]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/iommu/iommu.c
powerpc/perf: Avoid spurious PMU interrupts after idle
[mirror_ubuntu-zesty-kernel.git] / drivers / iommu / iommu.c
1 /*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #define pr_fmt(fmt) "iommu: " fmt
20
21 #include <linux/device.h>
22 #include <linux/kernel.h>
23 #include <linux/bug.h>
24 #include <linux/types.h>
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/iommu.h>
29 #include <linux/idr.h>
30 #include <linux/notifier.h>
31 #include <linux/err.h>
32 #include <linux/pci.h>
33 #include <linux/bitops.h>
34 #include <linux/property.h>
35 #include <trace/events/iommu.h>
36
37 static struct kset *iommu_group_kset;
38 static DEFINE_IDA(iommu_group_ida);
39 static unsigned int iommu_def_domain_type = IOMMU_DOMAIN_DMA;
40
41 struct iommu_callback_data {
42 const struct iommu_ops *ops;
43 };
44
45 struct iommu_group {
46 struct kobject kobj;
47 struct kobject *devices_kobj;
48 struct list_head devices;
49 struct mutex mutex;
50 struct blocking_notifier_head notifier;
51 void *iommu_data;
52 void (*iommu_data_release)(void *iommu_data);
53 char *name;
54 int id;
55 struct iommu_domain *default_domain;
56 struct iommu_domain *domain;
57 };
58
59 struct group_device {
60 struct list_head list;
61 struct device *dev;
62 char *name;
63 };
64
65 struct iommu_group_attribute {
66 struct attribute attr;
67 ssize_t (*show)(struct iommu_group *group, char *buf);
68 ssize_t (*store)(struct iommu_group *group,
69 const char *buf, size_t count);
70 };
71
72 static const char * const iommu_group_resv_type_string[] = {
73 [IOMMU_RESV_DIRECT] = "direct",
74 [IOMMU_RESV_RESERVED] = "reserved",
75 [IOMMU_RESV_MSI] = "msi",
76 };
77
78 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \
79 struct iommu_group_attribute iommu_group_attr_##_name = \
80 __ATTR(_name, _mode, _show, _store)
81
82 #define to_iommu_group_attr(_attr) \
83 container_of(_attr, struct iommu_group_attribute, attr)
84 #define to_iommu_group(_kobj) \
85 container_of(_kobj, struct iommu_group, kobj)
86
87 static LIST_HEAD(iommu_device_list);
88 static DEFINE_SPINLOCK(iommu_device_lock);
89
90 int iommu_device_register(struct iommu_device *iommu)
91 {
92 spin_lock(&iommu_device_lock);
93 list_add_tail(&iommu->list, &iommu_device_list);
94 spin_unlock(&iommu_device_lock);
95
96 return 0;
97 }
98
99 void iommu_device_unregister(struct iommu_device *iommu)
100 {
101 spin_lock(&iommu_device_lock);
102 list_del(&iommu->list);
103 spin_unlock(&iommu_device_lock);
104 }
105
106 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
107 unsigned type);
108 static int __iommu_attach_device(struct iommu_domain *domain,
109 struct device *dev);
110 static int __iommu_attach_group(struct iommu_domain *domain,
111 struct iommu_group *group);
112 static void __iommu_detach_group(struct iommu_domain *domain,
113 struct iommu_group *group);
114
115 static int __init iommu_set_def_domain_type(char *str)
116 {
117 bool pt;
118
119 if (!str || strtobool(str, &pt))
120 return -EINVAL;
121
122 iommu_def_domain_type = pt ? IOMMU_DOMAIN_IDENTITY : IOMMU_DOMAIN_DMA;
123 return 0;
124 }
125 early_param("iommu.passthrough", iommu_set_def_domain_type);
126
127 static ssize_t iommu_group_attr_show(struct kobject *kobj,
128 struct attribute *__attr, char *buf)
129 {
130 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
131 struct iommu_group *group = to_iommu_group(kobj);
132 ssize_t ret = -EIO;
133
134 if (attr->show)
135 ret = attr->show(group, buf);
136 return ret;
137 }
138
139 static ssize_t iommu_group_attr_store(struct kobject *kobj,
140 struct attribute *__attr,
141 const char *buf, size_t count)
142 {
143 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
144 struct iommu_group *group = to_iommu_group(kobj);
145 ssize_t ret = -EIO;
146
147 if (attr->store)
148 ret = attr->store(group, buf, count);
149 return ret;
150 }
151
152 static const struct sysfs_ops iommu_group_sysfs_ops = {
153 .show = iommu_group_attr_show,
154 .store = iommu_group_attr_store,
155 };
156
157 static int iommu_group_create_file(struct iommu_group *group,
158 struct iommu_group_attribute *attr)
159 {
160 return sysfs_create_file(&group->kobj, &attr->attr);
161 }
162
163 static void iommu_group_remove_file(struct iommu_group *group,
164 struct iommu_group_attribute *attr)
165 {
166 sysfs_remove_file(&group->kobj, &attr->attr);
167 }
168
169 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
170 {
171 return sprintf(buf, "%s\n", group->name);
172 }
173
174 /**
175 * iommu_insert_resv_region - Insert a new region in the
176 * list of reserved regions.
177 * @new: new region to insert
178 * @regions: list of regions
179 *
180 * The new element is sorted by address with respect to the other
181 * regions of the same type. In case it overlaps with another
182 * region of the same type, regions are merged. In case it
183 * overlaps with another region of different type, regions are
184 * not merged.
