]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - drivers/media/dvb-frontends/l64781.c
ASoC: ep93xx-ac97: Fix platform_get_irq's error checking
[mirror_ubuntu-disco-kernel.git] / drivers / media / dvb-frontends / l64781.c
1 /*
2 driver for LSI L64781 COFDM demodulator
3
4 Copyright (C) 2001 Holger Waechtler for Convergence Integrated Media GmbH
5 Marko Kohtala <marko.kohtala@luukku.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20
21 */
22
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/string.h>
27 #include <linux/slab.h>
28 #include "dvb_frontend.h"
29 #include "l64781.h"
30
31
32 struct l64781_state {
33 struct i2c_adapter* i2c;
34 const struct l64781_config* config;
35 struct dvb_frontend frontend;
36
37 /* private demodulator data */
38 unsigned int first:1;
39 };
40
41 #define dprintk(args...) \
42 do { \
43 if (debug) printk(KERN_DEBUG "l64781: " args); \
44 } while (0)
45
46 static int debug;
47
48 module_param(debug, int, 0644);
49 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
50
51
52 static int l64781_writereg (struct l64781_state* state, u8 reg, u8 data)
53 {
54 int ret;
55 u8 buf [] = { reg, data };
56 struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
57
58 if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
59 dprintk ("%s: write_reg error (reg == %02x) = %02x!\n",
60 __func__, reg, ret);
61
62 return (ret != 1) ? -1 : 0;
63 }
64
65 static int l64781_readreg (struct l64781_state* state, u8 reg)
66 {
67 int ret;
68 u8 b0 [] = { reg };
69 u8 b1 [] = { 0 };
70 struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
71 { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } };
72
73 ret = i2c_transfer(state->i2c, msg, 2);
74
75 if (ret != 2) return ret;
76
77 return b1[0];
78 }
79
80 static void apply_tps (struct l64781_state* state)
81 {
82 l64781_writereg (state, 0x2a, 0x00);
83 l64781_writereg (state, 0x2a, 0x01);
84
85 /* This here is a little bit questionable because it enables
86 the automatic update of TPS registers. I think we'd need to
87 handle the IRQ from FE to update some other registers as
88 well, or at least implement some magic to tuning to correct
89 to the TPS received from transmission. */
90 l64781_writereg (state, 0x2a, 0x02);
91 }
92
93
94 static void reset_afc (struct l64781_state* state)
95 {
96 /* Set AFC stall for the AFC_INIT_FRQ setting, TIM_STALL for
97 timing offset */
98 l64781_writereg (state, 0x07, 0x9e); /* stall AFC */
99 l64781_writereg (state, 0x08, 0); /* AFC INIT FREQ */
100 l64781_writereg (state, 0x09, 0);
101 l64781_writereg (state, 0x0a, 0);
102 l64781_writereg (state, 0x07, 0x8e);
103 l64781_writereg (state, 0x0e, 0); /* AGC gain to zero in beginning */
104 l64781_writereg (state, 0x11, 0x80); /* stall TIM */
105 l64781_writereg (state, 0x10, 0); /* TIM_OFFSET_LSB */
106 l64781_writereg (state, 0x12, 0);
107 l64781_writereg (state, 0x13, 0);
108 l64781_writereg (state, 0x11, 0x00);
109 }
110
111 static int reset_and_configure (struct l64781_state* state)
112 {
113 u8 buf [] = { 0x06 };
114 struct i2c_msg msg = { .addr = 0x00, .flags = 0, .buf = buf, .len = 1 };
115 // NOTE: this is correct in writing to address 0x00
116
117 return (i2c_transfer(state->i2c, &msg, 1) == 1) ? 0 : -ENODEV;
118 }
119
120 static int apply_frontend_param(struct dvb_frontend *fe)
121 {
122 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
123 struct l64781_state* state = fe->demodulator_priv;
124 /* The coderates for FEC_NONE, FEC_4_5 and FEC_FEC_6_7 are arbitrary */
125 static const u8 fec_tab[] = { 7, 0, 1, 2, 9, 3, 10, 4 };
