]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - drivers/net/ethernet/hisilicon/hns/hns_enet.c
Merge remote-tracking branches 'asoc/fix/amd', 'asoc/fix/arizona', 'asoc/fix/dpcm...
[mirror_ubuntu-disco-kernel.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 /*
2 * Copyright (c) 2014-2015 Hisilicon Limited.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 */
9
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22
23 #include "hnae.h"
24 #include "hns_enet.h"
25
26 #define NIC_MAX_Q_PER_VF 16
27 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
28
29 #define SERVICE_TIMER_HZ (1 * HZ)
30
31 #define NIC_TX_CLEAN_MAX_NUM 256
32 #define NIC_RX_CLEAN_MAX_NUM 64
33
34 #define RCB_IRQ_NOT_INITED 0
35 #define RCB_IRQ_INITED 1
36 #define HNS_BUFFER_SIZE_2048 2048
37
38 #define BD_MAX_SEND_SIZE 8191
39 #define SKB_TMP_LEN(SKB) \
40 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
41
42 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
43 int size, dma_addr_t dma, int frag_end,
44 int buf_num, enum hns_desc_type type, int mtu)
45 {
46 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
47 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
48 struct iphdr *iphdr;
49 struct ipv6hdr *ipv6hdr;
50 struct sk_buff *skb;
51 int skb_tmp_len;
52 __be16 protocol;
53 u8 bn_pid = 0;
54 u8 rrcfv = 0;
55 u8 ip_offset = 0;
56 u8 tvsvsn = 0;
57 u16 mss = 0;
58 u8 l4_len = 0;
59 u16 paylen = 0;
60
61 desc_cb->priv = priv;
62 desc_cb->length = size;
63 desc_cb->dma = dma;
64 desc_cb->type = type;
65
66 desc->addr = cpu_to_le64(dma);
67 desc->tx.send_size = cpu_to_le16((u16)size);
68
69 /*config bd buffer end */
70 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
71 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
72
73 if (type == DESC_TYPE_SKB) {
74 skb = (struct sk_buff *)priv;
75
76 if (skb->ip_summed == CHECKSUM_PARTIAL) {
77 skb_reset_mac_len(skb);
78 protocol = skb->protocol;
79 ip_offset = ETH_HLEN;
80
81 if (protocol == htons(ETH_P_8021Q)) {
82 ip_offset += VLAN_HLEN;
83 protocol = vlan_get_protocol(skb);
84 skb->protocol = protocol;
85 }
86
87 if (skb->protocol == htons(ETH_P_IP)) {
88 iphdr = ip_hdr(skb);
89 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
90 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
91
92 /* check for tcp/udp header */
93 if (iphdr->protocol == IPPROTO_TCP) {
94 hnae_set_bit(tvsvsn,
95 HNSV2_TXD_TSE_B, 1);
96 skb_tmp_len = SKB_TMP_LEN(skb);
97 l4_len = tcp_hdrlen(skb);
98 mss = mtu - skb_tmp_len - ETH_FCS_LEN;
99 paylen = skb->len - skb_tmp_len;
100 }
101 } else if (skb->protocol == htons(ETH_P_IPV6)) {
102 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
103 ipv6hdr = ipv6_hdr(skb);
104 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
105
106 /* check for tcp/udp header */
107 if (ipv6hdr->nexthdr == IPPROTO_TCP) {
108 hnae_set_bit(tvsvsn,
109 HNSV2_TXD_TSE_B, 1);
110 skb_tmp_len = SKB_TMP_LEN(skb);
111 l4_len = tcp_hdrlen(skb);
112 mss = mtu - skb_tmp_len - ETH_FCS_LEN;
113 paylen = skb->len - skb_tmp_len;
114 }
115 }
116 desc->tx.ip_offset = ip_offset;
117 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
118 desc->tx.mss = cpu_to_le16(mss);
119 desc->tx.l4_len = l4_len;
120 desc->tx.paylen = cpu_to_le16(paylen);
121 }
122 }
123
124 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
125
126 desc->tx.bn_pid = bn_pid;
127 desc->tx.ra_ri_cs_fe_vld = rrcfv;
128
129 ring_ptr_move_fw(ring, next_to_use);
130 }
131
132 static void fill_desc(struct hnae_ring *ring, void *priv,
133 int size, dma_addr_t dma, int frag_end,
134 int buf_num, enum hns_desc_type type, int mtu)
135 {
136 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
137 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
138 struct sk_buff *skb;
139 __be16 protocol;
140 u32 ip_offset;
141 u32 asid_bufnum_pid = 0;
142 u32 flag_ipoffset = 0;
143
144 desc_cb->priv = priv;
145 desc_cb->length = size;
146 desc_cb->dma = dma;
147 desc_cb->type = type;
148
149 desc->addr = cpu_to_le64(dma);
150 desc->tx.send_size = cpu_to_le16((u16)size);
151
152 /*config bd buffer end */
153 flag_ipoffset |= 1 << HNS_TXD_VLD_B;
154
155 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
156
157 if (type == DESC_TYPE_SKB) {
158 skb = (struct sk_buff *)priv;
159
160 if (skb->ip_summed == CHECKSUM_PARTIAL) {
161 protocol = skb->protocol;
162 ip_offset = ETH_HLEN;
163
164 /*if it is a SW VLAN check the next protocol*/
165 if (protocol == htons(ETH_P_8021Q)) {
166 ip_offset += VLAN_HLEN;
167 protocol = vlan_get_protocol(skb);
168 skb->protocol = protocol;
169 }
170
171 if (skb->protocol == htons(ETH_P_IP)) {
172 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
173 /* check for tcp/udp header */
174 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
175
176 } else if (skb->protocol == htons(ETH_P_IPV6)) {
177 /* ipv6 has not l3 cs, check for L4 header */
178 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
179 }
180
181 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
182 }
183 }
184
185 flag_ipoffset |= frag_end << HNS_TXD_FE_B;
186
187 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
188 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
189
190 ring_ptr_move_fw(ring, next_to_use);
191 }
192
193 static void unfill_desc(struct hnae_ring *ring)
194 {
195 ring_ptr_move_bw(ring, next_to_use);