185 */
186 static int iommu_insert_resv_region(struct iommu_resv_region *new,
187 struct list_head *regions)
188 {
189 struct iommu_resv_region *region;
190 phys_addr_t start = new->start;
191 phys_addr_t end = new->start + new->length - 1;
192 struct list_head *pos = regions->next;
193
194 while (pos != regions) {
195 struct iommu_resv_region *entry =
196 list_entry(pos, struct iommu_resv_region, list);
197 phys_addr_t a = entry->start;
198 phys_addr_t b = entry->start + entry->length - 1;
199 int type = entry->type;
200
201 if (end < a) {
202 goto insert;
203 } else if (start > b) {
204 pos = pos->next;
205 } else if ((start >= a) && (end <= b)) {
206 if (new->type == type)
207 goto done;
208 else
209 pos = pos->next;
210 } else {
211 if (new->type == type) {
212 phys_addr_t new_start = min(a, start);
213 phys_addr_t new_end = max(b, end);
214
215 list_del(&entry->list);
216 entry->start = new_start;
217 entry->length = new_end - new_start + 1;
218 iommu_insert_resv_region(entry, regions);
219 } else {
220 pos = pos->next;
221 }
222 }
223 }
224 insert:
225 region = iommu_alloc_resv_region(new->start, new->length,
226 new->prot, new->type);
227 if (!region)
228 return -ENOMEM;
229
230 list_add_tail(&region->list, pos);
231 done:
232 return 0;
233 }
234
235 static int
236 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
237 struct list_head *group_resv_regions)
238 {
239 struct iommu_resv_region *entry;
240 int ret = 0;
241
242 list_for_each_entry(entry, dev_resv_regions, list) {
243 ret = iommu_insert_resv_region(entry, group_resv_regions);
244 if (ret)
245 break;
246 }
247 return ret;
248 }
249
250 int iommu_get_group_resv_regions(struct iommu_group *group,
251 struct list_head *head)
252 {
253 struct group_device *device;
254 int ret = 0;
255
256 mutex_lock(&group->mutex);
257 list_for_each_entry(device, &group->devices, list) {
258 struct list_head dev_resv_regions;
259
260 INIT_LIST_HEAD(&dev_resv_regions);
261 iommu_get_resv_regions(device->dev, &dev_resv_regions);
262 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
263 iommu_put_resv_regions(device->dev, &dev_resv_regions);
264 if (ret)
265 break;
266 }
267 mutex_unlock(&group->mutex);
268 return ret;
269 }
270 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
271
272 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
273 char *buf)
274 {
275 struct iommu_resv_region *region, *next;
276 struct list_head group_resv_regions;
277 char *str = buf;
278
279 INIT_LIST_HEAD(&group_resv_regions);
280 iommu_get_group_resv_regions(group, &group_resv_regions);
281
282 list_for_each_entry_safe(region, next, &group_resv_regions, list) {
283 str += sprintf(str, "0x%016llx 0x%016llx %s\n",
284 (long long int)region->start,
285 (long long int)(region->start +
286 region->length - 1),
287 iommu_group_resv_type_string[region->type]);
288 kfree(region);
289 }
290
291 return (str - buf);
292 }
293
294 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
295
296 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
297 iommu_group_show_resv_regions, NULL);
298
299 static void iommu_group_release(struct kobject *kobj)
300 {
301 struct iommu_group *group = to_iommu_group(kobj);
302
303 pr_debug("Releasing group %d\n", group->id);
304
305 if (group->iommu_data_release)
306 group->iommu_data_release(group->iommu_data);
307
308 ida_simple_remove(&iommu_group_ida, group->id);
309
310 if (group->default_domain)
311 iommu_domain_free(group->default_domain);
312
313 kfree(group->name);
314 kfree(group);
315 }
316
317 static struct kobj_type iommu_group_ktype = {
318 .sysfs_ops = &iommu_group_sysfs_ops,
319 .release = iommu_group_release,
320 };
321
322 /**
323 * iommu_group_alloc - Allocate a new group
324 * @name: Optional name to associate with group, visible in sysfs
325 *
326 * This function is called by an iommu driver to allocate a new iommu
327 * group. The iommu group represents the minimum granularity of the iommu.
328 * Upon successful return, the caller holds a reference to the supplied
329 * group in order to hold the group until devices are added. Use
330 * iommu_group_put() to release this extra reference count, allowing the
331 * group to be automatically reclaimed once it has no devices or external
332 * references.
333 */
334 struct iommu_group *iommu_group_alloc(void)
335 {
336 struct iommu_group *group;
337 int ret;
338
339 group = kzalloc(sizeof(*group), GFP_KERNEL);
340 if (!group)
341 return ERR_PTR(-ENOMEM);
342
343 group->kobj.kset = iommu_group_kset;
344 mutex_init(&group->mutex);
345 INIT_LIST_HEAD(&group->devices);
346 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
347
348 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
349 if (ret < 0) {
350 kfree(group);
351 return ERR_PTR(ret);
352 }
353 group->id = ret;
354
355 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
356 NULL, "%d", group->id);
357 if (ret) {
358 ida_simple_remove(&iommu_group_ida, group->id);
359 kfree(group);
360 return ERR_PTR(ret);
361 }
362
363 group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
364 if (!group->devices_kobj) {
365 kobject_put(&group->kobj); /* triggers .release & free */
366 return ERR_PTR(-ENOMEM);
367 }
368
369 /*
370 * The devices_kobj holds a reference on the group kobject, so
371 * as long as that exists so will the group. We can therefore
372 * use the devices_kobj for reference counting.
373 */
374 kobject_put(&group->kobj);
375
376 ret = iommu_group_create_file(group,
377 &iommu_group_attr_reserved_regions);
378 if (ret)
379 return ERR_PTR(ret);
380
381 pr_debug("Allocated group %d\n", group->id);
382
383 return group;
384 }
385 EXPORT_SYMBOL_GPL(iommu_group_alloc);
386
387 struct iommu_group *iommu_group_get_by_id(int id)
388 {
389 struct kobject *group_kobj;
390 struct iommu_group *group;
391 const char *name;
392
393 if (!iommu_group_kset)
394 return NULL;
395
396 name = kasprintf(GFP_KERNEL, "%d", id);
397 if (!name)
398 return NULL;
399
400 group_kobj = kset_find_obj(iommu_group_kset, name);
401 kfree(name);
402
403 if (!group_kobj)
404 return NULL;
405
406 group = container_of(group_kobj, struct iommu_group, kobj);
407 BUG_ON(group->id != id);
408
409 kobject_get(group->devices_kobj);
410 kobject_put(&group->kobj);
411
412 return group;
413 }
414 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
415
416 /**
417 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
418 * @group: the group
419 *
420 * iommu drivers can store data in the group for use when doing iommu
421 * operations. This function provides a way to retrieve it. Caller
422 * should hold a group reference.
423 */
424 void *iommu_group_get_iommudata(struct iommu_group *group)
425 {
426 return group->iommu_data;
427 }
428 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
429
430 /**
431 * iommu_group_set_iommudata - set iommu_data for a group
432 * @group: the group
433 * @iommu_data: new data
434 * @release: release function for iommu_data
435 *
436 * iommu drivers can store data in the group for use when doing iommu
437 * operations. This function provides a way to set the data after
438 * the group has been allocated. Caller should hold a group reference.
439 */
440 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
441 void (*release)(void *iommu_data))
442 {
443 group->iommu_data = iommu_data;
444 group->iommu_data_release = release;
445 }
446 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
447
448 /**
449 * iommu_group_set_name - set name for a group
450 * @group: the group
451 * @name: name
452 *
453 * Allow iommu driver to set a name for a group. When set it will
454 * appear in a name attribute file under the group in sysfs.
