = data;
2158 platform_msi_domain_free_irqs(dev);
2159 }
2160
2161 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2162 {
2163 phys_addr_t doorbell;
2164 struct device *dev = msi_desc_to_dev(desc);
2165 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2166 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2167
2168 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2169 doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2170
2171 writeq_relaxed(doorbell, smmu->base + cfg[0]);
2172 writel_relaxed(msg->data, smmu->base + cfg[1]);
2173 writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2174 }
2175
2176 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2177 {
2178 struct msi_desc *desc;
2179 int ret, nvec = ARM_SMMU_MAX_MSIS;
2180 struct device *dev = smmu->dev;
2181
2182 /* Clear the MSI address regs */
2183 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2184 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2185
2186 if (smmu->features & ARM_SMMU_FEAT_PRI)
2187 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2188 else
2189 nvec--;
2190
2191 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2192 return;
2193
2194 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2195 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2196 if (ret) {
2197 dev_warn(dev, "failed to allocate MSIs\n");
2198 return;
2199 }
2200
2201 for_each_msi_entry(desc, dev) {
2202 switch (desc->platform.msi_index) {
2203 case EVTQ_MSI_INDEX:
2204 smmu->evtq.q.irq = desc->irq;
2205 break;
2206 case GERROR_MSI_INDEX:
2207 smmu->gerr_irq = desc->irq;
2208 break;
2209 case PRIQ_MSI_INDEX:
2210 smmu->priq.q.irq = desc->irq;
2211 break;
2212 default: /* Unknown */
2213 continue;
2214 }
2215 }
2216
2217 /* Add callback to free MSIs on teardown */
2218 devm_add_action(dev, arm_smmu_free_msis, dev);
2219 }
2220
2221 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2222 {
2223 int ret, irq;
2224 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2225
2226 /* Disable IRQs first */
2227 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2228 ARM_SMMU_IRQ_CTRLACK);
2229 if (ret) {
2230 dev_err(smmu->dev, "failed to disable irqs\n");
2231 return ret;
2232 }
2233
2234 arm_smmu_setup_msis(smmu);
2235
2236 /* Request interrupt lines */
2237 irq = smmu->evtq.q.irq;
2238 if (irq) {
2239 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2240 arm_smmu_evtq_thread,
2241 IRQF_ONESHOT,
2242 "arm-smmu-v3-evtq", smmu);
2243 if (ret < 0)
2244 dev_warn(smmu->dev, "failed to enable evtq irq\n");
2245 }
2246
2247 irq = smmu->cmdq.q.irq;
2248 if (irq) {
2249 ret = devm_request_irq(smmu->dev, irq,
2250 arm_smmu_cmdq_sync_handler, 0,
2251 "arm-smmu-v3-cmdq-sync", smmu);
2252 if (ret < 0)
2253 dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2254 }
2255
2256 irq = smmu->gerr_irq;
2257 if (irq) {
2258 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2259 0, "arm-smmu-v3-gerror", smmu);
2260 if (ret < 0)
2261 dev_warn(smmu->dev, "failed to enable gerror irq\n");
2262 }
2263
2264 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2265 irq = smmu->priq.q.irq;
2266 if (irq) {
2267 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2268 arm_smmu_priq_thread,
2269 IRQF_ONESHOT,
2270 "arm-smmu-v3-priq",
2271 smmu);
2272 if (ret < 0)
2273 dev_warn(smmu->dev,
2274 "failed to enable priq irq\n");
2275 else
2276 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2277 }
2278 }
2279
2280 /* Enable interrupt generation on the SMMU */
2281 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2282 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2283 if (ret)
2284 dev_warn(smmu->dev, "failed to enable irqs\n");
2285
2286 return 0;
2287 }
2288
2289 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2290 {
2291 int ret;
2292
2293 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2294 if (ret)
2295 dev_err(smmu->dev, "failed to clear cr0\n");
2296
2297 return ret;
2298 }
2299
2300 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2301 {
2302 int ret;
2303 u32 reg, enables;
2304 struct arm_smmu_cmdq_ent cmd;
2305
2306 /* Clear CR0 and sync (disables SMMU and queue processing) */
2307 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2308 if (reg & CR0_SMMUEN)
2309 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2310
2311 ret = arm_smmu_device_disable(smmu);
2312 if (ret)
2313 return ret;
2314
2315 /* CR1 (table and queue memory attributes) */
2316 reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2317 (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2318 (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2319 (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2320 (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2321 (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2322 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2323