196 }
197
198 static int hns_nic_maybe_stop_tx(
199 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
200 {
201 struct sk_buff *skb = *out_skb;
202 struct sk_buff *new_skb = NULL;
203 int buf_num;
204
205 /* no. of segments (plus a header) */
206 buf_num = skb_shinfo(skb)->nr_frags + 1;
207
208 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
209 if (ring_space(ring) < 1)
210 return -EBUSY;
211
212 new_skb = skb_copy(skb, GFP_ATOMIC);
213 if (!new_skb)
214 return -ENOMEM;
215
216 dev_kfree_skb_any(skb);
217 *out_skb = new_skb;
218 buf_num = 1;
219 } else if (buf_num > ring_space(ring)) {
220 return -EBUSY;
221 }
222
223 *bnum = buf_num;
224 return 0;
225 }
226
227 static int hns_nic_maybe_stop_tso(
228 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
229 {
230 int i;
231 int size;
232 int buf_num;
233 int frag_num;
234 struct sk_buff *skb = *out_skb;
235 struct sk_buff *new_skb = NULL;
236 struct skb_frag_struct *frag;
237
238 size = skb_headlen(skb);
239 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
240
241 frag_num = skb_shinfo(skb)->nr_frags;
242 for (i = 0; i < frag_num; i++) {
243 frag = &skb_shinfo(skb)->frags[i];
244 size = skb_frag_size(frag);
245 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
246 }
247
248 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
249 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
250 if (ring_space(ring) < buf_num)
251 return -EBUSY;
252 /* manual split the send packet */
253 new_skb = skb_copy(skb, GFP_ATOMIC);
254 if (!new_skb)
255 return -ENOMEM;
256 dev_kfree_skb_any(skb);
257 *out_skb = new_skb;
258
259 } else if (ring_space(ring) < buf_num) {
260 return -EBUSY;
261 }
262
263 *bnum = buf_num;
264 return 0;
265 }
266
267 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
268 int size, dma_addr_t dma, int frag_end,
269 int buf_num, enum hns_desc_type type, int mtu)
270 {
271 int frag_buf_num;
272 int sizeoflast;
273 int k;
274
275 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
276 sizeoflast = size % BD_MAX_SEND_SIZE;
277 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
278
279 /* when the frag size is bigger than hardware, split this frag */
280 for (k = 0; k < frag_buf_num; k++)
281 fill_v2_desc(ring, priv,
282 (k == frag_buf_num - 1) ?
283 sizeoflast : BD_MAX_SEND_SIZE,
284 dma + BD_MAX_SEND_SIZE * k,
285 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
286 buf_num,
287 (type == DESC_TYPE_SKB && !k) ?
288 DESC_TYPE_SKB : DESC_TYPE_PAGE,
289 mtu);
290 }
291
292 int hns_nic_net_xmit_hw(struct net_device *ndev,
293 struct sk_buff *skb,
294 struct hns_nic_ring_data *ring_data)
295 {
296 struct hns_nic_priv *priv = netdev_priv(ndev);
297 struct device *dev = priv->dev;
298 struct hnae_ring *ring = ring_data->ring;
299 struct netdev_queue *dev_queue;
300 struct skb_frag_struct *frag;
301 int buf_num;
302 int seg_num;
303 dma_addr_t dma;
304 int size, next_to_use;
305 int i;
306
307 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
308 case -EBUSY:
309 ring->stats.tx_busy++;
310 goto out_net_tx_busy;
311 case -ENOMEM:
312 ring->stats.sw_err_cnt++;
313 netdev_err(ndev, "no memory to xmit!\n");
314 goto out_err_tx_ok;
315 default:
316 break;
317 }
318
319 /* no. of segments (plus a header) */
320 seg_num = skb_shinfo(skb)->nr_frags + 1;
321 next_to_use = ring->next_to_use;
322
323 /* fill the first part */
324 size = skb_headlen(skb);
325 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
326 if (dma_mapping_error(dev, dma)) {
327 netdev_err(ndev, "TX head DMA map failed\n");
328 ring->stats.sw_err_cnt++;
329 goto out_err_tx_ok;
330 }
331 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
332 buf_num, DESC_TYPE_SKB, ndev->mtu);
333
334 /* fill the fragments */
335 for (i = 1; i < seg_num; i++) {
336 frag = &skb_shinfo(skb)->frags[i - 1];
337 size = skb_frag_size(frag);
338 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
339 if (dma_mapping_error(dev, dma)) {
340 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
341 ring->stats.sw_err_cnt++;
342 goto out_map_frag_fail;
343 }
344 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
345 seg_num - 1 == i ? 1 : 0, buf_num,
346 DESC_TYPE_PAGE, ndev->mtu);
347 }
348
349 /*complete translate all packets*/
350 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
351 netdev_tx_sent_queue(dev_queue, skb->len);
352
353 wmb(); /* commit all data before submit */
354 assert(skb->queue_mapping < priv->ae_handle->q_num);
355 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
356 ring->stats.tx_pkts++;
357 ring->stats.tx_bytes += skb->len;
358
359 return NETDEV_TX_OK;
360
361 out_map_frag_fail:
362
363 while (ring->next_to_use != next_to_use) {
364 unfill_desc(ring);
365 if (ring->next_to_use != next_to_use)
366 dma_unmap_page(dev,
367 ring->desc_cb[ring->next_to_use].dma,
368 ring->desc_cb[ring->next_to_use].length,
369 DMA_TO_DEVICE);
370 else
371 dma_unmap_single(dev,
372 ring->desc_cb[next_to_use].dma,
373 ring->desc_cb[next_to_use].length,
374 DMA_TO_DEVICE);
375 }
376
377 out_err_tx_ok:
378
379 dev_kfree_skb_any(skb);
380 return NETDEV_TX_OK;
381
382 out_net_tx_busy:
383
384 netif_stop_subqueue(ndev, skb->queue_mapping);
385
386 /* Herbert's original patch had:
387 * smp_mb__after_netif_stop_queue();
388 * but since that doesn't exist yet, just open code it.