126 /* QPSK, QAM_16, QAM_64 */
127 static const u8 qam_tab [] = { 2, 4, 0, 6 };
128 static const u8 guard_tab [] = { 1, 2, 4, 8 };
129 /* The Grundig 29504-401.04 Tuner comes with 18.432MHz crystal. */
130 static const u32 ppm = 8000;
131 u32 ddfs_offset_fixed;
132 /* u32 ddfs_offset_variable = 0x6000-((1000000UL+ppm)/ */
133 /* bw_tab[p->bandWidth]<<10)/15625; */
134 u32 init_freq;
135 u32 spi_bias;
136 u8 val0x04;
137 u8 val0x05;
138 u8 val0x06;
139 int bw;
140
141 switch (p->bandwidth_hz) {
142 case 8000000:
143 bw = 8;
144 break;
145 case 7000000:
146 bw = 7;
147 break;
148 case 6000000:
149 bw = 6;
150 break;
151 default:
152 return -EINVAL;
153 }
154
155 if (fe->ops.tuner_ops.set_params) {
156 fe->ops.tuner_ops.set_params(fe);
157 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
158 }
159
160 if (p->inversion != INVERSION_ON &&
161 p->inversion != INVERSION_OFF)
162 return -EINVAL;
163
164 if (p->code_rate_HP != FEC_1_2 && p->code_rate_HP != FEC_2_3 &&
165 p->code_rate_HP != FEC_3_4 && p->code_rate_HP != FEC_5_6 &&
166 p->code_rate_HP != FEC_7_8)
167 return -EINVAL;
168
169 if (p->hierarchy != HIERARCHY_NONE &&
170 (p->code_rate_LP != FEC_1_2 && p->code_rate_LP != FEC_2_3 &&
171 p->code_rate_LP != FEC_3_4 && p->code_rate_LP != FEC_5_6 &&
172 p->code_rate_LP != FEC_7_8))
173 return -EINVAL;
174
175 if (p->modulation != QPSK && p->modulation != QAM_16 &&
176 p->modulation != QAM_64)
177 return -EINVAL;
178
179 if (p->transmission_mode != TRANSMISSION_MODE_2K &&
180 p->transmission_mode != TRANSMISSION_MODE_8K)
181 return -EINVAL;
182
183 if ((int)p->guard_interval < GUARD_INTERVAL_1_32 ||
184 p->guard_interval > GUARD_INTERVAL_1_4)
185 return -EINVAL;
186
187 if ((int)p->hierarchy < HIERARCHY_NONE ||
188 p->hierarchy > HIERARCHY_4)
189 return -EINVAL;
190
191 ddfs_offset_fixed = 0x4000-(ppm<<16)/bw/1000000;
192
193 /* This works up to 20000 ppm, it overflows if too large ppm! */
194 init_freq = (((8UL<<25) + (8UL<<19) / 25*ppm / (15625/25)) /
195 bw & 0xFFFFFF);
196
197 /* SPI bias calculation is slightly modified to fit in 32bit */
198 /* will work for high ppm only... */
199 spi_bias = 378 * (1 << 10);
200 spi_bias *= 16;
201 spi_bias *= bw;
202 spi_bias *= qam_tab[p->modulation];
203 spi_bias /= p->code_rate_HP + 1;
204 spi_bias /= (guard_tab[p->guard_interval] + 32);
205 spi_bias *= 1000;
206 spi_bias /= 1000 + ppm/1000;
207 spi_bias *= p->code_rate_HP;
208
209 val0x04 = (p->transmission_mode << 2) | p->guard_interval;
210 val0x05 = fec_tab[p->code_rate_HP];
211
212 if (p->hierarchy != HIERARCHY_NONE)
213 val0x05 |= (p->code_rate_LP - FEC_1_2) << 3;
214
215 val0x06 = (p->hierarchy << 2) | p->modulation;
216
217 l64781_writereg (state, 0x04, val0x04);
218 l64781_writereg (state, 0x05, val0x05);
219 l64781_writereg (state, 0x06, val0x06);
220
221 reset_afc (state);
222
223 /* Technical manual section 2.6.1, TIM_IIR_GAIN optimal values */
224 l64781_writereg (state, 0x15,
225 p->transmission_mode == TRANSMISSION_MODE_2K ? 1 : 3);
226 l64781_writereg (state, 0x16, init_freq & 0xff);
227 l64781_writereg (state, 0x17, (init_freq >> 8) & 0xff);
228 l64781_writereg (state, 0x18, (init_freq >> 16) & 0xff);
229
230 l64781_writereg (state, 0x1b, spi_bias & 0xff);
231 l64781_writereg (state, 0x1c, (spi_bias >> 8) & 0xff);
232 l64781_writereg (state, 0x1d, ((spi_bias >> 16) & 0x7f) |
233 (p->inversion == INVERSION_ON ? 0x80 : 0x00));
234
235 l64781_writereg (state, 0x22, ddfs_offset_fixed & 0xff);
236 l64781_writereg (state, 0x23, (ddfs_offset_fixed >> 8) & 0x3f);
