]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/iommu/rockchip-iommu.c
powerpc/perf: Avoid spurious PMU interrupts after idle
[mirror_ubuntu-zesty-kernel.git] / drivers / iommu / rockchip-iommu.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License version 2 as
4 * published by the Free Software Foundation.
5 */
6
7 #include <linux/compiler.h>
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/dma-iommu.h>
11 #include <linux/errno.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/iommu.h>
15 #include <linux/jiffies.h>
16 #include <linux/list.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24
25 /** MMU register offsets */
26 #define RK_MMU_DTE_ADDR 0x00 /* Directory table address */
27 #define RK_MMU_STATUS 0x04
28 #define RK_MMU_COMMAND 0x08
29 #define RK_MMU_PAGE_FAULT_ADDR 0x0C /* IOVA of last page fault */
30 #define RK_MMU_ZAP_ONE_LINE 0x10 /* Shootdown one IOTLB entry */
31 #define RK_MMU_INT_RAWSTAT 0x14 /* IRQ status ignoring mask */
32 #define RK_MMU_INT_CLEAR 0x18 /* Acknowledge and re-arm irq */
33 #define RK_MMU_INT_MASK 0x1C /* IRQ enable */
34 #define RK_MMU_INT_STATUS 0x20 /* IRQ status after masking */
35 #define RK_MMU_AUTO_GATING 0x24
36
37 #define DTE_ADDR_DUMMY 0xCAFEBABE
38 #define FORCE_RESET_TIMEOUT 100 /* ms */
39
40 /* RK_MMU_STATUS fields */
41 #define RK_MMU_STATUS_PAGING_ENABLED BIT(0)
42 #define RK_MMU_STATUS_PAGE_FAULT_ACTIVE BIT(1)
43 #define RK_MMU_STATUS_STALL_ACTIVE BIT(2)
44 #define RK_MMU_STATUS_IDLE BIT(3)
45 #define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY BIT(4)
46 #define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE BIT(5)
47 #define RK_MMU_STATUS_STALL_NOT_ACTIVE BIT(31)
48
49 /* RK_MMU_COMMAND command values */
50 #define RK_MMU_CMD_ENABLE_PAGING 0 /* Enable memory translation */
51 #define RK_MMU_CMD_DISABLE_PAGING 1 /* Disable memory translation */
52 #define RK_MMU_CMD_ENABLE_STALL 2 /* Stall paging to allow other cmds */
53 #define RK_MMU_CMD_DISABLE_STALL 3 /* Stop stall re-enables paging */
54 #define RK_MMU_CMD_ZAP_CACHE 4 /* Shoot down entire IOTLB */
55 #define RK_MMU_CMD_PAGE_FAULT_DONE 5 /* Clear page fault */
56 #define RK_MMU_CMD_FORCE_RESET 6 /* Reset all registers */
57
58 /* RK_MMU_INT_* register fields */
59 #define RK_MMU_IRQ_PAGE_FAULT 0x01 /* page fault */
60 #define RK_MMU_IRQ_BUS_ERROR 0x02 /* bus read error */
61 #define RK_MMU_IRQ_MASK (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
62
63 #define NUM_DT_ENTRIES 1024
64 #define NUM_PT_ENTRIES 1024
65
66 #define SPAGE_ORDER 12
67 #define SPAGE_SIZE (1 << SPAGE_ORDER)
68
69 /*
70 * Support mapping any size that fits in one page table:
71 * 4 KiB to 4 MiB
72 */
73 #define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
74
75 #define IOMMU_REG_POLL_COUNT_FAST 1000
76
77 struct rk_iommu_domain {
78 struct list_head iommus;
79 struct platform_device *pdev;
80 u32 *dt; /* page directory table */
81 dma_addr_t dt_dma;
82 spinlock_t iommus_lock; /* lock for iommus list */
83 spinlock_t dt_lock; /* lock for modifying page directory table */
84
85 struct iommu_domain domain;
86 };
87
88 struct rk_iommu {
89 struct device *dev;
90 void __iomem **bases;
91 int num_mmu;
92 int irq;
93 struct list_head node; /* entry in rk_iommu_domain.iommus */
94 struct iommu_domain *domain; /* domain to which iommu is attached */
95 };
96
97 static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
98 unsigned int count)
99 {
100 size_t size = count * sizeof(u32); /* count of u32 entry */
101
102 dma_sync_single_for_device(&dom->pdev->dev, dma, size, DMA_TO_DEVICE);
103 }
104
105 static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
106 {
107 return container_of(dom, struct rk_iommu_domain, domain);
108 }
109
110 /**
111 * Inspired by _wait_for in intel_drv.h
112 * This is NOT safe for use in interrupt context.
113 *
114 * Note that it's important that we check the condition again after having
115 * timed out, since the timeout could be due to preemption or similar and
116 * we've never had a chance to check the condition before the timeout.