455 */
456 int iommu_group_set_name(struct iommu_group *group, const char *name)
457 {
458 int ret;
459
460 if (group->name) {
461 iommu_group_remove_file(group, &iommu_group_attr_name);
462 kfree(group->name);
463 group->name = NULL;
464 if (!name)
465 return 0;
466 }
467
468 group->name = kstrdup(name, GFP_KERNEL);
469 if (!group->name)
470 return -ENOMEM;
471
472 ret = iommu_group_create_file(group, &iommu_group_attr_name);
473 if (ret) {
474 kfree(group->name);
475 group->name = NULL;
476 return ret;
477 }
478
479 return 0;
480 }
481 EXPORT_SYMBOL_GPL(iommu_group_set_name);
482
483 static int iommu_group_create_direct_mappings(struct iommu_group *group,
484 struct device *dev)
485 {
486 struct iommu_domain *domain = group->default_domain;
487 struct iommu_resv_region *entry;
488 struct list_head mappings;
489 unsigned long pg_size;
490 int ret = 0;
491
492 if (!domain || domain->type != IOMMU_DOMAIN_DMA)
493 return 0;
494
495 BUG_ON(!domain->pgsize_bitmap);
496
497 pg_size = 1UL << __ffs(domain->pgsize_bitmap);
498 INIT_LIST_HEAD(&mappings);
499
500 iommu_get_resv_regions(dev, &mappings);
501
502 /* We need to consider overlapping regions for different devices */
503 list_for_each_entry(entry, &mappings, list) {
504 dma_addr_t start, end, addr;
505
506 if (domain->ops->apply_resv_region)
507 domain->ops->apply_resv_region(dev, domain, entry);
508
509 start = ALIGN(entry->start, pg_size);
510 end = ALIGN(entry->start + entry->length, pg_size);
511
512 if (entry->type != IOMMU_RESV_DIRECT)
513 continue;
514
515 for (addr = start; addr < end; addr += pg_size) {
516 phys_addr_t phys_addr;
517
518 phys_addr = iommu_iova_to_phys(domain, addr);
519 if (phys_addr)
520 continue;
521
522 ret = iommu_map(domain, addr, addr, pg_size, entry->prot);
523 if (ret)
524 goto out;
525 }
526
527 }
528
529 out:
530 iommu_put_resv_regions(dev, &mappings);
531
532 return ret;
533 }
534
535 /**
536 * iommu_group_add_device - add a device to an iommu group
537 * @group: the group into which to add the device (reference should be held)
538 * @dev: the device
539 *
540 * This function is called by an iommu driver to add a device into a
541 * group. Adding a device increments the group reference count.
542 */
543 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
544 {
545 int ret, i = 0;
546 struct group_device *device;
547
548 device = kzalloc(sizeof(*device), GFP_KERNEL);
549 if (!device)
550 return -ENOMEM;
551
552 device->dev = dev;
553
554 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
555 if (ret) {
556 kfree(device);
557 return ret;
558 }
559
560 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
561 rename:
562 if (!device->name) {
563 sysfs_remove_link(&dev->kobj, "iommu_group");
564 kfree(device);
565 return -ENOMEM;
566 }
567
568 ret = sysfs_create_link_nowarn(group->devices_kobj,
569 &dev->kobj, device->name);
570 if (ret) {
571 kfree(device->name);
572 if (ret == -EEXIST && i >= 0) {
573 /*
574 * Account for the slim chance of collision
575 * and append an instance to the name.
576 */
577 device->name = kasprintf(GFP_KERNEL, "%s.%d",
578 kobject_name(&dev->kobj), i++);
579 goto rename;
580 }
581
582 sysfs_remove_link(&dev->kobj, "iommu_group");
583 kfree(device);
584 return ret;
585 }
586
587 kobject_get(group->devices_kobj);
588
589 dev->iommu_group = group;
590
591 iommu_group_create_direct_mappings(group, dev);
592
593 mutex_lock(&group->mutex);
594 list_add_tail(&device->list, &group->devices);
595 if (group->domain)
596 __iommu_attach_device(group->domain, dev);
597 mutex_unlock(&group->mutex);
598
599 /* Notify any listeners about change to group. */
600 blocking_notifier_call_chain(&group->notifier,
601 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
602
603 trace_add_device_to_group(group->id, dev);
604
605 pr_info("Adding device %s to group %d\n", dev_name(dev), group->id);
606
607 return 0;
608 }
609 EXPORT_SYMBOL_GPL(iommu_group_add_device);
610
611 /**
612 * iommu_group_remove_device - remove a device from it's current group
613 * @dev: device to be removed
614 *
615 * This function is called by an iommu driver to remove the device from
616 * it's current group. This decrements the iommu group reference count.
617 */
618 void iommu_group_remove_device(struct device *dev)
619 {
620 struct iommu_group *group = dev->iommu_group;
621 struct group_device *tmp_device, *device = NULL;
622
623 pr_info("Removing device %s from group %d\n", dev_name(dev), group->id);
624
625 /* Pre-notify listeners that a device is being removed. */
626 blocking_notifier_call_chain(&group->notifier,
627 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
628
629 mutex_lock(&group->mutex);
630 list_for_each_entry(tmp_device, &group->devices, list) {
631 if (tmp_device->dev == dev) {
632 device = tmp_device;
633 list_del(&device->list);
634 break;
635 }
636 }
637 mutex_unlock(&group->mutex);
638
639 if (!device)
640 return;
641
642 sysfs_remove_link(group->devices_kobj, device->name);
643 sysfs_remove_link(&dev->kobj, "iommu_group");
644
645 trace_remove_device_from_group(group->id, dev);
646
647 kfree(device->name);
648 kfree(device);
649 dev->iommu_group = NULL;
650 kobject_put(group->devices_kobj);
651 }
652 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
653
654 static int iommu_group_device_count(struct iommu_group *group)
655 {
656 struct group_device *entry;
657 int ret = 0;
658
659 list_for_each_entry(entry, &group->devices, list)
660 ret++;
661
662 return ret;
663 }
664
665 /**
666 * iommu_group_for_each_dev - iterate over each device in the group
667 * @group: the group
668 * @data: caller opaque data to be passed to callback function
669 * @fn: caller supplied callback function
670 *
671 * This function is called by group users to iterate over group devices.
672 * Callers should hold a reference count to the group during callback.
673 * The group->mutex is held across callbacks, which will block calls to
674 * iommu_group_add/remove_device.
675 */
676 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
677 int (*fn)(struct device *, void *))
678 {
679 struct group_device *device;
680 int ret = 0;
681
682 list_for_each_entry(device, &group->devices, list) {
683 ret = fn(device->dev, data);
684 if (ret)
685 break;
686 }
687 return ret;
688 }
689
690
691 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
692 int (*fn)(struct device *, void *))
693 {
694 int ret;
695
696 mutex_lock(&group->mutex);
697 ret = __iommu_group_for_each_dev(group, data, fn);
698 mutex_unlock(&group->mutex);
699
700 return ret;
701 }
702 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
703
704 /**
705 * iommu_group_get - Return the group for a device and increment reference
706 * @dev: get the group that this device belongs to
707 *
708 * This function is called by iommu drivers and users to get the group
709 * for the specified device. If found, the group is returned and the group
710 * reference in incremented, else NULL.
711 */
712 struct iommu_group *iommu_group_get(struct device *dev)
713 {
714 struct iommu_group *group = dev->iommu_group;
715
716 if (group)
717 kobject_get(group->devices_kobj);
718
719 return group;
720 }
721 EXPORT_SYMBOL_GPL(iommu_group_get);
722
723 /**
724 * iommu_group_ref_get - Increment reference on a group
725 * @group: the group to use, must not be NULL
726 *
727 * This function is called by iommu drivers to take additional references on an
728 * existing group. Returns the given group for convenience.
729 */
730 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
731 {
732 kobject_get(group->devices_kobj);
733 return group;
734 }
735
736 /**
737 * iommu_group_put - Decrement group reference
738 * @group: the group to use
739 *
740 * This function is called by iommu drivers and users to release the
741 * iommu group. Once the reference count is zero, the group is released.