2324 /* CR2 (random crap) */
2325 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2326 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2327
2328 /* Stream table */
2329 writeq_relaxed(smmu->strtab_cfg.strtab_base,
2330 smmu->base + ARM_SMMU_STRTAB_BASE);
2331 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2332 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2333
2334 /* Command queue */
2335 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2336 writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2337 writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2338
2339 enables = CR0_CMDQEN;
2340 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2341 ARM_SMMU_CR0ACK);
2342 if (ret) {
2343 dev_err(smmu->dev, "failed to enable command queue\n");
2344 return ret;
2345 }
2346
2347 /* Invalidate any cached configuration */
2348 cmd.opcode = CMDQ_OP_CFGI_ALL;
2349 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2350 cmd.opcode = CMDQ_OP_CMD_SYNC;
2351 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2352
2353 /* Invalidate any stale TLB entries */
2354 if (smmu->features & ARM_SMMU_FEAT_HYP) {
2355 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2356 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2357 }
2358
2359 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2360 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2361 cmd.opcode = CMDQ_OP_CMD_SYNC;
2362 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2363
2364 /* Event queue */
2365 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2366 writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2367 writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2368
2369 enables |= CR0_EVTQEN;
2370 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2371 ARM_SMMU_CR0ACK);
2372 if (ret) {
2373 dev_err(smmu->dev, "failed to enable event queue\n");
2374 return ret;
2375 }
2376
2377 /* PRI queue */
2378 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2379 writeq_relaxed(smmu->priq.q.q_base,
2380 smmu->base + ARM_SMMU_PRIQ_BASE);
2381 writel_relaxed(smmu->priq.q.prod,
2382 smmu->base + ARM_SMMU_PRIQ_PROD);
2383 writel_relaxed(smmu->priq.q.cons,
2384 smmu->base + ARM_SMMU_PRIQ_CONS);
2385
2386 enables |= CR0_PRIQEN;
2387 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2388 ARM_SMMU_CR0ACK);
2389 if (ret) {
2390 dev_err(smmu->dev, "failed to enable PRI queue\n");
2391 return ret;
2392 }
2393 }
2394
2395 ret = arm_smmu_setup_irqs(smmu);
2396 if (ret) {
2397 dev_err(smmu->dev, "failed to setup irqs\n");
2398 return ret;
2399 }
2400
2401
2402 /* Enable the SMMU interface, or ensure bypass */
2403 if (!bypass || disable_bypass) {
2404 enables |= CR0_SMMUEN;
2405 } else {
2406 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2407 if (ret) {
2408 dev_err(smmu->dev, "GBPA not responding to update\n");
2409 return ret;
2410 }
2411 }
2412 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2413 ARM_SMMU_CR0ACK);
2414 if (ret) {
2415 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2416 return ret;
2417 }
2418
2419 return 0;
2420 }
2421
2422 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2423 {
2424 u32 reg;
2425 bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2426
2427 /* IDR0 */
2428 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2429
2430 /* 2-level structures */
2431 if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2432 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2433
2434 if (reg & IDR0_CD2L)
2435 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2436
2437 /*
2438 * Translation table endianness.
2439 * We currently require the same endianness as the CPU, but this
2440 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2441 */
2442 switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2443 case IDR0_TTENDIAN_MIXED:
2444 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2445 break;
2446 #ifdef __BIG_ENDIAN
2447 case IDR0_TTENDIAN_BE:
2448 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2449 break;
2450 #else
2451 case IDR0_TTENDIAN_LE:
2452 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2453 break;
2454 #endif
2455 default:
2456 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2457 return -ENXIO;
2458 }
2459
2460 /* Boolean feature flags */
2461 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2462 smmu->features |= ARM_SMMU_FEAT_PRI;
2463
2464 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2465 smmu->features |= ARM_SMMU_FEAT_ATS;
2466
2467 if (reg & IDR0_SEV)
2468 smmu->features |= ARM_SMMU_FEAT_SEV;
2469
2470 if (reg & IDR0_MSI)
2471 smmu->features |= ARM_SMMU_FEAT_MSI;
2472
2473 if (reg & IDR0_HYP)
2474 smmu->features |= ARM_SMMU_FEAT_HYP;
2475
2476 /*
2477 * The coherency feature as set by FW is used in preference to the ID
2478 * register, but warn on mismatch.