117 */
118 #define rk_wait_for(COND, MS) ({ \
119 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS) + 1; \
120 int ret__ = 0; \
121 while (!(COND)) { \
122 if (time_after(jiffies, timeout__)) { \
123 ret__ = (COND) ? 0 : -ETIMEDOUT; \
124 break; \
125 } \
126 usleep_range(50, 100); \
127 } \
128 ret__; \
129 })
130
131 /*
132 * The Rockchip rk3288 iommu uses a 2-level page table.
133 * The first level is the "Directory Table" (DT).
134 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
135 * to a "Page Table".
136 * The second level is the 1024 Page Tables (PT).
137 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
138 * a 4 KB page of physical memory.
139 *
140 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
141 * Each iommu device has a MMU_DTE_ADDR register that contains the physical
142 * address of the start of the DT page.
143 *
144 * The structure of the page table is as follows:
145 *
146 * DT
147 * MMU_DTE_ADDR -> +-----+
148 * | |
149 * +-----+ PT
150 * | DTE | -> +-----+
151 * +-----+ | | Memory
152 * | | +-----+ Page
153 * | | | PTE | -> +-----+
154 * +-----+ +-----+ | |
155 * | | | |
156 * | | | |
157 * +-----+ | |
158 * | |
159 * | |
160 * +-----+
161 */
162
163 /*
164 * Each DTE has a PT address and a valid bit:
165 * +---------------------+-----------+-+
166 * | PT address | Reserved |V|
167 * +---------------------+-----------+-+
168 * 31:12 - PT address (PTs always starts on a 4 KB boundary)
169 * 11: 1 - Reserved
170 * 0 - 1 if PT @ PT address is valid
171 */
172 #define RK_DTE_PT_ADDRESS_MASK 0xfffff000
173 #define RK_DTE_PT_VALID BIT(0)
174
175 static inline phys_addr_t rk_dte_pt_address(u32 dte)
176 {
177 return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
178 }
179
180 static inline bool rk_dte_is_pt_valid(u32 dte)
181 {
182 return dte & RK_DTE_PT_VALID;
183 }
184
185 static inline u32 rk_mk_dte(dma_addr_t pt_dma)
186 {
187 return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
188 }
189
190 /*
191 * Each PTE has a Page address, some flags and a valid bit:
192 * +---------------------+---+-------+-+
193 * | Page address |Rsv| Flags |V|
194 * +---------------------+---+-------+-+
195 * 31:12 - Page address (Pages always start on a 4 KB boundary)
196 * 11: 9 - Reserved
197 * 8: 1 - Flags
198 * 8 - Read allocate - allocate cache space on read misses
199 * 7 - Read cache - enable cache & prefetch of data
200 * 6 - Write buffer - enable delaying writes on their way to memory
201 * 5 - Write allocate - allocate cache space on write misses
202 * 4 - Write cache - different writes can be merged together
203 * 3 - Override cache attributes
204 * if 1, bits 4-8 control cache attributes
205 * if 0, the system bus defaults are used
206 * 2 - Writable
207 * 1 - Readable
208 * 0 - 1 if Page @ Page address is valid
209 */
210 #define RK_PTE_PAGE_ADDRESS_MASK 0xfffff000
211 #define RK_PTE_PAGE_FLAGS_MASK 0x000001fe
212 #define RK_PTE_PAGE_WRITABLE BIT(2)
213 #define RK_PTE_PAGE_READABLE BIT(1)
214 #define RK_PTE_PAGE_VALID BIT(0)
215
216 static inline phys_addr_t rk_pte_page_address(u32 pte)
217 {
218 return (phys_addr_t)pte & RK_PTE_PAGE_ADDRESS_MASK;
219 }
220
221 static inline bool rk_pte_is_page_valid(u32 pte)
222 {
223 return pte & RK_PTE_PAGE_VALID;
224 }
225
226 /* TODO: set cache flags per prot IOMMU_CACHE */
227 static u32 rk_mk_pte(phys_addr_t page, int prot)
228 {
229 u32 flags = 0;
230 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
231 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
232 page &= RK_PTE_PAGE_ADDRESS_MASK;
233 return page | flags | RK_PTE_PAGE_VALID;
234 }
235
236 static u32 rk_mk_pte_invalid(u32 pte)
237 {
238 return pte & ~RK_PTE_PAGE_VALID;
239 }
240
241 /*
242 * rk3288 iova (IOMMU Virtual Address) format
243 * 31 22.21 12.11 0
244 * +-----------+-----------+-------------+
245 * | DTE index | PTE index | Page offset |
246 * +-----------+-----------+-------------+
247 * 31:22 - DTE index - index of DTE in DT
248 * 21:12 - PTE index - index of PTE in PT @ DTE.pt_address
249 * 11: 0 - Page offset - offset into page @ PTE.page_address
250 */
251 #define RK_IOVA_DTE_MASK 0xffc00000
252 #define RK_IOVA_DTE_SHIFT 22
253 #define RK_IOVA_PTE_MASK 0x003ff000
254 #define RK_IOVA_PTE_SHIFT 12
255 #define RK_IOVA_PAGE_MASK 0x00000fff
256 #define RK_IOVA_PAGE_SHIFT 0
257
258 static u32 rk_iova_dte_index(dma_addr_t iova)
259 {
260 return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
261 }
262
263 static u32 rk_iova_pte_index(dma_addr_t iova)
264 {
265 return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
266 }
267
268 static u32 rk_iova_page_offset(dma_addr_t iova)
269 {
270 return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
271 }
272
273 static u32 rk_iommu_read(void __iomem *base, u32 offset)
274 {
275 return readl(base + offset);
276 }
277
278 static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
279 {
280 writel(value, base + offset);
281 }
282
283 static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
284 {
285 int i;
286
287 for (i = 0; i < iommu->num_mmu; i++)
288 writel(command, iommu->bases[i] + RK_MMU_COMMAND);
289 }
290
291 static void rk_iommu_base_command(void __iomem *base, u32 command)
292 {
293 writel(command, base + RK_MMU_COMMAND);
294 }
295 static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova,
296 size_t size)
297 {
298 int i;
299
300 dma_addr_t iova_end = iova + size;
301 /*
302 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
303 * entire iotlb rather than iterate over individual iovas.