742 */
743 void iommu_group_put(struct iommu_group *group)
744 {
745 if (group)
746 kobject_put(group->devices_kobj);
747 }
748 EXPORT_SYMBOL_GPL(iommu_group_put);
749
750 /**
751 * iommu_group_register_notifier - Register a notifier for group changes
752 * @group: the group to watch
753 * @nb: notifier block to signal
754 *
755 * This function allows iommu group users to track changes in a group.
756 * See include/linux/iommu.h for actions sent via this notifier. Caller
757 * should hold a reference to the group throughout notifier registration.
758 */
759 int iommu_group_register_notifier(struct iommu_group *group,
760 struct notifier_block *nb)
761 {
762 return blocking_notifier_chain_register(&group->notifier, nb);
763 }
764 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
765
766 /**
767 * iommu_group_unregister_notifier - Unregister a notifier
768 * @group: the group to watch
769 * @nb: notifier block to signal
770 *
771 * Unregister a previously registered group notifier block.
772 */
773 int iommu_group_unregister_notifier(struct iommu_group *group,
774 struct notifier_block *nb)
775 {
776 return blocking_notifier_chain_unregister(&group->notifier, nb);
777 }
778 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
779
780 /**
781 * iommu_group_id - Return ID for a group
782 * @group: the group to ID
783 *
784 * Return the unique ID for the group matching the sysfs group number.
785 */
786 int iommu_group_id(struct iommu_group *group)
787 {
788 return group->id;
789 }
790 EXPORT_SYMBOL_GPL(iommu_group_id);
791
792 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
793 unsigned long *devfns);
794
795 /*
796 * To consider a PCI device isolated, we require ACS to support Source
797 * Validation, Request Redirection, Completer Redirection, and Upstream
798 * Forwarding. This effectively means that devices cannot spoof their
799 * requester ID, requests and completions cannot be redirected, and all
800 * transactions are forwarded upstream, even as it passes through a
801 * bridge where the target device is downstream.
802 */
803 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
804
805 /*
806 * For multifunction devices which are not isolated from each other, find
807 * all the other non-isolated functions and look for existing groups. For
808 * each function, we also need to look for aliases to or from other devices
809 * that may already have a group.
810 */
811 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
812 unsigned long *devfns)
813 {
814 struct pci_dev *tmp = NULL;
815 struct iommu_group *group;
816
817 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
818 return NULL;
819
820 for_each_pci_dev(tmp) {
821 if (tmp == pdev || tmp->bus != pdev->bus ||
822 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
823 pci_acs_enabled(tmp, REQ_ACS_FLAGS))
824 continue;
825
826 group = get_pci_alias_group(tmp, devfns);
827 if (group) {
828 pci_dev_put(tmp);
829 return group;
830 }
831 }
832
833 return NULL;
834 }
835
836 /*
837 * Look for aliases to or from the given device for existing groups. DMA
838 * aliases are only supported on the same bus, therefore the search
839 * space is quite small (especially since we're really only looking at pcie
840 * device, and therefore only expect multiple slots on the root complex or
841 * downstream switch ports). It's conceivable though that a pair of
842 * multifunction devices could have aliases between them that would cause a
843 * loop. To prevent this, we use a bitmap to track where we've been.
844 */
845 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
846 unsigned long *devfns)
847 {
848 struct pci_dev *tmp = NULL;
849 struct iommu_group *group;
850
851 if (test_and_set_bit(pdev->devfn & 0xff, devfns))
852 return NULL;
853
854 group = iommu_group_get(&pdev->dev);
855 if (group)
856 return group;
857
858 for_each_pci_dev(tmp) {
859 if (tmp == pdev || tmp->bus != pdev->bus)
860 continue;
861
862 /* We alias them or they alias us */
863 if (pci_devs_are_dma_aliases(pdev, tmp)) {
864 group = get_pci_alias_group(tmp, devfns);
865 if (group) {
866 pci_dev_put(tmp);
867 return group;
868 }
869
870 group = get_pci_function_alias_group(tmp, devfns);
871 if (group) {
872 pci_dev_put(tmp);
873 return group;
874 }
875 }
876 }
877
878 return NULL;
879 }
880
881 struct group_for_pci_data {
882 struct pci_dev *pdev;
883 struct iommu_group *group;
884 };
885
886 /*
887 * DMA alias iterator callback, return the last seen device. Stop and return
888 * the IOMMU group if we find one along the way.
889 */
890 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
891 {
892 struct group_for_pci_data *data = opaque;
893
894 data->pdev = pdev;
895 data->group = iommu_group_get(&pdev->dev);
896
897 return data->group != NULL;
898 }
899
900 /*
901 * Generic device_group call-back function. It just allocates one
902 * iommu-group per device.
903 */
904 struct iommu_group *generic_device_group(struct device *dev)
905 {
906 struct iommu_group *group;
907
908 group = iommu_group_alloc();
909 if (IS_ERR(group))
910 return NULL;
911
912 return group;
913 }
914
915 /*
916 * Use standard PCI bus topology, isolation features, and DMA alias quirks
917 * to find or create an IOMMU group for a device.
918 */
919 struct iommu_group *pci_device_group(struct device *dev)
920 {
921 struct pci_dev *pdev = to_pci_dev(dev);
922 struct group_for_pci_data data;
923 struct pci_bus *bus;
924 struct iommu_group *group = NULL;
925 u64 devfns[4] = { 0 };
926
927 if (WARN_ON(!dev_is_pci(dev)))
928 return ERR_PTR(-EINVAL);
929
930 /*
931 * Find the upstream DMA alias for the device. A device must not
932 * be aliased due to topology in order to have its own IOMMU group.
933 * If we find an alias along the way that already belongs to a
934 * group, use it.
935 */
936 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
937 return data.group;
938
939 pdev = data.pdev;
940
941 /*
942 * Continue upstream from the point of minimum IOMMU granularity
943 * due to aliases to the point where devices are protected from
944 * peer-to-peer DMA by PCI ACS. Again, if we find an existing
945 * group, use it.
946 */
947 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
948 if (!bus->self)
949 continue;
950
951 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
952 break;
953
954 pdev = bus->self;
955
956 group = iommu_group_get(&pdev->dev);
957 if (group)
958 return group;
959 }
960
961 /*
962 * Look for existing groups on device aliases. If we alias another
963 * device or another device aliases us, use the same group.
964 */
965 group = get_pci_alias_group(pdev, (unsigned long *)devfns);
966 if (group)
967 return group;
968
969 /*
970 * Look for existing groups on non-isolated functions on the same
971 * slot and aliases of those funcions, if any. No need to clear
972 * the search bitmap, the tested devfns are still valid.