2479 */
2480 if (!!(reg & IDR0_COHACC) != coherent)
2481 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2482 coherent ? "true" : "false");
2483
2484 switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2485 case IDR0_STALL_MODEL_STALL:
2486 /* Fallthrough */
2487 case IDR0_STALL_MODEL_FORCE:
2488 smmu->features |= ARM_SMMU_FEAT_STALLS;
2489 }
2490
2491 if (reg & IDR0_S1P)
2492 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2493
2494 if (reg & IDR0_S2P)
2495 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2496
2497 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2498 dev_err(smmu->dev, "no translation support!\n");
2499 return -ENXIO;
2500 }
2501
2502 /* We only support the AArch64 table format at present */
2503 switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2504 case IDR0_TTF_AARCH32_64:
2505 smmu->ias = 40;
2506 /* Fallthrough */
2507 case IDR0_TTF_AARCH64:
2508 break;
2509 default:
2510 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2511 return -ENXIO;
2512 }
2513
2514 /* ASID/VMID sizes */
2515 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2516 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2517
2518 /* IDR1 */
2519 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2520 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2521 dev_err(smmu->dev, "embedded implementation not supported\n");
2522 return -ENXIO;
2523 }
2524
2525 /* Queue sizes, capped at 4k */
2526 smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2527 reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2528 if (!smmu->cmdq.q.max_n_shift) {
2529 /* Odd alignment restrictions on the base, so ignore for now */
2530 dev_err(smmu->dev, "unit-length command queue not supported\n");
2531 return -ENXIO;
2532 }
2533
2534 smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2535 reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2536 smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2537 reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2538
2539 /* SID/SSID sizes */
2540 smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2541 smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2542
2543 /*
2544 * If the SMMU supports fewer bits than would fill a single L2 stream
2545 * table, use a linear table instead.
2546 */
2547 if (smmu->sid_bits <= STRTAB_SPLIT)
2548 smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;
2549
2550 /* IDR5 */
2551 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2552
2553 /* Maximum number of outstanding stalls */
2554 smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2555 & IDR5_STALL_MAX_MASK;
2556
2557 /* Page sizes */
2558 if (reg & IDR5_GRAN64K)
2559 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2560 if (reg & IDR5_GRAN16K)
2561 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2562 if (reg & IDR5_GRAN4K)
2563 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2564
2565 if (arm_smmu_ops.pgsize_bitmap == -1UL)
2566 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2567 else
2568 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2569
2570 /* Output address size */
2571 switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2572 case IDR5_OAS_32_BIT:
2573 smmu->oas = 32;
2574 break;
2575 case IDR5_OAS_36_BIT:
2576 smmu->oas = 36;
2577 break;
2578 case IDR5_OAS_40_BIT:
2579 smmu->oas = 40;
2580 break;
2581 case IDR5_OAS_42_BIT:
2582 smmu->oas = 42;
2583 break;
2584 case IDR5_OAS_44_BIT:
2585 smmu->oas = 44;
2586 break;
2587 default:
2588 dev_info(smmu->dev,
2589 "unknown output address size. Truncating to 48-bit\n");
2590 /* Fallthrough */
2591 case IDR5_OAS_48_BIT:
2592 smmu->oas = 48;
2593 }
2594
2595 /* Set the DMA mask for our table walker */
2596 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2597 dev_warn(smmu->dev,
2598 "failed to set DMA mask for table walker\n");
2599
2600 smmu->ias = max(smmu->ias, smmu->oas);
2601
2602 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2603 smmu->ias, smmu->oas, smmu->features);
2604 return 0;
2605 }
2606
2607 #ifdef CONFIG_ACPI
2608 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2609 struct arm_smmu_device *smmu)
2610 {
2611 struct acpi_iort_smmu_v3 *iort_smmu;
2612 struct device *dev = smmu->dev;
2613 struct acpi_iort_node *node;
2614
2615 node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2616
2617 /* Retrieve SMMUv3 specific data */
2618 iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2619
2620 if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2621 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2622
2623 return 0;
2624 }
2625 #else
2626 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2627 struct arm_smmu_device *smmu)
2628 {
2629 return -ENODEV;
2630 }
2631 #endif
2632
2633 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2634 struct arm_smmu_device *smmu)
2635 {
2636 struct device *dev = &pdev->dev;
2637 u32 cells;
2638 int ret = -EINVAL;
2639
2640 if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2641 dev_err(dev, "missing #iommu-cells property\n");
2642 else if (cells != 1)