304 */
305 for (i = 0; i < iommu->num_mmu; i++)
306 for (; iova < iova_end; iova += SPAGE_SIZE)
307 rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
308 }
309
310 static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
311 {
312 bool active = true;
313 int i;
314
315 for (i = 0; i < iommu->num_mmu; i++)
316 active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
317 RK_MMU_STATUS_STALL_ACTIVE);
318
319 return active;
320 }
321
322 static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
323 {
324 bool enable = true;
325 int i;
326
327 for (i = 0; i < iommu->num_mmu; i++)
328 enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
329 RK_MMU_STATUS_PAGING_ENABLED);
330
331 return enable;
332 }
333
334 static int rk_iommu_enable_stall(struct rk_iommu *iommu)
335 {
336 int ret, i;
337
338 if (rk_iommu_is_stall_active(iommu))
339 return 0;
340
341 /* Stall can only be enabled if paging is enabled */
342 if (!rk_iommu_is_paging_enabled(iommu))
343 return 0;
344
345 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
346
347 ret = rk_wait_for(rk_iommu_is_stall_active(iommu), 1);
348 if (ret)
349 for (i = 0; i < iommu->num_mmu; i++)
350 dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
351 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
352
353 return ret;
354 }
355
356 static int rk_iommu_disable_stall(struct rk_iommu *iommu)
357 {
358 int ret, i;
359
360 if (!rk_iommu_is_stall_active(iommu))
361 return 0;
362
363 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
364
365 ret = rk_wait_for(!rk_iommu_is_stall_active(iommu), 1);
366 if (ret)
367 for (i = 0; i < iommu->num_mmu; i++)
368 dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
369 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
370
371 return ret;
372 }
373
374 static int rk_iommu_enable_paging(struct rk_iommu *iommu)
375 {
376 int ret, i;
377
378 if (rk_iommu_is_paging_enabled(iommu))
379 return 0;
380
381 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
382
383 ret = rk_wait_for(rk_iommu_is_paging_enabled(iommu), 1);
384 if (ret)
385 for (i = 0; i < iommu->num_mmu; i++)
386 dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
387 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
388
389 return ret;
390 }
391
392 static int rk_iommu_disable_paging(struct rk_iommu *iommu)
393 {
394 int ret, i;
395
396 if (!rk_iommu_is_paging_enabled(iommu))
397 return 0;
398
399 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
400
401 ret = rk_wait_for(!rk_iommu_is_paging_enabled(iommu), 1);
402 if (ret)
403 for (i = 0; i < iommu->num_mmu; i++)
404 dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
405 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
406
407 return ret;
408 }
409
410 static int rk_iommu_force_reset(struct rk_iommu *iommu)
411 {
412 int ret, i;
413 u32 dte_addr;
414
415 /*
416 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
417 * and verifying that upper 5 nybbles are read back.