973 */
974 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
975 if (group)
976 return group;
977
978 /* No shared group found, allocate new */
979 group = iommu_group_alloc();
980 if (IS_ERR(group))
981 return NULL;
982
983 return group;
984 }
985
986 /**
987 * iommu_group_get_for_dev - Find or create the IOMMU group for a device
988 * @dev: target device
989 *
990 * This function is intended to be called by IOMMU drivers and extended to
991 * support common, bus-defined algorithms when determining or creating the
992 * IOMMU group for a device. On success, the caller will hold a reference
993 * to the returned IOMMU group, which will already include the provided
994 * device. The reference should be released with iommu_group_put().
995 */
996 struct iommu_group *iommu_group_get_for_dev(struct device *dev)
997 {
998 const struct iommu_ops *ops = dev->bus->iommu_ops;
999 struct iommu_group *group;
1000 int ret;
1001
1002 group = iommu_group_get(dev);
1003 if (group)
1004 return group;
1005
1006 group = ERR_PTR(-EINVAL);
1007
1008 if (ops && ops->device_group)
1009 group = ops->device_group(dev);
1010
1011 if (IS_ERR(group))
1012 return group;
1013
1014 /*
1015 * Try to allocate a default domain - needs support from the
1016 * IOMMU driver.
1017 */
1018 if (!group->default_domain) {
1019 struct iommu_domain *dom;
1020
1021 dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type);
1022 if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) {
1023 dev_warn(dev,
1024 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA",
1025 iommu_def_domain_type);
1026 dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA);
1027 }
1028
1029 group->default_domain = dom;
1030 if (!group->domain)
1031 group->domain = dom;
1032 }
1033
1034 ret = iommu_group_add_device(group, dev);
1035 if (ret) {
1036 iommu_group_put(group);
1037 return ERR_PTR(ret);
1038 }
1039
1040 return group;
1041 }
1042
1043 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1044 {
1045 return group->default_domain;
1046 }
1047
1048 static int add_iommu_group(struct device *dev, void *data)
1049 {
1050 struct iommu_callback_data *cb = data;
1051 const struct iommu_ops *ops = cb->ops;
1052 int ret;
1053
1054 if (!ops->add_device)
1055 return 0;
1056
1057 WARN_ON(dev->iommu_group);
1058
1059 ret = ops->add_device(dev);
1060
1061 /*
1062 * We ignore -ENODEV errors for now, as they just mean that the
1063 * device is not translated by an IOMMU. We still care about
1064 * other errors and fail to initialize when they happen.
1065 */
1066 if (ret == -ENODEV)
1067 ret = 0;
1068
1069 return ret;
1070 }
1071
1072 static int remove_iommu_group(struct device *dev, void *data)
1073 {
1074 struct iommu_callback_data *cb = data;
1075 const struct iommu_ops *ops = cb->ops;
1076
1077 if (ops->remove_device && dev->iommu_group)
1078 ops->remove_device(dev);
1079
1080 return 0;
1081 }
1082
1083 static int iommu_bus_notifier(struct notifier_block *nb,
1084 unsigned long action, void *data)
1085 {
1086 struct device *dev = data;
1087 const struct iommu_ops *ops = dev->bus->iommu_ops;
1088 struct iommu_group *group;
1089 unsigned long group_action = 0;
1090
1091 /*
1092 * ADD/DEL call into iommu driver ops if provided, which may
1093 * result in ADD/DEL notifiers to group->notifier
1094 */
1095 if (action == BUS_NOTIFY_ADD_DEVICE) {
1096 if (ops->add_device)
1097 return ops->add_device(dev);
1098 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1099 if (ops->remove_device && dev->iommu_group) {
1100 ops->remove_device(dev);
1101 return 0;
1102 }
1103 }
1104
1105 /*
1106 * Remaining BUS_NOTIFYs get filtered and republished to the
1107 * group, if anyone is listening
1108 */
1109 group = iommu_group_get(dev);
1110 if (!group)
1111 return 0;
1112
1113 switch (action) {
1114 case BUS_NOTIFY_BIND_DRIVER:
1115 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1116 break;
1117 case BUS_NOTIFY_BOUND_DRIVER:
1118 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1119 break;
1120 case BUS_NOTIFY_UNBIND_DRIVER:
1121 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1122 break;
1123 case BUS_NOTIFY_UNBOUND_DRIVER:
1124 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1125 break;
1126 }
1127
1128 if (group_action)
1129 blocking_notifier_call_chain(&group->notifier,
1130 group_action, dev);
1131
1132 iommu_group_put(group);
1133 return 0;
1134 }
1135
1136 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1137 {
1138 int err;
1139 struct notifier_block *nb;
1140 struct iommu_callback_data cb = {
1141 .ops = ops,
1142 };
1143
1144 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1145 if (!nb)
1146 return -ENOMEM;
1147
1148 nb->notifier_call = iommu_bus_notifier;
1149
1150 err = bus_register_notifier(bus, nb);
1151 if (err)
1152 goto out_free;
1153
1154 err = bus_for_each_dev(bus, NULL, &cb, add_iommu_group);
1155 if (err)
1156 goto out_err;
1157
1158
1159 return 0;
1160
1161 out_err:
1162 /* Clean up */
1163 bus_for_each_dev(bus, NULL, &cb, remove_iommu_group);
1164 bus_unregister_notifier(bus, nb);
1165
1166 out_free:
1167 kfree(nb);
1168
1169 return err;
1170 }
1171
1172 /**
1173 * bus_set_iommu - set iommu-callbacks for the bus
1174 * @bus: bus.
1175 * @ops: the callbacks provided by the iommu-driver
1176 *
1177 * This function is called by an iommu driver to set the iommu methods
1178 * used for a particular bus. Drivers for devices on that bus can use
1179 * the iommu-api after these ops are registered.
1180 * This special function is needed because IOMMUs are usually devices on
1181 * the bus itself, so the iommu drivers are not initialized when the bus
1182 * is set up. With this function the iommu-driver can set the iommu-ops
1183 * afterwards.
1184 */
1185 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1186 {
1187 int err;
1188
1189 if (bus->iommu_ops != NULL)
1190 return -EBUSY;
1191
1192 bus->iommu_ops = ops;
1193
1194 /* Do IOMMU specific setup for this bus-type */
1195 err = iommu_bus_init(bus, ops);
1196 if (err)
1197 bus->iommu_ops = NULL;
1198
1199 return err;
1200 }
1201 EXPORT_SYMBOL_GPL(bus_set_iommu);
1202
1203 bool iommu_present(struct bus_type *bus)
1204 {
1205 return bus->iommu_ops != NULL;
1206 }
1207 EXPORT_SYMBOL_GPL(iommu_present);
1208
1209 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1210 {
1211 if (!bus->iommu_ops || !bus->iommu_ops->capable)
1212 return false;
1213
1214 return bus->iommu_ops->capable(cap);
1215 }
1216 EXPORT_SYMBOL_GPL(iommu_capable);
1217
1218 /**
1219 * iommu_set_fault_handler() - set a fault handler for an iommu domain
1220 * @domain: iommu domain
1221 * @handler: fault handler
1222 * @token: user data, will be passed back to the fault handler
1223 *
1224 * This function should be used by IOMMU users which want to be notified
1225 * whenever an IOMMU fault happens.