237
238 l64781_readreg (state, 0x00); /* clear interrupt registers... */
239 l64781_readreg (state, 0x01); /* dto. */
240
241 apply_tps (state);
242
243 return 0;
244 }
245
246 static int get_frontend(struct dvb_frontend *fe,
247 struct dtv_frontend_properties *p)
248 {
249 struct l64781_state* state = fe->demodulator_priv;
250 int tmp;
251
252
253 tmp = l64781_readreg(state, 0x04);
254 switch(tmp & 3) {
255 case 0:
256 p->guard_interval = GUARD_INTERVAL_1_32;
257 break;
258 case 1:
259 p->guard_interval = GUARD_INTERVAL_1_16;
260 break;
261 case 2:
262 p->guard_interval = GUARD_INTERVAL_1_8;
263 break;
264 case 3:
265 p->guard_interval = GUARD_INTERVAL_1_4;
266 break;
267 }
268 switch((tmp >> 2) & 3) {
269 case 0:
270 p->transmission_mode = TRANSMISSION_MODE_2K;
271 break;
272 case 1:
273 p->transmission_mode = TRANSMISSION_MODE_8K;
274 break;
275 default:
276 printk(KERN_WARNING "Unexpected value for transmission_mode\n");
277 }
278
279 tmp = l64781_readreg(state, 0x05);
280 switch(tmp & 7) {
281 case 0:
282 p->code_rate_HP = FEC_1_2;
283 break;
284 case 1:
285 p->code_rate_HP = FEC_2_3;
286 break;
287 case 2:
288 p->code_rate_HP = FEC_3_4;
289 break;
290 case 3:
291 p->code_rate_HP = FEC_5_6;
292 break;
293 case 4:
294 p->code_rate_HP = FEC_7_8;
295 break;
296 default:
297 printk("Unexpected value for code_rate_HP\n");
298 }
299 switch((tmp >> 3) & 7) {
300 case 0:
301 p->code_rate_LP = FEC_1_2;
302 break;
303 case 1:
304 p->code_rate_LP = FEC_2_3;
305 break;
306 case 2:
307 p->code_rate_LP = FEC_3_4;
308 break;
309 case 3:
310 p->code_rate_LP = FEC_5_6;
311 break;
312 case 4:
313 p->code_rate_LP = FEC_7_8;
314 break;
315 default:
316 printk("Unexpected value for code_rate_LP\n");
317 }
318
319 tmp = l64781_readreg(state, 0x06);
320 switch(tmp & 3) {
321 case 0:
322 p->modulation = QPSK;
323 break;
324 case 1:
325 p->modulation = QAM_16;
326 break;
327 case 2:
328 p->modulation = QAM_64;
329 break;
330 default:
331 printk(KERN_WARNING "Unexpected value for modulation\n");
332 }
333 switch((tmp >> 2) & 7) {
334 case 0:
335 p->hierarchy = HIERARCHY_NONE;
336 break;
337 case 1:
338 p->hierarchy = HIERARCHY_1;
339 break;
340 case 2:
341 p->hierarchy = HIERARCHY_2;
342 break;
343 case 3:
344 p->hierarchy = HIERARCHY_4;
345 break;
346 default:
347 printk("Unexpected value for hierarchy\n");
348 }
349
350
351 tmp = l64781_readreg (state, 0x1d);
352 p->inversion = (tmp & 0x80) ? INVERSION_ON : INVERSION_OFF;
353
354 tmp = (int) (l64781_readreg (state, 0x08) |
355 (l64781_readreg (state, 0x09) << 8) |
356 (l64781_readreg (state, 0x0a) << 16));
357 p->frequency += tmp;
358
359 return 0;
360 }
361
362 static int l64781_read_status(struct dvb_frontend *fe, enum fe_status *status)
363 {
364 struct l64781_state* state = fe->demodulator_priv;
365 int sync = l64781_readreg (state, 0x32);
366 int gain = l64781_readreg (state, 0x0e);
367
368 l64781_readreg (state, 0x00); /* clear interrupt registers... */
369 l64781_readreg (state, 0x01); /* dto. */
370
371 *status = 0;
372
373 if (gain > 5)
374 *status |= FE_HAS_SIGNAL;
375
376 if (sync & 0x02) /* VCXO locked, this criteria should be ok */
377 *status |= FE_HAS_CARRIER;
378
379 if (sync & 0x20)
380 *status |= FE_HAS_VITERBI;
381
382 if (sync & 0x40)
383 *status |= FE_HAS_SYNC;
384
385 if (sync == 0x7f)
386 *status |= FE_HAS_LOCK;
387
388 return 0;
389 }
390
391 static int l64781_read_ber(struct dvb_frontend* fe, u32* ber)
392 {
393 struct l64781_state* state = fe->demodulator_priv;
394
395 /* XXX FIXME: set up counting period (reg 0x26...0x28)