389 */
390 smp_mb();
391 return NETDEV_TX_BUSY;
392 }
393
394 /**
395 * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
396 * @data: pointer to the start of the headers
397 * @max: total length of section to find headers in
398 *
399 * This function is meant to determine the length of headers that will
400 * be recognized by hardware for LRO, GRO, and RSC offloads. The main
401 * motivation of doing this is to only perform one pull for IPv4 TCP
402 * packets so that we can do basic things like calculating the gso_size
403 * based on the average data per packet.
404 **/
405 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
406 unsigned int max_size)
407 {
408 unsigned char *network;
409 u8 hlen;
410
411 /* this should never happen, but better safe than sorry */
412 if (max_size < ETH_HLEN)
413 return max_size;
414
415 /* initialize network frame pointer */
416 network = data;
417
418 /* set first protocol and move network header forward */
419 network += ETH_HLEN;
420
421 /* handle any vlan tag if present */
422 if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
423 == HNS_RX_FLAG_VLAN_PRESENT) {
424 if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
425 return max_size;
426
427 network += VLAN_HLEN;
428 }
429
430 /* handle L3 protocols */
431 if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
432 == HNS_RX_FLAG_L3ID_IPV4) {
433 if ((typeof(max_size))(network - data) >
434 (max_size - sizeof(struct iphdr)))
435 return max_size;
436
437 /* access ihl as a u8 to avoid unaligned access on ia64 */
438 hlen = (network[0] & 0x0F) << 2;
439
440 /* verify hlen meets minimum size requirements */
441 if (hlen < sizeof(struct iphdr))
442 return network - data;
443
444 /* record next protocol if header is present */
445 } else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
446 == HNS_RX_FLAG_L3ID_IPV6) {
447 if ((typeof(max_size))(network - data) >
448 (max_size - sizeof(struct ipv6hdr)))
449 return max_size;
450
451 /* record next protocol */
452 hlen = sizeof(struct ipv6hdr);
453 } else {
454 return network - data;
455 }
456
457 /* relocate pointer to start of L4 header */
458 network += hlen;
459
460 /* finally sort out TCP/UDP */
461 if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
462 == HNS_RX_FLAG_L4ID_TCP) {
463 if ((typeof(max_size))(network - data) >
464 (max_size - sizeof(struct tcphdr)))
465 return max_size;
466
467 /* access doff as a u8 to avoid unaligned access on ia64 */
468 hlen = (network[12] & 0xF0) >> 2;
469
470 /* verify hlen meets minimum size requirements */
471 if (hlen < sizeof(struct tcphdr))
472 return network - data;
473
474 network += hlen;
475 } else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
476 == HNS_RX_FLAG_L4ID_UDP) {
477 if ((typeof(max_size))(network - data) >
478 (max_size - sizeof(struct udphdr)))
479 return max_size;
480
481 network += sizeof(struct udphdr);
482 }
483
484 /* If everything has gone correctly network should be the
485 * data section of the packet and will be the end of the header.
486 * If not then it probably represents the end of the last recognized
487 * header.
488 */
489 if ((typeof(max_size))(network - data) < max_size)
490 return network - data;
491 else
492 return max_size;
493 }
494
495 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
496 struct hnae_ring *ring, int pull_len,
497 struct hnae_desc_cb *desc_cb)
498 {
499 struct hnae_desc *desc;
500 int truesize, size;
501 int last_offset;
502 bool twobufs;
503
504 twobufs = ((PAGE_SIZE < 8192) && hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
505
506 desc = &ring->desc[ring->next_to_clean];
507 size = le16_to_cpu(desc->rx.size);
508
509 if (twobufs) {
510 truesize = hnae_buf_size(ring);
511 } else {
512 truesize = ALIGN(size, L1_CACHE_BYTES);
513 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
514 }
515
516 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
517 size - pull_len, truesize - pull_len);
518
519 /* avoid re-using remote pages,flag default unreuse */
520 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
521 return;
522
523 if (twobufs) {
524 /* if we are only owner of page we can reuse it */
525 if (likely(page_count(desc_cb->priv) == 1)) {
526 /* flip page offset to other buffer */
527 desc_cb->page_offset ^= truesize;
528
529 desc_cb->reuse_flag = 1;
530 /* bump ref count on page before it is given*/
531 get_page(desc_cb->priv);
532 }
533 return;
534 }
535
536 /* move offset up to the next cache line */
537 desc_cb->page_offset += truesize;
538
539 if (desc_cb->page_offset <= last_offset) {
540 desc_cb->reuse_flag = 1;
541 /* bump ref count on page before it is given*/
542 get_page(desc_cb->priv);
543 }
544 }
545
546 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
547 {
548 *out_bnum = hnae_get_field(bnum_flag,
549 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
550 }
551
552 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
553 {
554 *out_bnum = hnae_get_field(bnum_flag,
555 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
556 }
557
558 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
559 struct sk_buff **out_skb, int *out_bnum)
560 {
561 struct hnae_ring *ring = ring_data->ring;
562 struct net_device *ndev = ring_data->napi.dev;
563 struct hns_nic_priv *priv = netdev_priv(ndev);
564 struct sk_buff *skb;
565 struct hnae_desc *desc;
566 struct hnae_desc_cb *desc_cb;
567 unsigned char *va;
568 int bnum, length, i;
569 int pull_len;