1226 *
1227 * The fault handler itself should return 0 on success, and an appropriate
1228 * error code otherwise.
1229 */
1230 void iommu_set_fault_handler(struct iommu_domain *domain,
1231 iommu_fault_handler_t handler,
1232 void *token)
1233 {
1234 BUG_ON(!domain);
1235
1236 domain->handler = handler;
1237 domain->handler_token = token;
1238 }
1239 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1240
1241 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1242 unsigned type)
1243 {
1244 struct iommu_domain *domain;
1245
1246 if (bus == NULL || bus->iommu_ops == NULL)
1247 return NULL;
1248
1249 domain = bus->iommu_ops->domain_alloc(type);
1250 if (!domain)
1251 return NULL;
1252
1253 domain->ops = bus->iommu_ops;
1254 domain->type = type;
1255 /* Assume all sizes by default; the driver may override this later */
1256 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1257
1258 return domain;
1259 }
1260
1261 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1262 {
1263 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1264 }
1265 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1266
1267 void iommu_domain_free(struct iommu_domain *domain)
1268 {
1269 domain->ops->domain_free(domain);
1270 }
1271 EXPORT_SYMBOL_GPL(iommu_domain_free);
1272
1273 static int __iommu_attach_device(struct iommu_domain *domain,
1274 struct device *dev)
1275 {
1276 int ret;
1277 if (unlikely(domain->ops->attach_dev == NULL))
1278 return -ENODEV;
1279
1280 ret = domain->ops->attach_dev(domain, dev);
1281 if (!ret)
1282 trace_attach_device_to_domain(dev);
1283 return ret;
1284 }
1285
1286 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1287 {
1288 struct iommu_group *group;
1289 int ret;
1290
1291 group = iommu_group_get(dev);
1292 /* FIXME: Remove this when groups a mandatory for iommu drivers */
1293 if (group == NULL)
1294 return __iommu_attach_device(domain, dev);
1295
1296 /*
1297 * We have a group - lock it to make sure the device-count doesn't
1298 * change while we are attaching
1299 */
1300 mutex_lock(&group->mutex);
1301 ret = -EINVAL;
1302 if (iommu_group_device_count(group) != 1)
1303 goto out_unlock;
1304
1305 ret = __iommu_attach_group(domain, group);
1306
1307 out_unlock:
1308 mutex_unlock(&group->mutex);
1309 iommu_group_put(group);
1310
1311 return ret;
1312 }
1313 EXPORT_SYMBOL_GPL(iommu_attach_device);
1314
1315 static void __iommu_detach_device(struct iommu_domain *domain,
1316 struct device *dev)
1317 {
1318 if (unlikely(domain->ops->detach_dev == NULL))
1319 return;
1320
1321 domain->ops->detach_dev(domain, dev);
1322 trace_detach_device_from_domain(dev);
1323 }
1324
1325 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
1326 {
1327 struct iommu_group *group;
1328
1329 group = iommu_group_get(dev);
1330 /* FIXME: Remove this when groups a mandatory for iommu drivers */
1331 if (group == NULL)
1332 return __iommu_detach_device(domain, dev);
1333
1334 mutex_lock(&group->mutex);
1335 if (iommu_group_device_count(group) != 1) {
1336 WARN_ON(1);
1337 goto out_unlock;
1338 }
1339
1340 __iommu_detach_group(domain, group);
1341
1342 out_unlock:
1343 mutex_unlock(&group->mutex);
1344 iommu_group_put(group);
1345 }
1346 EXPORT_SYMBOL_GPL(iommu_detach_device);
1347
1348 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
1349 {
1350 struct iommu_domain *domain;
1351 struct iommu_group *group;
1352
1353 group = iommu_group_get(dev);
1354 /* FIXME: Remove this when groups a mandatory for iommu drivers */
1355 if (group == NULL)
1356 return NULL;
1357
1358 domain = group->domain;
1359
1360 iommu_group_put(group);
1361
1362 return domain;
1363 }
1364 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
1365
1366 /*
1367 * IOMMU groups are really the natrual working unit of the IOMMU, but
1368 * the IOMMU API works on domains and devices. Bridge that gap by
1369 * iterating over the devices in a group. Ideally we'd have a single
1370 * device which represents the requestor ID of the group, but we also
1371 * allow IOMMU drivers to create policy defined minimum sets, where
1372 * the physical hardware may be able to distiguish members, but we
1373 * wish to group them at a higher level (ex. untrusted multi-function
1374 * PCI devices). Thus we attach each device.
1375 */
1376 static int iommu_group_do_attach_device(struct device *dev, void *data)
1377 {
1378 struct iommu_domain *domain = data;
1379
1380 return __iommu_attach_device(domain, dev);
1381 }
1382
1383 static int __iommu_attach_group(struct iommu_domain *domain,
1384 struct iommu_group *group)
1385 {
1386 int ret;
1387
1388 if (group->default_domain && group->domain != group->default_domain)
1389 return -EBUSY;
1390
1391 ret = __iommu_group_for_each_dev(group, domain,
1392 iommu_group_do_attach_device);
1393 if (ret == 0)
1394 group->domain = domain;
1395
1396 return ret;
1397 }
1398
1399 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
1400 {
1401 int ret;
1402
1403 mutex_lock(&group->mutex);
1404 ret = __iommu_attach_group(domain, group);
1405 mutex_unlock(&group->mutex);
1406
1407 return ret;
1408 }
1409 EXPORT_SYMBOL_GPL(iommu_attach_group);
1410
1411 static int iommu_group_do_detach_device(struct device *dev, void *data)
1412 {
1413 struct iommu_domain *domain = data;
1414
1415 __iommu_detach_device(domain, dev);
1416
1417 return 0;
1418 }
1419
1420 static void __iommu_detach_group(struct iommu_domain *domain,
1421 struct iommu_group *group)
1422 {
1423 int ret;
1424
1425 if (!group->default_domain) {
1426 __iommu_group_for_each_dev(group, domain,
1427 iommu_group_do_detach_device);
1428 group->domain = NULL;
1429 return;
1430 }
1431
1432 if (group->domain == group->default_domain)
1433 return;
1434
1435 /* Detach by re-attaching to the default domain */
1436 ret = __iommu_group_for_each_dev(group, group->default_domain,
1437 iommu_group_do_attach_device);
1438 if (ret != 0)
1439 WARN_ON(1);
1440 else
1441 group->domain = group->default_domain;
1442 }
1443
1444 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
1445 {
1446 mutex_lock(&group->mutex);
1447 __iommu_detach_group(domain, group);
1448 mutex_unlock(&group->mutex);
1449 }
1450 EXPORT_SYMBOL_GPL(iommu_detach_group);
1451
1452 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1453 {
1454 if (unlikely(domain->ops->iova_to_phys == NULL))
1455 return 0;
1456
1457 return domain->ops->iova_to_phys(domain, iova);