418 */
419 for (i = 0; i < iommu->num_mmu; i++) {
420 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, DTE_ADDR_DUMMY);
421
422 dte_addr = rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR);
423 if (dte_addr != (DTE_ADDR_DUMMY & RK_DTE_PT_ADDRESS_MASK)) {
424 dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
425 return -EFAULT;
426 }
427 }
428
429 rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
430
431 for (i = 0; i < iommu->num_mmu; i++) {
432 ret = rk_wait_for(rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0x00000000,
433 FORCE_RESET_TIMEOUT);
434 if (ret) {
435 dev_err(iommu->dev, "FORCE_RESET command timed out\n");
436 return ret;
437 }
438 }
439
440 return 0;
441 }
442
443 static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
444 {
445 void __iomem *base = iommu->bases[index];
446 u32 dte_index, pte_index, page_offset;
447 u32 mmu_dte_addr;
448 phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
449 u32 *dte_addr;
450 u32 dte;
451 phys_addr_t pte_addr_phys = 0;
452 u32 *pte_addr = NULL;
453 u32 pte = 0;
454 phys_addr_t page_addr_phys = 0;
455 u32 page_flags = 0;
456
457 dte_index = rk_iova_dte_index(iova);
458 pte_index = rk_iova_pte_index(iova);
459 page_offset = rk_iova_page_offset(iova);
460
461 mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
462 mmu_dte_addr_phys = (phys_addr_t)mmu_dte_addr;
463
464 dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
465 dte_addr = phys_to_virt(dte_addr_phys);
466 dte = *dte_addr;
467
468 if (!rk_dte_is_pt_valid(dte))
469 goto print_it;
470
471 pte_addr_phys = rk_dte_pt_address(dte) + (pte_index * 4);
472 pte_addr = phys_to_virt(pte_addr_phys);
473 pte = *pte_addr;
474
475 if (!rk_pte_is_page_valid(pte))
476 goto print_it;
477
478 page_addr_phys = rk_pte_page_address(pte) + page_offset;
479 page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
480
481 print_it:
482 dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
483 &iova, dte_index, pte_index, page_offset);
484 dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
485 &mmu_dte_addr_phys, &dte_addr_phys, dte,
486 rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
487 rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
488 }
489
490 static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
491 {
492 struct rk_iommu *iommu = dev_id;
493 u32 status;
494 u32 int_status;
495 dma_addr_t iova;
496 irqreturn_t ret = IRQ_NONE;
497 int i;
498
499 for (i = 0; i < iommu->num_mmu; i++) {
500 int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
501 if (int_status == 0)
502 continue;
503
504 ret = IRQ_HANDLED;
505 iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
506
507 if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
508 int flags;
509
510 status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
511 flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
512 IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
513
514 dev_err(iommu->dev, "Page fault at %pad of type %s\n",
515 &iova,
516 (flags == IOMMU_FAULT_WRITE) ? "write" : "read");
517
518 log_iova(iommu, i, iova);
519
520 /*
521 * Report page fault to any installed handlers.
522 * Ignore the return code, though, since we always zap cache
523 * and clear the page fault anyway.
524 */
525 if (iommu->domain)
526 report_iommu_fault(iommu->domain, iommu->dev, iova,
527 flags);
528 else
529 dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
530
531 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
532 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
533 }
534
535 if (int_status & RK_MMU_IRQ_BUS_ERROR)
536 dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
537
538 if (int_status & ~RK_MMU_IRQ_MASK)
539 dev_err(iommu->dev, "unexpected int_status: %#08x\n",
540 int_status);
541
542 rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
543 }
544
545 return ret;
546 }
547
548 static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
549 dma_addr_t iova)
550 {
551 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
552 unsigned long flags;
553 phys_addr_t pt_phys, phys = 0;
554 u32 dte, pte;
555 u32 *page_table;
556
557 spin_lock_irqsave(&rk_domain->dt_lock, flags);
558
559 dte = rk_domain->dt[rk_iova_dte_index(iova)];
560 if (!rk_dte_is_pt_valid(dte))
561 goto out;
562
563 pt_phys = rk_dte_pt_address(dte);
564 page_table = (u32 *)phys_to_virt(pt_phys);
565 pte = page_table[rk_iova_pte_index(iova)];
566 if (!rk_pte_is_page_valid(pte))
567 goto out;
568
569 phys = rk_pte_page_address(pte) + rk_iova_page_offset(iova);
570 out:
571 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
572
573 return phys;
574 }
575
576 static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
577 dma_addr_t iova, size_t size)
578 {
579 struct list_head *pos;
580 unsigned long flags;
581
582 /* shootdown these iova from all iommus using this domain */
583 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
584 list_for_each(pos, &rk_domain->iommus) {
585 struct rk_iommu *iommu;
586 iommu = list_entry(pos, struct rk_iommu, node);
587 rk_iommu_zap_lines(iommu, iova, size);
588 }
589 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
590 }
591
592 static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