570 u32 bnum_flag;
571
572 desc = &ring->desc[ring->next_to_clean];
573 desc_cb = &ring->desc_cb[ring->next_to_clean];
574
575 prefetch(desc);
576
577 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
578
579 /* prefetch first cache line of first page */
580 prefetch(va);
581 #if L1_CACHE_BYTES < 128
582 prefetch(va + L1_CACHE_BYTES);
583 #endif
584
585 skb = *out_skb = napi_alloc_skb(&ring_data->napi,
586 HNS_RX_HEAD_SIZE);
587 if (unlikely(!skb)) {
588 netdev_err(ndev, "alloc rx skb fail\n");
589 ring->stats.sw_err_cnt++;
590 return -ENOMEM;
591 }
592
593 prefetchw(skb->data);
594 length = le16_to_cpu(desc->rx.pkt_len);
595 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
596 priv->ops.get_rxd_bnum(bnum_flag, &bnum);
597 *out_bnum = bnum;
598
599 if (length <= HNS_RX_HEAD_SIZE) {
600 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
601
602 /* we can reuse buffer as-is, just make sure it is local */
603 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
604 desc_cb->reuse_flag = 1;
605 else /* this page cannot be reused so discard it */
606 put_page(desc_cb->priv);
607
608 ring_ptr_move_fw(ring, next_to_clean);
609
610 if (unlikely(bnum != 1)) { /* check err*/
611 *out_bnum = 1;
612 goto out_bnum_err;
613 }
614 } else {
615 ring->stats.seg_pkt_cnt++;
616
617 pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
618 memcpy(__skb_put(skb, pull_len), va,
619 ALIGN(pull_len, sizeof(long)));
620
621 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
622 ring_ptr_move_fw(ring, next_to_clean);
623
624 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
625 *out_bnum = 1;
626 goto out_bnum_err;
627 }
628 for (i = 1; i < bnum; i++) {
629 desc = &ring->desc[ring->next_to_clean];
630 desc_cb = &ring->desc_cb[ring->next_to_clean];
631
632 hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
633 ring_ptr_move_fw(ring, next_to_clean);
634 }
635 }
636
637 /* check except process, free skb and jump the desc */
638 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
639 out_bnum_err:
640 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
641 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
642 bnum, ring->max_desc_num_per_pkt,
643 length, (int)MAX_SKB_FRAGS,
644 ((u64 *)desc)[0], ((u64 *)desc)[1]);
645 ring->stats.err_bd_num++;
646 dev_kfree_skb_any(skb);
647 return -EDOM;
648 }
649
650 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
651
652 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
653 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
654 ((u64 *)desc)[0], ((u64 *)desc)[1]);
655 ring->stats.non_vld_descs++;
656 dev_kfree_skb_any(skb);
657 return -EINVAL;
658 }
659
660 if (unlikely((!desc->rx.pkt_len) ||
661 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
662 ring->stats.err_pkt_len++;
663 dev_kfree_skb_any(skb);
664 return -EFAULT;
665 }
666
667 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
668 ring->stats.l2_err++;
669 dev_kfree_skb_any(skb);
670 return -EFAULT;
671 }
672
673 ring->stats.rx_pkts++;
674 ring->stats.rx_bytes += skb->len;
675
676 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L3E_B) ||
677 hnae_get_bit(bnum_flag, HNS_RXD_L4E_B))) {
678 ring->stats.l3l4_csum_err++;
679 return 0;
680 }
681
682 skb->ip_summed = CHECKSUM_UNNECESSARY;
683
684 return 0;
685 }
686
687 static void
688 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
689 {
690 int i, ret;
691 struct hnae_desc_cb res_cbs;
692 struct hnae_desc_cb *desc_cb;
693 struct hnae_ring *ring = ring_data->ring;
694 struct net_device *ndev = ring_data->napi.dev;
695
696 for (i = 0; i < cleand_count; i++) {
697 desc_cb = &ring->desc_cb[ring->next_to_use];
698 if (desc_cb->reuse_flag) {
699 ring->stats.reuse_pg_cnt++;
700 hnae_reuse_buffer(ring, ring->next_to_use);
701 } else {
702 ret = hnae_reserve_buffer_map(ring, &res_cbs);
703 if (ret) {
704 ring->stats.sw_err_cnt++;
705 netdev_err(ndev, "hnae reserve buffer map failed.\n");
706 break;
707 }
708 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
709 }
710
711 ring_ptr_move_fw(ring, next_to_use);
712 }
713
714 wmb(); /* make all data has been write before submit */
715 writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
716 }
717
718 /* return error number for error or number of desc left to take
719 */
720 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
721 struct sk_buff *skb)
722 {
723 struct net_device *ndev = ring_data->napi.dev;
724
725 skb->protocol = eth_type_trans(skb, ndev);
726 (void)napi_gro_receive(&ring_data->napi, skb);
727 ndev->last_rx = jiffies;
728 }
729
730 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
731 int budget, void *v)
732 {
733 struct hnae_ring *ring = ring_data->ring;
734 struct sk_buff *skb;
735 int num, bnum, ex_num;
736 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
737 int recv_pkts, recv_bds, clean_count, err;
738
739 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
740 rmb(); /* make sure num taken effect before the other data is touched */
741
742 recv_pkts = 0, recv_bds = 0, clean_count = 0;
743 recv:
744 while (recv_pkts < budget && recv_bds < num) {
745 /* reuse or realloc buffers*/
746 if (clean_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
747 hns_nic_alloc_rx_buffers(ring_data, clean_count);
748 clean_count = 0;
749 }
750
751 /* poll one pkg*/
752 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
753 if (unlikely(!skb)) /* this fault cannot be repaired */
754 break;