396 */
397 *ber = l64781_readreg (state, 0x39)
398 | (l64781_readreg (state, 0x3a) << 8);
399
400 return 0;
401 }
402
403 static int l64781_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
404 {
405 struct l64781_state* state = fe->demodulator_priv;
406
407 u8 gain = l64781_readreg (state, 0x0e);
408 *signal_strength = (gain << 8) | gain;
409
410 return 0;
411 }
412
413 static int l64781_read_snr(struct dvb_frontend* fe, u16* snr)
414 {
415 struct l64781_state* state = fe->demodulator_priv;
416
417 u8 avg_quality = 0xff - l64781_readreg (state, 0x33);
418 *snr = (avg_quality << 8) | avg_quality; /* not exact, but...*/
419
420 return 0;
421 }
422
423 static int l64781_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
424 {
425 struct l64781_state* state = fe->demodulator_priv;
426
427 *ucblocks = l64781_readreg (state, 0x37)
428 | (l64781_readreg (state, 0x38) << 8);
429
430 return 0;
431 }
432
433 static int l64781_sleep(struct dvb_frontend* fe)
434 {
435 struct l64781_state* state = fe->demodulator_priv;
436
437 /* Power down */
438 return l64781_writereg (state, 0x3e, 0x5a);
439 }
440
441 static int l64781_init(struct dvb_frontend* fe)
442 {
443 struct l64781_state* state = fe->demodulator_priv;
444
445 reset_and_configure (state);
446
447 /* Power up */
448 l64781_writereg (state, 0x3e, 0xa5);
449
450 /* Reset hard */
451 l64781_writereg (state, 0x2a, 0x04);
452 l64781_writereg (state, 0x2a, 0x00);
453
454 /* Set tuner specific things */
455 /* AFC_POL, set also in reset_afc */
456 l64781_writereg (state, 0x07, 0x8e);
457
458 /* Use internal ADC */
459 l64781_writereg (state, 0x0b, 0x81);
460
461 /* AGC loop gain, and polarity is positive */
462 l64781_writereg (state, 0x0c, 0x84);
463
464 /* Internal ADC outputs two's complement */
465 l64781_writereg (state, 0x0d, 0x8c);
466
467 /* With ppm=8000, it seems the DTR_SENSITIVITY will result in
468 value of 2 with all possible bandwidths and guard
469 intervals, which is the initial value anyway. */
470 /*l64781_writereg (state, 0x19, 0x92);*/
471
472 /* Everything is two's complement, soft bit and CSI_OUT too */
473 l64781_writereg (state, 0x1e, 0x09);
474
475 /* delay a bit after first init attempt */
476 if (state->first) {
477 state->first = 0;
478 msleep(200);
479 }
480
481 return 0;
482 }
483
484 static int l64781_get_tune_settings(struct dvb_frontend* fe,
485 struct dvb_frontend_tune_settings* fesettings)
486 {
487 fesettings->min_delay_ms = 4000;
488 fesettings->step_size = 0;
489 fesettings->max_drift = 0;
490 return 0;
491 }
492
493 static void l64781_release(struct dvb_frontend* fe)
494 {
495 struct l64781_state* state = fe->demodulator_priv;
496 kfree(state);
497 }
498
499 static const struct dvb_frontend_ops l64781_ops;
500
501 struct dvb_frontend* l64781_attach(const struct l64781_config* config,
502 struct i2c_adapter* i2c)
503 {
504 struct l64781_state* state = NULL;
505 int reg0x3e = -1;
506 u8 b0 [] = { 0x1a };
507 u8 b1 [] = { 0x00 };
508 struct i2c_msg msg [] = { { .addr = config->demod_address, .flags = 0, .buf = b0, .len = 1 },
509 { .addr = config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } };
510
511 /* allocate memory for the internal state */
512 state = kzalloc(sizeof(struct l64781_state), GFP_KERNEL);
513 if (state == NULL) goto error;
514
515 /* setup the state */
516 state->config = config;
517 state->i2c = i2c;
518 state->first = 1;
519
520 /**
521 * the L64781 won't show up before we send the reset_and_configure()
522 * broadcast. If nothing responds there is no L64781 on the bus...