593 dma_addr_t iova, size_t size)
594 {
595 rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
596 if (size > SPAGE_SIZE)
597 rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
598 SPAGE_SIZE);
599 }
600
601 static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
602 dma_addr_t iova)
603 {
604 struct device *dev = &rk_domain->pdev->dev;
605 u32 *page_table, *dte_addr;
606 u32 dte_index, dte;
607 phys_addr_t pt_phys;
608 dma_addr_t pt_dma;
609
610 assert_spin_locked(&rk_domain->dt_lock);
611
612 dte_index = rk_iova_dte_index(iova);
613 dte_addr = &rk_domain->dt[dte_index];
614 dte = *dte_addr;
615 if (rk_dte_is_pt_valid(dte))
616 goto done;
617
618 page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
619 if (!page_table)
620 return ERR_PTR(-ENOMEM);
621
622 pt_dma = dma_map_single(dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
623 if (dma_mapping_error(dev, pt_dma)) {
624 dev_err(dev, "DMA mapping error while allocating page table\n");
625 free_page((unsigned long)page_table);
626 return ERR_PTR(-ENOMEM);
627 }
628
629 dte = rk_mk_dte(pt_dma);
630 *dte_addr = dte;
631
632 rk_table_flush(rk_domain, pt_dma, NUM_PT_ENTRIES);
633 rk_table_flush(rk_domain,
634 rk_domain->dt_dma + dte_index * sizeof(u32), 1);
635 done:
636 pt_phys = rk_dte_pt_address(dte);
637 return (u32 *)phys_to_virt(pt_phys);
638 }
639
640 static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
641 u32 *pte_addr, dma_addr_t pte_dma,
642 size_t size)
643 {
644 unsigned int pte_count;
645 unsigned int pte_total = size / SPAGE_SIZE;
646
647 assert_spin_locked(&rk_domain->dt_lock);
648
649 for (pte_count = 0; pte_count < pte_total; pte_count++) {
650 u32 pte = pte_addr[pte_count];
651 if (!rk_pte_is_page_valid(pte))
652 break;
653
654 pte_addr[pte_count] = rk_mk_pte_invalid(pte);
655 }
656
657 rk_table_flush(rk_domain, pte_dma, pte_count);
658
659 return pte_count * SPAGE_SIZE;
660 }
661
662 static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
663 dma_addr_t pte_dma, dma_addr_t iova,
664 phys_addr_t paddr, size_t size, int prot)
665 {
666 unsigned int pte_count;
667 unsigned int pte_total = size / SPAGE_SIZE;
668 phys_addr_t page_phys;
669
670 assert_spin_locked(&rk_domain->dt_lock);
671
672 for (pte_count = 0; pte_count < pte_total; pte_count++) {
673 u32 pte = pte_addr[pte_count];
674
675 if (rk_pte_is_page_valid(pte))
676 goto unwind;
677
678 pte_addr[pte_count] = rk_mk_pte(paddr, prot);
679
680 paddr += SPAGE_SIZE;
681 }
682
683 rk_table_flush(rk_domain, pte_dma, pte_total);
684
685 /*
686 * Zap the first and last iova to evict from iotlb any previously
687 * mapped cachelines holding stale values for its dte and pte.
688 * We only zap the first and last iova, since only they could have
689 * dte or pte shared with an existing mapping.
690 */
691 rk_iommu_zap_iova_first_last(rk_domain, iova, size);
692
693 return 0;
694 unwind:
695 /* Unmap the range of iovas that we just mapped */
696 rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
697 pte_count * SPAGE_SIZE);
698
699 iova += pte_count * SPAGE_SIZE;
700 page_phys = rk_pte_page_address(pte_addr[pte_count]);
701 pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
702 &iova, &page_phys, &paddr, prot);
703
704 return -EADDRINUSE;
705 }
706
707 static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
708 phys_addr_t paddr, size_t size, int prot)
709 {
710 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
711 unsigned long flags;
712 dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
713 u32 *page_table, *pte_addr;
714 u32 dte_index, pte_index;
715 int ret;
716
717 spin_lock_irqsave(&rk_domain->dt_lock, flags);
718
719 /*
720 * pgsize_bitmap specifies iova sizes that fit in one page table
721 * (1024 4-KiB pages = 4 MiB).
722 * So, size will always be 4096 <= size <= 4194304.
723 * Since iommu_map() guarantees that both iova and size will be
724 * aligned, we will always only be mapping from a single dte here.
725 */
726 page_table = rk_dte_get_page_table(rk_domain, iova);
727 if (IS_ERR(page_table)) {
728 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
729 return PTR_ERR(page_table);
730 }
731
732 dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
733 pte_index = rk_iova_pte_index(iova);
734 pte_addr = &page_table[pte_index];
735 pte_dma = rk_dte_pt_address(dte_index) + pte_index * sizeof(u32);
736 ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
737 paddr, size, prot);
738
739 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
740
741 return ret;
742 }
743
744 static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
745 size_t size)
746 {
747 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
748 unsigned long flags;
749 dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
750 phys_addr_t pt_phys;
751 u32 dte;
752 u32 *pte_addr;
753 size_t unmap_size;
754
755 spin_lock_irqsave(&rk_domain->dt_lock, flags);
756
757 /*
758 * pgsize_bitmap specifies iova sizes that fit in one page table
759 * (1024 4-KiB pages = 4 MiB).
760 * So, size will always be 4096 <= size <= 4194304.
761 * Since iommu_unmap() guarantees that both iova and size will be
762 * aligned, we will always only be unmapping from a single dte here.