755
756 recv_bds += bnum;
757 clean_count += bnum;
758 if (unlikely(err)) { /* do jump the err */
759 recv_pkts++;
760 continue;
761 }
762
763 /* do update ip stack process*/
764 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
765 ring_data, skb);
766 recv_pkts++;
767 }
768
769 /* make all data has been write before submit */
770 if (recv_pkts < budget) {
771 ex_num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
772
773 if (ex_num > clean_count) {
774 num += ex_num - clean_count;
775 rmb(); /*complete read rx ring bd number*/
776 goto recv;
777 }
778 }
779
780 /* make all data has been write before submit */
781 if (clean_count > 0)
782 hns_nic_alloc_rx_buffers(ring_data, clean_count);
783
784 return recv_pkts;
785 }
786
787 static void hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
788 {
789 struct hnae_ring *ring = ring_data->ring;
790 int num = 0;
791
792 /* for hardware bug fixed */
793 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
794
795 if (num > 0) {
796 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
797 ring_data->ring, 1);
798
799 napi_schedule(&ring_data->napi);
800 }
801 }
802
803 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
804 int *bytes, int *pkts)
805 {
806 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
807
808 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
809 (*bytes) += desc_cb->length;
810 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
811 hnae_free_buffer_detach(ring, ring->next_to_clean);
812
813 ring_ptr_move_fw(ring, next_to_clean);
814 }
815
816 static int is_valid_clean_head(struct hnae_ring *ring, int h)
817 {
818 int u = ring->next_to_use;
819 int c = ring->next_to_clean;
820
821 if (unlikely(h > ring->desc_num))
822 return 0;
823
824 assert(u > 0 && u < ring->desc_num);
825 assert(c > 0 && c < ring->desc_num);
826 assert(u != c && h != c); /* must be checked before call this func */
827
828 return u > c ? (h > c && h <= u) : (h > c || h <= u);
829 }
830
831 /* netif_tx_lock will turn down the performance, set only when necessary */
832 #ifdef CONFIG_NET_POLL_CONTROLLER
833 #define NETIF_TX_LOCK(ndev) netif_tx_lock(ndev)
834 #define NETIF_TX_UNLOCK(ndev) netif_tx_unlock(ndev)
835 #else
836 #define NETIF_TX_LOCK(ndev)
837 #define NETIF_TX_UNLOCK(ndev)
838 #endif
839 /* reclaim all desc in one budget
840 * return error or number of desc left
841 */
842 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
843 int budget, void *v)
844 {
845 struct hnae_ring *ring = ring_data->ring;
846 struct net_device *ndev = ring_data->napi.dev;
847 struct netdev_queue *dev_queue;
848 struct hns_nic_priv *priv = netdev_priv(ndev);
849 int head;
850 int bytes, pkts;
851
852 NETIF_TX_LOCK(ndev);
853
854 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
855 rmb(); /* make sure head is ready before touch any data */
856
857 if (is_ring_empty(ring) || head == ring->next_to_clean) {
858 NETIF_TX_UNLOCK(ndev);
859 return 0; /* no data to poll */
860 }
861
862 if (!is_valid_clean_head(ring, head)) {
863 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
864 ring->next_to_use, ring->next_to_clean);
865 ring->stats.io_err_cnt++;
866 NETIF_TX_UNLOCK(ndev);
867 return -EIO;
868 }
869
870 bytes = 0;
871 pkts = 0;
872 while (head != ring->next_to_clean) {
873 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
874 /* issue prefetch for next Tx descriptor */
875 prefetch(&ring->desc_cb[ring->next_to_clean]);
876 }
877
878 NETIF_TX_UNLOCK(ndev);
879
880 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
881 netdev_tx_completed_queue(dev_queue, pkts, bytes);
882
883 if (unlikely(priv->link && !netif_carrier_ok(ndev)))
884 netif_carrier_on(ndev);
885
886 if (unlikely(pkts && netif_carrier_ok(ndev) &&
887 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
888 /* Make sure that anybody stopping the queue after this
889 * sees the new next_to_clean.
890 */
891 smp_mb();
892 if (netif_tx_queue_stopped(dev_queue) &&
893 !test_bit(NIC_STATE_DOWN, &priv->state)) {
894 netif_tx_wake_queue(dev_queue);
895 ring->stats.restart_queue++;
896 }
897 }
898 return 0;
899 }
900
901 static void hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
902 {
903 struct hnae_ring *ring = ring_data->ring;
904 int head = ring->next_to_clean;
905
906 /* for hardware bug fixed */
907 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
908
909 if (head != ring->next_to_clean) {
910 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
911 ring_data->ring, 1);
912
913 napi_schedule(&ring_data->napi);
914 }
915 }
916
917 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
918 {
919 struct hnae_ring *ring = ring_data->ring;
920 struct net_device *ndev = ring_data->napi.dev;
921 struct netdev_queue *dev_queue;
922 int head;
923 int bytes, pkts;
924
925 NETIF_TX_LOCK(ndev);
926
927 head = ring->next_to_use; /* ntu :soft setted ring position*/
928 bytes = 0;
929 pkts = 0;
930 while (head != ring->next_to_clean)
931 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
932
933 NETIF_TX_UNLOCK(ndev);
934
935 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
936 netdev_tx_reset_queue(dev_queue);
937 }
938
939 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
940 {
941 struct hns_nic_ring_data *ring_data =
942 container_of(napi, struct hns_nic_ring_data, napi);
943 int clean_complete = ring_data->poll_one(
944 ring_data, budget, ring_data->ex_process);
945
946 if (clean_complete >= 0 && clean_complete < budget) {