2643 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2644 else
2645 ret = 0;
2646
2647 parse_driver_options(smmu);
2648
2649 if (of_dma_is_coherent(dev->of_node))
2650 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2651
2652 return ret;
2653 }
2654
2655 static int arm_smmu_device_probe(struct platform_device *pdev)
2656 {
2657 int irq, ret;
2658 struct resource *res;
2659 resource_size_t ioaddr;
2660 struct arm_smmu_device *smmu;
2661 struct device *dev = &pdev->dev;
2662 bool bypass;
2663
2664 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2665 if (!smmu) {
2666 dev_err(dev, "failed to allocate arm_smmu_device\n");
2667 return -ENOMEM;
2668 }
2669 smmu->dev = dev;
2670
2671 /* Base address */
2672 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2673 if (resource_size(res) + 1 < SZ_128K) {
2674 dev_err(dev, "MMIO region too small (%pr)\n", res);
2675 return -EINVAL;
2676 }
2677 ioaddr = res->start;
2678
2679 smmu->base = devm_ioremap_resource(dev, res);
2680 if (IS_ERR(smmu->base))
2681 return PTR_ERR(smmu->base);
2682
2683 /* Interrupt lines */
2684 irq = platform_get_irq_byname(pdev, "eventq");
2685 if (irq > 0)
2686 smmu->evtq.q.irq = irq;
2687
2688 irq = platform_get_irq_byname(pdev, "priq");
2689 if (irq > 0)
2690 smmu->priq.q.irq = irq;
2691
2692 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2693 if (irq > 0)
2694 smmu->cmdq.q.irq = irq;
2695
2696 irq = platform_get_irq_byname(pdev, "gerror");
2697 if (irq > 0)
2698 smmu->gerr_irq = irq;
2699
2700 if (dev->of_node) {
2701 ret = arm_smmu_device_dt_probe(pdev, smmu);
2702 } else {
2703 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2704 if (ret == -ENODEV)
2705 return ret;
2706 }
2707
2708 /* Set bypass mode according to firmware probing result */
2709 bypass = !!ret;
2710
2711 /* Probe the h/w */
2712 ret = arm_smmu_device_hw_probe(smmu);
2713 if (ret)
2714 return ret;
2715
2716 /* Initialise in-memory data structures */
2717 ret = arm_smmu_init_structures(smmu);
2718 if (ret)
2719 return ret;
2720
2721 /* Record our private device structure */
2722 platform_set_drvdata(pdev, smmu);
2723
2724 /* Reset the device */
2725 ret = arm_smmu_device_reset(smmu, bypass);
2726 if (ret)
2727 return ret;
2728
2729 /* And we're up. Go go go! */
2730 ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
2731 "smmu3.%pa", &ioaddr);
2732 if (ret)
2733 return ret;
2734
2735 iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2736 iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2737
2738 ret = iommu_device_register(&smmu->iommu);
2739
2740 iommu_register_instance(dev->fwnode, &arm_smmu_ops);
2741
2742 #ifdef CONFIG_PCI
2743 if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2744 pci_request_acs();
2745 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2746 if (ret)
2747 return ret;
2748 }
2749 #endif
2750 #ifdef CONFIG_ARM_AMBA
2751 if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2752 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2753 if (ret)
2754 return ret;
2755 }
2756 #endif
2757 if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2758 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2759 if (ret)
2760 return ret;
2761 }
2762 return 0;
2763 }
2764
2765 static int arm_smmu_device_remove(struct platform_device *pdev)
2766 {
2767 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2768
2769 arm_smmu_device_disable(smmu);
2770 return 0;
2771 }
2772
2773 static struct of_device_id arm_smmu_of_match[] = {
2774 { .compatible = "arm,smmu-v3", },
2775 { },
2776 };
2777 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2778
2779 static struct platform_driver arm_smmu_driver = {
2780 .driver = {
2781 .name = "arm-smmu-v3",
2782 .of_match_table = of_match_ptr(arm_smmu_of_match),
2783 },
2784 .probe = arm_smmu_device_probe,
2785 .remove = arm_smmu_device_remove,
2786 };
2787
2788 static int __init arm_smmu_init(void)
2789 {
2790 static bool registered;
2791 int ret = 0;
2792
2793 if (!registered) {
2794 ret = platform_driver_register(&arm_smmu_driver);
2795 registered = !ret;
2796 }
2797 return ret;
2798 }
2799
2800 static void __exit arm_smmu_exit(void)
2801 {
2802 return platform_driver_unregister(&arm_smmu_driver);
2803 }
2804
2805 subsys_initcall(arm_smmu_init);
2806 module_exit(arm_smmu_exit);
2807
2808 static int __init arm_smmu_of_init(struct device_node *np)
2809 {
2810 int ret = arm_smmu_init();
2811
2812 if (ret)
2813 return ret;
2814
2815 if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2816 return -ENODEV;
2817
2818 return 0;
2819 }
2820 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", arm_smmu_of_init);
2821
2822 #ifdef CONFIG_ACPI
2823 static int __init acpi_smmu_v3_init(struct acpi_table_header *table)
2824 {
2825 if (iort_node_match(ACPI_IORT_NODE_SMMU_V3))
2826 return arm_smmu_init();
2827
2828 return 0;
2829 }
2830 IORT_ACPI_DECLARE(arm_smmu_v3, ACPI_SIG_IORT, acpi_smmu_v3_init);
2831 #endif
2832
2833 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2834 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2835 MODULE_LICENSE("GPL v2");