763 */
764 dte = rk_domain->dt[rk_iova_dte_index(iova)];
765 /* Just return 0 if iova is unmapped */
766 if (!rk_dte_is_pt_valid(dte)) {
767 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
768 return 0;
769 }
770
771 pt_phys = rk_dte_pt_address(dte);
772 pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
773 pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
774 unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
775
776 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
777
778 /* Shootdown iotlb entries for iova range that was just unmapped */
779 rk_iommu_zap_iova(rk_domain, iova, unmap_size);
780
781 return unmap_size;
782 }
783
784 static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
785 {
786 struct iommu_group *group;
787 struct device *iommu_dev;
788 struct rk_iommu *rk_iommu;
789
790 group = iommu_group_get(dev);
791 if (!group)
792 return NULL;
793 iommu_dev = iommu_group_get_iommudata(group);
794 rk_iommu = dev_get_drvdata(iommu_dev);
795 iommu_group_put(group);
796
797 return rk_iommu;
798 }
799
800 static int rk_iommu_attach_device(struct iommu_domain *domain,
801 struct device *dev)
802 {
803 struct rk_iommu *iommu;
804 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
805 unsigned long flags;
806 int ret, i;
807
808 /*
809 * Allow 'virtual devices' (e.g., drm) to attach to domain.
810 * Such a device does not belong to an iommu group.
811 */
812 iommu = rk_iommu_from_dev(dev);
813 if (!iommu)
814 return 0;
815
816 ret = rk_iommu_enable_stall(iommu);
817 if (ret)
818 return ret;
819
820 ret = rk_iommu_force_reset(iommu);
821 if (ret)
822 return ret;
823
824 iommu->domain = domain;
825
826 ret = devm_request_irq(iommu->dev, iommu->irq, rk_iommu_irq,
827 IRQF_SHARED, dev_name(dev), iommu);
828 if (ret)
829 return ret;
830
831 for (i = 0; i < iommu->num_mmu; i++) {
832 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
833 rk_domain->dt_dma);
834 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
835 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
836 }
837
838 ret = rk_iommu_enable_paging(iommu);
839 if (ret)
840 return ret;
841
842 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
843 list_add_tail(&iommu->node, &rk_domain->iommus);
844 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
845
846 dev_dbg(dev, "Attached to iommu domain\n");
847
848 rk_iommu_disable_stall(iommu);
849
850 return 0;
851 }
852
853 static void rk_iommu_detach_device(struct iommu_domain *domain,
854 struct device *dev)
855 {
856 struct rk_iommu *iommu;
857 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
858 unsigned long flags;
859 int i;
860
861 /* Allow 'virtual devices' (eg drm) to detach from domain */
862 iommu = rk_iommu_from_dev(dev);
863 if (!iommu)
864 return;
865
866 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
867 list_del_init(&iommu->node);
868 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
869
870 /* Ignore error while disabling, just keep going */
871 rk_iommu_enable_stall(iommu);
872 rk_iommu_disable_paging(iommu);
873 for (i = 0; i < iommu->num_mmu; i++) {
874 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
875 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
876 }
877 rk_iommu_disable_stall(iommu);
878
879 devm_free_irq(iommu->dev, iommu->irq, iommu);
880
881 iommu->domain = NULL;
882
883 dev_dbg(dev, "Detached from iommu domain\n");
884 }
885
886 static struct iommu_domain *rk_iommu_domain_alloc(unsigned type)
887 {
888 struct rk_iommu_domain *rk_domain;
889 struct platform_device *pdev;
890 struct device *iommu_dev;
891
892 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
893 return NULL;
894
895 /* Register a pdev per domain, so DMA API can base on this *dev
896 * even some virtual master doesn't have an iommu slave
897 */
898 pdev = platform_device_register_simple("rk_iommu_domain",
899 PLATFORM_DEVID_AUTO, NULL, 0);
900 if (IS_ERR(pdev))
901 return NULL;
902
903 rk_domain = devm_kzalloc(&pdev->dev, sizeof(*rk_domain), GFP_KERNEL);
904 if (!rk_domain)
905 goto err_unreg_pdev;
906
907 rk_domain->pdev = pdev;
908
909 if (type == IOMMU_DOMAIN_DMA &&
910 iommu_get_dma_cookie(&rk_domain->domain))
911 goto err_unreg_pdev;
912
913 /*
914 * rk32xx iommus use a 2 level pagetable.
915 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
916 * Allocate one 4 KiB page for each table.