947 napi_complete(napi);
948 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
949 ring_data->ring, 0);
950
951 ring_data->fini_process(ring_data);
952 return 0;
953 }
954
955 return clean_complete;
956 }
957
958 static irqreturn_t hns_irq_handle(int irq, void *dev)
959 {
960 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
961
962 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
963 ring_data->ring, 1);
964 napi_schedule(&ring_data->napi);
965
966 return IRQ_HANDLED;
967 }
968
969 /**
970 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
971 *@ndev: net device
972 */
973 static void hns_nic_adjust_link(struct net_device *ndev)
974 {
975 struct hns_nic_priv *priv = netdev_priv(ndev);
976 struct hnae_handle *h = priv->ae_handle;
977
978 h->dev->ops->adjust_link(h, ndev->phydev->speed, ndev->phydev->duplex);
979 }
980
981 /**
982 *hns_nic_init_phy - init phy
983 *@ndev: net device
984 *@h: ae handle
985 * Return 0 on success, negative on failure
986 */
987 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
988 {
989 struct hns_nic_priv *priv = netdev_priv(ndev);
990 struct phy_device *phy_dev = NULL;
991
992 if (!h->phy_node)
993 return 0;
994
995 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
996 phy_dev = of_phy_connect(ndev, h->phy_node,
997 hns_nic_adjust_link, 0, h->phy_if);
998 else
999 phy_dev = of_phy_attach(ndev, h->phy_node, 0, h->phy_if);
1000
1001 if (unlikely(!phy_dev) || IS_ERR(phy_dev))
1002 return !phy_dev ? -ENODEV : PTR_ERR(phy_dev);
1003
1004 phy_dev->supported &= h->if_support;
1005 phy_dev->advertising = phy_dev->supported;
1006
1007 if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1008 phy_dev->autoneg = false;
1009
1010 priv->phy = phy_dev;
1011
1012 return 0;
1013 }
1014
1015 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1016 {
1017 struct hns_nic_priv *priv = netdev_priv(netdev);
1018 struct hnae_handle *h = priv->ae_handle;
1019
1020 napi_enable(&priv->ring_data[idx].napi);
1021
1022 enable_irq(priv->ring_data[idx].ring->irq);
1023 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1024
1025 return 0;
1026 }
1027
1028 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1029 {
1030 struct hns_nic_priv *priv = netdev_priv(ndev);
1031 struct hnae_handle *h = priv->ae_handle;
1032 struct sockaddr *mac_addr = p;
1033 int ret;
1034
1035 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1036 return -EADDRNOTAVAIL;
1037
1038 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1039 if (ret) {
1040 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1041 return ret;
1042 }
1043
1044 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1045
1046 return 0;
1047 }
1048
1049 void hns_nic_update_stats(struct net_device *netdev)
1050 {
1051 struct hns_nic_priv *priv = netdev_priv(netdev);
1052 struct hnae_handle *h = priv->ae_handle;
1053
1054 h->dev->ops->update_stats(h, &netdev->stats);
1055 }
1056
1057 /* set mac addr if it is configed. or leave it to the AE driver */
1058 static void hns_init_mac_addr(struct net_device *ndev)
1059 {
1060 struct hns_nic_priv *priv = netdev_priv(ndev);
1061 struct device_node *node = priv->dev->of_node;
1062 const void *mac_addr_temp;
1063
1064 mac_addr_temp = of_get_mac_address(node);
1065 if (mac_addr_temp && is_valid_ether_addr(mac_addr_temp)) {
1066 memcpy(ndev->dev_addr, mac_addr_temp, ndev->addr_len);
1067 } else {
1068 eth_hw_addr_random(ndev);
1069 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1070 ndev->dev_addr);
1071 }
1072 }
1073
1074 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1075 {
1076 struct hns_nic_priv *priv = netdev_priv(netdev);
1077 struct hnae_handle *h = priv->ae_handle;
1078
1079 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1080 disable_irq(priv->ring_data[idx].ring->irq);
1081
1082 napi_disable(&priv->ring_data[idx].napi);
1083 }
1084
1085 static void hns_set_irq_affinity(struct hns_nic_priv *priv)
1086 {
1087 struct hnae_handle *h = priv->ae_handle;
1088 struct hns_nic_ring_data *rd;
1089 int i;
1090 int cpu;
1091 cpumask_t mask;
1092
1093 /*diffrent irq banlance for 16core and 32core*/
1094 if (h->q_num == num_possible_cpus()) {
1095 for (i = 0; i < h->q_num * 2; i++) {
1096 rd = &priv->ring_data[i];
1097 if (cpu_online(rd->queue_index)) {
1098 cpumask_clear(&mask);
1099 cpu = rd->queue_index;
1100 cpumask_set_cpu(cpu, &mask);
1101 (void)irq_set_affinity_hint(rd->ring->irq,
1102 &mask);
1103 }
1104 }
1105 } else {
1106 for (i = 0; i < h->q_num; i++) {
1107 rd = &priv->ring_data[i];
1108 if (cpu_online(rd->queue_index * 2)) {
1109 cpumask_clear(&mask);
1110 cpu = rd->queue_index * 2;
1111 cpumask_set_cpu(cpu, &mask);
1112 (void)irq_set_affinity_hint(rd->ring->irq,
1113 &mask);
1114 }
1115 }
1116
1117 for (i = h->q_num; i < h->q_num * 2; i++) {
1118 rd = &priv->ring_data[i];
1119 if (cpu_online(rd->queue_index * 2 + 1)) {
1120 cpumask_clear(&mask);
1121 cpu = rd->queue_index * 2 + 1;
1122 cpumask_set_cpu(cpu, &mask);
1123 (void)irq_set_affinity_hint(rd->ring->irq,
1124 &mask);
1125 }
1126 }
1127 }
1128 }
1129
1130 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1131 {
1132 struct hnae_handle *h = priv->ae_handle;
1133 struct hns_nic_ring_data *rd;
1134 int i;
1135 int ret;
1136
1137 for (i = 0; i < h->q_num * 2; i++) {
1138 rd = &priv->ring_data[i];
1139
1140 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1141 break;
1142