1458 }
1459 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
1460
1461 static size_t iommu_pgsize(struct iommu_domain *domain,
1462 unsigned long addr_merge, size_t size)
1463 {
1464 unsigned int pgsize_idx;
1465 size_t pgsize;
1466
1467 /* Max page size that still fits into 'size' */
1468 pgsize_idx = __fls(size);
1469
1470 /* need to consider alignment requirements ? */
1471 if (likely(addr_merge)) {
1472 /* Max page size allowed by address */
1473 unsigned int align_pgsize_idx = __ffs(addr_merge);
1474 pgsize_idx = min(pgsize_idx, align_pgsize_idx);
1475 }
1476
1477 /* build a mask of acceptable page sizes */
1478 pgsize = (1UL << (pgsize_idx + 1)) - 1;
1479
1480 /* throw away page sizes not supported by the hardware */
1481 pgsize &= domain->pgsize_bitmap;
1482
1483 /* make sure we're still sane */
1484 BUG_ON(!pgsize);
1485
1486 /* pick the biggest page */
1487 pgsize_idx = __fls(pgsize);
1488 pgsize = 1UL << pgsize_idx;
1489
1490 return pgsize;
1491 }
1492
1493 int iommu_map(struct iommu_domain *domain, unsigned long iova,
1494 phys_addr_t paddr, size_t size, int prot)
1495 {
1496 unsigned long orig_iova = iova;
1497 unsigned int min_pagesz;
1498 size_t orig_size = size;
1499 phys_addr_t orig_paddr = paddr;
1500 int ret = 0;
1501
1502 if (unlikely(domain->ops->map == NULL ||
1503 domain->pgsize_bitmap == 0UL))
1504 return -ENODEV;
1505
1506 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1507 return -EINVAL;
1508
1509 /* find out the minimum page size supported */
1510 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1511
1512 /*
1513 * both the virtual address and the physical one, as well as
1514 * the size of the mapping, must be aligned (at least) to the
1515 * size of the smallest page supported by the hardware
1516 */
1517 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
1518 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
1519 iova, &paddr, size, min_pagesz);
1520 return -EINVAL;
1521 }
1522
1523 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
1524
1525 while (size) {
1526 size_t pgsize = iommu_pgsize(domain, iova | paddr, size);
1527
1528 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
1529 iova, &paddr, pgsize);
1530
1531 ret = domain->ops->map(domain, iova, paddr, pgsize, prot);
1532 if (ret)
1533 break;
1534
1535 iova += pgsize;
1536 paddr += pgsize;
1537 size -= pgsize;
1538 }
1539
1540 /* unroll mapping in case something went wrong */
1541 if (ret)
1542 iommu_unmap(domain, orig_iova, orig_size - size);
1543 else
1544 trace_map(orig_iova, orig_paddr, orig_size);
1545
1546 return ret;
1547 }
1548 EXPORT_SYMBOL_GPL(iommu_map);
1549
1550 size_t iommu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1551 {
1552 size_t unmapped_page, unmapped = 0;
1553 unsigned int min_pagesz;
1554 unsigned long orig_iova = iova;
1555
1556 if (unlikely(domain->ops->unmap == NULL ||
1557 domain->pgsize_bitmap == 0UL))
1558 return -ENODEV;
1559
1560 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1561 return -EINVAL;
1562
1563 /* find out the minimum page size supported */
1564 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1565
1566 /*
1567 * The virtual address, as well as the size of the mapping, must be
1568 * aligned (at least) to the size of the smallest page supported
1569 * by the hardware
1570 */
1571 if (!IS_ALIGNED(iova | size, min_pagesz)) {
1572 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
1573 iova, size, min_pagesz);
1574 return -EINVAL;
1575 }
1576
1577 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
1578
1579 /*
1580 * Keep iterating until we either unmap 'size' bytes (or more)
1581 * or we hit an area that isn't mapped.
1582 */
1583 while (unmapped < size) {
1584 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped);
1585
1586 unmapped_page = domain->ops->unmap(domain, iova, pgsize);
1587 if (!unmapped_page)
1588 break;
1589
1590 pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
1591 iova, unmapped_page);
1592
1593 iova += unmapped_page;
1594 unmapped += unmapped_page;
1595 }
1596
1597 trace_unmap(orig_iova, size, unmapped);
1598 return unmapped;
1599 }
1600 EXPORT_SYMBOL_GPL(iommu_unmap);
1601
1602 size_t default_iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
1603 struct scatterlist *sg, unsigned int nents, int prot)
1604 {
1605 struct scatterlist *s;
1606 size_t mapped = 0;
1607 unsigned int i, min_pagesz;
1608 int ret;
1609
1610 if (unlikely(domain->pgsize_bitmap == 0UL))
1611 return 0;
1612
1613 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1614
1615 for_each_sg(sg, s, nents, i) {
1616 phys_addr_t phys = page_to_phys(sg_page(s)) + s->offset;
1617
1618 /*
1619 * We are mapping on IOMMU page boundaries, so offset within
1620 * the page must be 0. However, the IOMMU may support pages
1621 * smaller than PAGE_SIZE, so s->offset may still represent
1622 * an offset of that boundary within the CPU page.
1623 */
1624 if (!IS_ALIGNED(s->offset, min_pagesz))
1625 goto out_err;
1626
1627 ret = iommu_map(domain, iova + mapped, phys, s->length, prot);
1628 if (ret)
1629 goto out_err;
1630
1631 mapped += s->length;
1632 }
1633
1634 return mapped;
1635
1636 out_err:
1637 /* undo mappings already done */
1638 iommu_unmap(domain, iova, mapped);
1639
1640 return 0;
1641
1642 }
1643 EXPORT_SYMBOL_GPL(default_iommu_map_sg);
1644
1645 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr,
1646 phys_addr_t paddr, u64 size, int prot)
1647 {
1648 if (unlikely(domain->ops->domain_window_enable == NULL))
1649 return -ENODEV;
1650
1651 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size,
1652 prot);
1653 }
1654 EXPORT_SYMBOL_GPL(iommu_domain_window_enable);
1655
1656 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr)
1657 {
1658 if (unlikely(domain->ops->domain_window_disable == NULL))
1659 return;
1660
1661 return domain->ops->domain_window_disable(domain, wnd_nr);
1662 }
1663 EXPORT_SYMBOL_GPL(iommu_domain_window_disable);
1664
1665 static int __init iommu_init(void)
1666 {
1667 iommu_group_kset = kset_create_and_add("iommu_groups",
1668 NULL, kernel_kobj);
1669 BUG_ON(!iommu_group_kset);
1670
1671 return 0;
1672 }
1673 core_initcall(iommu_init);
1674
1675 int iommu_domain_get_attr(struct iommu_domain *domain,
1676 enum iommu_attr attr, void *data)
1677 {
1678 struct iommu_domain_geometry *geometry;
1679 bool *paging;