917 */
918 rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32);
919 if (!rk_domain->dt)
920 goto err_put_cookie;
921
922 iommu_dev = &pdev->dev;
923 rk_domain->dt_dma = dma_map_single(iommu_dev, rk_domain->dt,
924 SPAGE_SIZE, DMA_TO_DEVICE);
925 if (dma_mapping_error(iommu_dev, rk_domain->dt_dma)) {
926 dev_err(iommu_dev, "DMA map error for DT\n");
927 goto err_free_dt;
928 }
929
930 rk_table_flush(rk_domain, rk_domain->dt_dma, NUM_DT_ENTRIES);
931
932 spin_lock_init(&rk_domain->iommus_lock);
933 spin_lock_init(&rk_domain->dt_lock);
934 INIT_LIST_HEAD(&rk_domain->iommus);
935
936 rk_domain->domain.geometry.aperture_start = 0;
937 rk_domain->domain.geometry.aperture_end = DMA_BIT_MASK(32);
938 rk_domain->domain.geometry.force_aperture = true;
939
940 return &rk_domain->domain;
941
942 err_free_dt:
943 free_page((unsigned long)rk_domain->dt);
944 err_put_cookie:
945 if (type == IOMMU_DOMAIN_DMA)
946 iommu_put_dma_cookie(&rk_domain->domain);
947 err_unreg_pdev:
948 platform_device_unregister(pdev);
949
950 return NULL;
951 }
952
953 static void rk_iommu_domain_free(struct iommu_domain *domain)
954 {
955 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
956 int i;
957
958 WARN_ON(!list_empty(&rk_domain->iommus));
959
960 for (i = 0; i < NUM_DT_ENTRIES; i++) {
961 u32 dte = rk_domain->dt[i];
962 if (rk_dte_is_pt_valid(dte)) {
963 phys_addr_t pt_phys = rk_dte_pt_address(dte);
964 u32 *page_table = phys_to_virt(pt_phys);
965 dma_unmap_single(&rk_domain->pdev->dev, pt_phys,
966 SPAGE_SIZE, DMA_TO_DEVICE);
967 free_page((unsigned long)page_table);
968 }
969 }
970
971 dma_unmap_single(&rk_domain->pdev->dev, rk_domain->dt_dma,
972 SPAGE_SIZE, DMA_TO_DEVICE);
973 free_page((unsigned long)rk_domain->dt);
974
975 if (domain->type == IOMMU_DOMAIN_DMA)
976 iommu_put_dma_cookie(&rk_domain->domain);
977
978 platform_device_unregister(rk_domain->pdev);
979 }
980
981 static bool rk_iommu_is_dev_iommu_master(struct device *dev)
982 {
983 struct device_node *np = dev->of_node;
984 int ret;
985
986 /*
987 * An iommu master has an iommus property containing a list of phandles
988 * to iommu nodes, each with an #iommu-cells property with value 0.
989 */
990 ret = of_count_phandle_with_args(np, "iommus", "#iommu-cells");
991 return (ret > 0);
992 }
993
994 static int rk_iommu_group_set_iommudata(struct iommu_group *group,
995 struct device *dev)
996 {
997 struct device_node *np = dev->of_node;
998 struct platform_device *pd;
999 int ret;
1000 struct of_phandle_args args;
1001
1002 /*
1003 * An iommu master has an iommus property containing a list of phandles
1004 * to iommu nodes, each with an #iommu-cells property with value 0.
1005 */
1006 ret = of_parse_phandle_with_args(np, "iommus", "#iommu-cells", 0,
1007 &args);
1008 if (ret) {
1009 dev_err(dev, "of_parse_phandle_with_args(%s) => %d\n",
1010 np->full_name, ret);
1011 return ret;
1012 }
1013 if (args.args_count != 0) {
1014 dev_err(dev, "incorrect number of iommu params found for %s (found %d, expected 0)\n",
1015 args.np->full_name, args.args_count);
1016 return -EINVAL;
1017 }
1018
1019 pd = of_find_device_by_node(args.np);
1020 of_node_put(args.np);
1021 if (!pd) {
1022 dev_err(dev, "iommu %s not found\n", args.np->full_name);
1023 return -EPROBE_DEFER;
1024 }
1025
1026 /* TODO(djkurtz): handle multiple slave iommus for a single master */
1027 iommu_group_set_iommudata(group, &pd->dev, NULL);
1028
1029 return 0;
1030 }
1031
1032 static int rk_iommu_add_device(struct device *dev)
1033 {
1034 struct iommu_group *group;
1035 int ret;
1036
1037 if (!rk_iommu_is_dev_iommu_master(dev))
1038 return -ENODEV;
1039
1040 group = iommu_group_get(dev);
1041 if (!group) {
1042 group = iommu_group_alloc();
1043 if (IS_ERR(group)) {
1044 dev_err(dev, "Failed to allocate IOMMU group\n");
1045 return PTR_ERR(group);
1046 }
1047 }
1048
1049 ret = iommu_group_add_device(group, dev);
1050 if (ret)
1051 goto err_put_group;
1052
1053 ret = rk_iommu_group_set_iommudata(group, dev);
1054 if (ret)
1055 goto err_remove_device;
1056
1057 iommu_group_put(group);
1058
1059 return 0;
1060
1061 err_remove_device:
1062 iommu_group_remove_device(dev);
1063 err_put_group:
1064 iommu_group_put(group);
1065 return ret;
1066 }
1067
1068 static void rk_iommu_remove_device(struct device *dev)
1069 {
1070 if (!rk_iommu_is_dev_iommu_master(dev))
1071 return;
1072
1073 iommu_group_remove_device(dev);
1074 }
1075
1076 static const struct iommu_ops rk_iommu_ops = {
1077 .domain_alloc = rk_iommu_domain_alloc,
1078 .domain_free = rk_iommu_domain_free,
1079 .attach_dev = rk_iommu_attach_device,
1080 .detach_dev = rk_iommu_detach_device,
1081 .map = rk_iommu_map,
1082 .unmap = rk_iommu_unmap,
1083 .map_sg = default_iommu_map_sg,
1084 .add_device = rk_iommu_add_device,
1085 .remove_device = rk_iommu_remove_device,
1086 .iova_to_phys = rk_iommu_iova_to_phys,
1087 .pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1088 };
1089
1090 static int rk_iommu_domain_probe(struct platform_device *pdev)
1091 {
1092 struct device *dev = &pdev->dev;
1093
1094 dev->dma_parms = devm_kzalloc(dev, sizeof(*dev->dma_parms), GFP_KERNEL);
1095 if (!dev->dma_parms)
1096 return -ENOMEM;
1097
1098 /* Set dma_ops for dev, otherwise it would be dummy_dma_ops */
1099 arch_setup_dma_ops(dev, 0, DMA_BIT_MASK(32), NULL, false);
1100
1101 dma_set_max_seg_size(dev, DMA_BIT_MASK(32));
1102 dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(32));
1103
1104 return 0;
1105 }
1106
1107 static struct platform_driver rk_iommu_domain_driver = {
1108 .probe = rk_iommu_domain_probe,
1109 .driver = {
1110 .name = "rk_iommu_domain",
1111 },
1112 };
1113
1114 static int rk_iommu_probe(struct platform_device *pdev)
1115 {
1116 struct device *dev = &pdev->dev;
1117 struct rk_iommu *iommu;
1118 struct resource *res;
1119 int num_res = pdev->num_resources;
1120 int i;
1121
1122 iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1123 if (!iommu)
1124 return -ENOMEM;
1125
1126 platform_set_drvdata(pdev, iommu);
1127 iommu->dev = dev;
1128 iommu->num_mmu = 0;
1129
1130 iommu->bases = devm_kzalloc(dev, sizeof(*iommu->bases) * num_res,
1131 GFP_KERNEL);
1132 if (!iommu->bases)
1133 return -ENOMEM;
1134
1135 for (i = 0; i < num_res; i++) {
1136 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1137 if (!res)
1138 continue;
1139 iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1140 if (IS_ERR(iommu->bases[i]))
1141 continue;
1142 iommu->num_mmu++;
1143 }
1144 if (iommu->num_mmu == 0)
1145 return PTR_ERR(iommu->bases[0]);
1146
1147 iommu->irq = platform_get_irq(pdev, 0);
1148 if (iommu->irq < 0) {
1149 dev_err(dev, "Failed to get IRQ, %d\n", iommu->irq);
1150 return -ENXIO;
1151 }
1152
1153 return 0;
1154 }
1155
1156 static int rk_iommu_remove(struct platform_device *pdev)
1157 {
1158 return 0;
1159 }
1160
1161 static const struct of_device_id rk_iommu_dt_ids[] = {
1162 { .compatible = "rockchip,iommu" },
1163 { /* sentinel */ }
1164 };
1165 MODULE_DEVICE_TABLE(of, rk_iommu_dt_ids);
1166
1167 static struct platform_driver rk_iommu_driver = {
1168 .probe = rk_iommu_probe,
1169 .remove = rk_iommu_remove,
1170 .driver = {
1171 .name = "rk_iommu",
1172 .of_match_table = rk_iommu_dt_ids,
1173 },
1174 };
1175
1176 static int __init rk_iommu_init(void)
1177 {
1178 struct device_node *np;
1179 int ret;
1180
1181 np = of_find_matching_node(NULL, rk_iommu_dt_ids);
1182 if (!np)
1183 return 0;
1184
1185 of_node_put(np);
1186
1187 ret = bus_set_iommu(&platform_bus_type, &rk_iommu_ops);
1188 if (ret)
1189 return ret;
1190
1191 ret = platform_driver_register(&rk_iommu_domain_driver);
1192 if (ret)
1193 return ret;
1194
1195 ret = platform_driver_register(&rk_iommu_driver);
1196 if (ret)
1197 platform_driver_unregister(&rk_iommu_domain_driver);
1198 return ret;
1199 }
1200 static void __exit rk_iommu_exit(void)
1201 {
1202 platform_driver_unregister(&rk_iommu_driver);
1203 platform_driver_unregister(&rk_iommu_domain_driver);
1204 }
1205
1206 subsys_initcall(rk_iommu_init);
1207 module_exit(rk_iommu_exit);
1208
1209 MODULE_DESCRIPTION("IOMMU API for Rockchip");
1210 MODULE_AUTHOR("Simon Xue <xxm@rock-chips.com> and Daniel Kurtz <djkurtz@chromium.org>");
1211 MODULE_ALIAS("platform:rockchip-iommu");
1212 MODULE_LICENSE("GPL v2");