1143 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1144 "%s-%s%d", priv->netdev->name,
1145 (i < h->q_num ? "tx" : "rx"), rd->queue_index);
1146
1147 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1148
1149 ret = request_irq(rd->ring->irq,
1150 hns_irq_handle, 0, rd->ring->ring_name, rd);
1151 if (ret) {
1152 netdev_err(priv->netdev, "request irq(%d) fail\n",
1153 rd->ring->irq);
1154 return ret;
1155 }
1156 disable_irq(rd->ring->irq);
1157 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1158 }
1159
1160 /*set cpu affinity*/
1161 hns_set_irq_affinity(priv);
1162
1163 return 0;
1164 }
1165
1166 static int hns_nic_net_up(struct net_device *ndev)
1167 {
1168 struct hns_nic_priv *priv = netdev_priv(ndev);
1169 struct hnae_handle *h = priv->ae_handle;
1170 int i, j, k;
1171 int ret;
1172
1173 ret = hns_nic_init_irq(priv);
1174 if (ret != 0) {
1175 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1176 return ret;
1177 }
1178
1179 for (i = 0; i < h->q_num * 2; i++) {
1180 ret = hns_nic_ring_open(ndev, i);
1181 if (ret)
1182 goto out_has_some_queues;
1183 }
1184
1185 for (k = 0; k < h->q_num; k++)
1186 h->dev->ops->toggle_queue_status(h->qs[k], 1);
1187
1188 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1189 if (ret)
1190 goto out_set_mac_addr_err;
1191
1192 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1193 if (ret)
1194 goto out_start_err;
1195
1196 if (priv->phy)
1197 phy_start(priv->phy);
1198
1199 clear_bit(NIC_STATE_DOWN, &priv->state);
1200 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1201
1202 return 0;
1203
1204 out_start_err:
1205 netif_stop_queue(ndev);
1206 out_set_mac_addr_err:
1207 for (k = 0; k < h->q_num; k++)
1208 h->dev->ops->toggle_queue_status(h->qs[k], 0);
1209 out_has_some_queues:
1210 for (j = i - 1; j >= 0; j--)
1211 hns_nic_ring_close(ndev, j);
1212
1213 set_bit(NIC_STATE_DOWN, &priv->state);
1214
1215 return ret;
1216 }
1217
1218 static void hns_nic_net_down(struct net_device *ndev)
1219 {
1220 int i;
1221 struct hnae_ae_ops *ops;
1222 struct hns_nic_priv *priv = netdev_priv(ndev);
1223
1224 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1225 return;
1226
1227 (void)del_timer_sync(&priv->service_timer);
1228 netif_tx_stop_all_queues(ndev);
1229 netif_carrier_off(ndev);
1230 netif_tx_disable(ndev);
1231 priv->link = 0;
1232
1233 if (priv->phy)
1234 phy_stop(priv->phy);
1235
1236 ops = priv->ae_handle->dev->ops;
1237
1238 if (ops->stop)
1239 ops->stop(priv->ae_handle);
1240
1241 netif_tx_stop_all_queues(ndev);
1242
1243 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1244 hns_nic_ring_close(ndev, i);
1245 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1246
1247 /* clean tx buffers*/
1248 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1249 }
1250 }
1251
1252 void hns_nic_net_reset(struct net_device *ndev)
1253 {
1254 struct hns_nic_priv *priv = netdev_priv(ndev);
1255 struct hnae_handle *handle = priv->ae_handle;
1256
1257 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1258 usleep_range(1000, 2000);
1259
1260 (void)hnae_reinit_handle(handle);
1261
1262 clear_bit(NIC_STATE_RESETTING, &priv->state);
1263 }
1264
1265 void hns_nic_net_reinit(struct net_device *netdev)
1266 {
1267 struct hns_nic_priv *priv = netdev_priv(netdev);
1268
1269 priv->netdev->trans_start = jiffies;
1270 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1271 usleep_range(1000, 2000);
1272
1273 hns_nic_net_down(netdev);
1274 hns_nic_net_reset(netdev);
1275 (void)hns_nic_net_up(netdev);
1276 clear_bit(NIC_STATE_REINITING, &priv->state);
1277 }
1278
1279 static int hns_nic_net_open(struct net_device *ndev)
1280 {
1281 struct hns_nic_priv *priv = netdev_priv(ndev);
1282 struct hnae_handle *h = priv->ae_handle;
1283 int ret;
1284
1285 if (test_bit(NIC_STATE_TESTING, &priv->state))
1286 return -EBUSY;
1287
1288 priv->link = 0;
1289 netif_carrier_off(ndev);
1290
1291 ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1292 if (ret < 0) {
1293 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1294 ret);
1295 return ret;
1296 }
1297
1298 ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1299 if (ret < 0) {
1300 netdev_err(ndev,
1301 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1302 return ret;
1303 }
1304
1305 ret = hns_nic_net_up(ndev);
1306 if (ret) {
1307 netdev_err(ndev,
1308 "hns net up fail, ret=%d!\n", ret);
1309 return ret;
1310 }
1311
1312 return 0;
1313 }
1314
1315 static int hns_nic_net_stop(struct net_device *ndev)
1316 {
1317 hns_nic_net_down(ndev);
1318
1319 return 0;
1320 }
1321
1322 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1323 static void hns_nic_net_timeout(struct net_device *ndev)
1324 {
1325 struct hns_nic_priv *priv = netdev_priv(ndev);
1326
1327 hns_tx_timeout_reset(priv);
1328 }
1329
1330 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1331 int cmd)
1332 {
1333 struct hns_nic_priv *priv = netdev_priv(netdev);
1334 struct phy_device *phy_dev = priv->phy;
1335
1336 if (!netif_running(netdev))
1337 return -EINVAL;
1338
1339 if (!phy_dev)
1340 return -ENOTSUPP;
1341
1342 return phy_mii_ioctl(phy_dev, ifr, cmd);
1343 }
1344
1345 /* use only for netconsole to poll with the device without interrupt */
1346 #ifdef CONFIG_NET_POLL_CONTROLLER
1347 void hns_nic_poll_controller(struct net_device *ndev)
1348 {
1349 struct hns_nic_priv *priv = netdev_priv(ndev);
1350 unsigned long flags;
1351 int i;
1352
1353 local_irq_save(flags);