1680 int ret = 0;
1681 u32 *count;
1682
1683 switch (attr) {
1684 case DOMAIN_ATTR_GEOMETRY:
1685 geometry = data;
1686 *geometry = domain->geometry;
1687
1688 break;
1689 case DOMAIN_ATTR_PAGING:
1690 paging = data;
1691 *paging = (domain->pgsize_bitmap != 0UL);
1692 break;
1693 case DOMAIN_ATTR_WINDOWS:
1694 count = data;
1695
1696 if (domain->ops->domain_get_windows != NULL)
1697 *count = domain->ops->domain_get_windows(domain);
1698 else
1699 ret = -ENODEV;
1700
1701 break;
1702 default:
1703 if (!domain->ops->domain_get_attr)
1704 return -EINVAL;
1705
1706 ret = domain->ops->domain_get_attr(domain, attr, data);
1707 }
1708
1709 return ret;
1710 }
1711 EXPORT_SYMBOL_GPL(iommu_domain_get_attr);
1712
1713 int iommu_domain_set_attr(struct iommu_domain *domain,
1714 enum iommu_attr attr, void *data)
1715 {
1716 int ret = 0;
1717 u32 *count;
1718
1719 switch (attr) {
1720 case DOMAIN_ATTR_WINDOWS:
1721 count = data;
1722
1723 if (domain->ops->domain_set_windows != NULL)
1724 ret = domain->ops->domain_set_windows(domain, *count);
1725 else
1726 ret = -ENODEV;
1727
1728 break;
1729 default:
1730 if (domain->ops->domain_set_attr == NULL)
1731 return -EINVAL;
1732
1733 ret = domain->ops->domain_set_attr(domain, attr, data);
1734 }
1735
1736 return ret;
1737 }
1738 EXPORT_SYMBOL_GPL(iommu_domain_set_attr);
1739
1740 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
1741 {
1742 const struct iommu_ops *ops = dev->bus->iommu_ops;
1743
1744 if (ops && ops->get_resv_regions)
1745 ops->get_resv_regions(dev, list);
1746 }
1747
1748 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
1749 {
1750 const struct iommu_ops *ops = dev->bus->iommu_ops;
1751
1752 if (ops && ops->put_resv_regions)
1753 ops->put_resv_regions(dev, list);
1754 }
1755
1756 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
1757 size_t length,
1758 int prot, int type)
1759 {
1760 struct iommu_resv_region *region;
1761
1762 region = kzalloc(sizeof(*region), GFP_KERNEL);
1763 if (!region)
1764 return NULL;
1765
1766 INIT_LIST_HEAD(&region->list);
1767 region->start = start;
1768 region->length = length;
1769 region->prot = prot;
1770 region->type = type;
1771 return region;
1772 }
1773
1774 /* Request that a device is direct mapped by the IOMMU */
1775 int iommu_request_dm_for_dev(struct device *dev)
1776 {
1777 struct iommu_domain *dm_domain;
1778 struct iommu_group *group;
1779 int ret;
1780
1781 /* Device must already be in a group before calling this function */
1782 group = iommu_group_get_for_dev(dev);
1783 if (IS_ERR(group))
1784 return PTR_ERR(group);
1785
1786 mutex_lock(&group->mutex);
1787
1788 /* Check if the default domain is already direct mapped */
1789 ret = 0;
1790 if (group->default_domain &&
1791 group->default_domain->type == IOMMU_DOMAIN_IDENTITY)
1792 goto out;
1793
1794 /* Don't change mappings of existing devices */
1795 ret = -EBUSY;
1796 if (iommu_group_device_count(group) != 1)
1797 goto out;
1798
1799 /* Allocate a direct mapped domain */
1800 ret = -ENOMEM;
1801 dm_domain = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_IDENTITY);
1802 if (!dm_domain)
1803 goto out;
1804
1805 /* Attach the device to the domain */
1806 ret = __iommu_attach_group(dm_domain, group);
1807 if (ret) {
1808 iommu_domain_free(dm_domain);
1809 goto out;
1810 }
1811
1812 /* Make the direct mapped domain the default for this group */
1813 if (group->default_domain)
1814 iommu_domain_free(group->default_domain);
1815 group->default_domain = dm_domain;
1816
1817 pr_info("Using direct mapping for device %s\n", dev_name(dev));
1818
1819 ret = 0;
1820 out:
1821 mutex_unlock(&group->mutex);
1822 iommu_group_put(group);
1823
1824 return ret;
1825 }
1826
1827 struct iommu_instance {
1828 struct list_head list;
1829 struct fwnode_handle *fwnode;
1830 const struct iommu_ops *ops;
1831 };
1832 static LIST_HEAD(iommu_instance_list);
1833 static DEFINE_SPINLOCK(iommu_instance_lock);
1834
1835 void iommu_register_instance(struct fwnode_handle *fwnode,
1836 const struct iommu_ops *ops)
1837 {
1838 struct iommu_instance *iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1839
1840 if (WARN_ON(!iommu))
1841 return;
1842
1843 of_node_get(to_of_node(fwnode));
1844 INIT_LIST_HEAD(&iommu->list);
1845 iommu->fwnode = fwnode;
1846 iommu->ops = ops;
1847 spin_lock(&iommu_instance_lock);
1848 list_add_tail(&iommu->list, &iommu_instance_list);
1849 spin_unlock(&iommu_instance_lock);
1850 }
1851
1852 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
1853 {
1854 struct iommu_instance *instance;
1855 const struct iommu_ops *ops = NULL;
1856
1857 spin_lock(&iommu_instance_lock);
1858 list_for_each_entry(instance, &iommu_instance_list, list)
1859 if (instance->fwnode == fwnode) {
1860 ops = instance->ops;
1861 break;
1862 }
1863 spin_unlock(&iommu_instance_lock);
1864 return ops;
1865 }
1866
1867 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
1868 const struct iommu_ops *ops)
1869 {
1870 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1871
1872 if (fwspec)
1873 return ops == fwspec->ops ? 0 : -EINVAL;
1874
1875 fwspec = kzalloc(sizeof(*fwspec), GFP_KERNEL);
1876 if (!fwspec)
1877 return -ENOMEM;
1878
1879 of_node_get(to_of_node(iommu_fwnode));
1880 fwspec->iommu_fwnode = iommu_fwnode;
1881 fwspec->ops = ops;
1882 dev->iommu_fwspec = fwspec;
1883 return 0;
1884 }
1885 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
1886
1887 void iommu_fwspec_free(struct device *dev)
1888 {
1889 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1890
1891 if (fwspec) {
1892 fwnode_handle_put(fwspec->iommu_fwnode);
1893 kfree(fwspec);
1894 dev->iommu_fwspec = NULL;
1895 }
1896 }
1897 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
1898
1899 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
1900 {
1901 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1902 size_t size;
1903 int i;
1904
1905 if (!fwspec)
1906 return -EINVAL;
1907
1908 size = offsetof(struct iommu_fwspec, ids[fwspec->num_ids + num_ids]);
1909 if (size > sizeof(*fwspec)) {
1910 fwspec = krealloc(dev->iommu_fwspec, size, GFP_KERNEL);
1911 if (!fwspec)
1912 return -ENOMEM;
1913 }
1914
1915 for (i = 0; i < num_ids; i++)
1916 fwspec->ids[fwspec->num_ids + i] = ids[i];
1917
1918 fwspec->num_ids += num_ids;
1919 dev->iommu_fwspec = fwspec;
1920 return 0;
1921 }
1922 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);