523 */
524 if (reset_and_configure(state) < 0) {
525 dprintk("No response to reset and configure broadcast...\n");
526 goto error;
527 }
528
529 /* The chip always responds to reads */
530 if (i2c_transfer(state->i2c, msg, 2) != 2) {
531 dprintk("No response to read on I2C bus\n");
532 goto error;
533 }
534
535 /* Save current register contents for bailout */
536 reg0x3e = l64781_readreg(state, 0x3e);
537
538 /* Reading the POWER_DOWN register always returns 0 */
539 if (reg0x3e != 0) {
540 dprintk("Device doesn't look like L64781\n");
541 goto error;
542 }
543
544 /* Turn the chip off */
545 l64781_writereg (state, 0x3e, 0x5a);
546
547 /* Responds to all reads with 0 */
548 if (l64781_readreg(state, 0x1a) != 0) {
549 dprintk("Read 1 returned unexpcted value\n");
550 goto error;
551 }
552
553 /* Turn the chip on */
554 l64781_writereg (state, 0x3e, 0xa5);
555
556 /* Responds with register default value */
557 if (l64781_readreg(state, 0x1a) != 0xa1) {
558 dprintk("Read 2 returned unexpcted value\n");
559 goto error;
560 }
561
562 /* create dvb_frontend */
563 memcpy(&state->frontend.ops, &l64781_ops, sizeof(struct dvb_frontend_ops));
564 state->frontend.demodulator_priv = state;
565 return &state->frontend;
566
567 error:
568 if (reg0x3e >= 0)
569 l64781_writereg (state, 0x3e, reg0x3e); /* restore reg 0x3e */
570 kfree(state);
571 return NULL;
572 }
573
574 static const struct dvb_frontend_ops l64781_ops = {
575 .delsys = { SYS_DVBT },
576 .info = {
577 .name = "LSI L64781 DVB-T",
578 /* .frequency_min = ???,*/
579 /* .frequency_max = ???,*/
580 .frequency_stepsize = 166666,
581 /* .frequency_tolerance = ???,*/
582 /* .symbol_rate_tolerance = ???,*/
583 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
584 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
585 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 |
586 FE_CAN_MUTE_TS
587 },
588
589 .release = l64781_release,
590
591 .init = l64781_init,
592 .sleep = l64781_sleep,
593
594 .set_frontend = apply_frontend_param,
595 .get_frontend = get_frontend,
596 .get_tune_settings = l64781_get_tune_settings,
597
598 .read_status = l64781_read_status,
599 .read_ber = l64781_read_ber,
600 .read_signal_strength = l64781_read_signal_strength,
601 .read_snr = l64781_read_snr,
602 .read_ucblocks = l64781_read_ucblocks,
603 };
604
605 MODULE_DESCRIPTION("LSI L64781 DVB-T Demodulator driver");
606 MODULE_AUTHOR("Holger Waechtler, Marko Kohtala");
607 MODULE_LICENSE("GPL");
608
609 EXPORT_SYMBOL(l64781_attach);