1354 for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1355 napi_schedule(&priv->ring_data[i].napi);
1356 local_irq_restore(flags);
1357 }
1358 #endif
1359
1360 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1361 struct net_device *ndev)
1362 {
1363 struct hns_nic_priv *priv = netdev_priv(ndev);
1364 int ret;
1365
1366 assert(skb->queue_mapping < ndev->ae_handle->q_num);
1367 ret = hns_nic_net_xmit_hw(ndev, skb,
1368 &tx_ring_data(priv, skb->queue_mapping));
1369 if (ret == NETDEV_TX_OK) {
1370 ndev->trans_start = jiffies;
1371 ndev->stats.tx_bytes += skb->len;
1372 ndev->stats.tx_packets++;
1373 }
1374 return (netdev_tx_t)ret;
1375 }
1376
1377 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1378 {
1379 struct hns_nic_priv *priv = netdev_priv(ndev);
1380 struct hnae_handle *h = priv->ae_handle;
1381 int ret;
1382
1383 /* MTU < 68 is an error and causes problems on some kernels */
1384 if (new_mtu < 68)
1385 return -EINVAL;
1386
1387 if (!h->dev->ops->set_mtu)
1388 return -ENOTSUPP;
1389
1390 if (netif_running(ndev)) {
1391 (void)hns_nic_net_stop(ndev);
1392 msleep(100);
1393
1394 ret = h->dev->ops->set_mtu(h, new_mtu);
1395 if (ret)
1396 netdev_err(ndev, "set mtu fail, return value %d\n",
1397 ret);
1398
1399 if (hns_nic_net_open(ndev))
1400 netdev_err(ndev, "hns net open fail\n");
1401 } else {
1402 ret = h->dev->ops->set_mtu(h, new_mtu);
1403 }
1404
1405 if (!ret)
1406 ndev->mtu = new_mtu;
1407
1408 return ret;
1409 }
1410
1411 static int hns_nic_set_features(struct net_device *netdev,
1412 netdev_features_t features)
1413 {
1414 struct hns_nic_priv *priv = netdev_priv(netdev);
1415 struct hnae_handle *h = priv->ae_handle;
1416
1417 switch (priv->enet_ver) {
1418 case AE_VERSION_1:
1419 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1420 netdev_info(netdev, "enet v1 do not support tso!\n");
1421 break;
1422 default:
1423 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1424 priv->ops.fill_desc = fill_tso_desc;
1425 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1426 /* The chip only support 7*4096 */
1427 netif_set_gso_max_size(netdev, 7 * 4096);
1428 h->dev->ops->set_tso_stats(h, 1);
1429 } else {
1430 priv->ops.fill_desc = fill_v2_desc;
1431 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1432 h->dev->ops->set_tso_stats(h, 0);
1433 }
1434 break;
1435 }
1436 netdev->features = features;
1437 return 0;
1438 }
1439
1440 static netdev_features_t hns_nic_fix_features(
1441 struct net_device *netdev, netdev_features_t features)
1442 {
1443 struct hns_nic_priv *priv = netdev_priv(netdev);
1444
1445 switch (priv->enet_ver) {
1446 case AE_VERSION_1:
1447 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1448 NETIF_F_HW_VLAN_CTAG_FILTER);
1449 break;
1450 default:
1451 break;
1452 }
1453 return features;
1454 }
1455
1456 /**
1457 * nic_set_multicast_list - set mutl mac address
1458 * @netdev: net device
1459 * @p: mac address
1460 *
1461 * return void
1462 */
1463 void hns_set_multicast_list(struct net_device *ndev)
1464 {
1465 struct hns_nic_priv *priv = netdev_priv(ndev);
1466 struct hnae_handle *h = priv->ae_handle;
1467 struct netdev_hw_addr *ha = NULL;
1468
1469 if (!h) {
1470 netdev_err(ndev, "hnae handle is null\n");
1471 return;
1472 }
1473
1474 if (h->dev->ops->set_mc_addr) {
1475 netdev_for_each_mc_addr(ha, ndev)
1476 if (h->dev->ops->set_mc_addr(h, ha->addr))
1477 netdev_err(ndev, "set multicast fail\n");
1478 }
1479 }
1480
1481 void hns_nic_set_rx_mode(struct net_device *ndev)
1482 {
1483 struct hns_nic_priv *priv = netdev_priv(ndev);
1484 struct hnae_handle *h = priv->ae_handle;
1485
1486 if (h->dev->ops->set_promisc_mode) {
1487 if (ndev->flags & IFF_PROMISC)
1488 h->dev->ops->set_promisc_mode(h, 1);
1489 else
1490 h->dev->ops->set_promisc_mode(h, 0);
1491 }
1492
1493 hns_set_multicast_list(ndev);
1494 }
1495
1496 struct rtnl_link_stats64 *hns_nic_get_stats64(struct net_device *ndev,
1497 struct rtnl_link_stats64 *stats)
1498 {
1499 int idx = 0;
1500 u64 tx_bytes = 0;
1501 u64 rx_bytes = 0;
1502 u64 tx_pkts = 0;
1503 u64 rx_pkts = 0;
1504 struct hns_nic_priv *priv = netdev_priv(ndev);
1505 struct hnae_handle *h = priv->ae_handle;
1506
1507 for (idx = 0; idx < h->q_num; idx++) {
1508 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1509 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1510 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1511 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1512 }
1513
1514 stats->tx_bytes = tx_bytes;
1515 stats->tx_packets = tx_pkts;
1516 stats->rx_bytes = rx_bytes;
1517 stats->rx_packets = rx_pkts;
1518
1519 stats->rx_errors = ndev->stats.rx_errors;
1520 stats->multicast = ndev->stats.multicast;
1521 stats->rx_length_errors = ndev->stats.rx_length_errors;
1522 stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1523 stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1524
1525 stats->tx_errors = ndev->stats.tx_errors;
1526 stats->rx_dropped = ndev->stats.rx_dropped;
1527 stats->tx_dropped = ndev->stats.tx_dropped;
1528 stats->collisions = ndev->stats.collisions;
1529 stats->rx_over_errors = ndev->stats.rx_over_errors;
1530 stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1531 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1532 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1533 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1534 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1535 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1536 stats->tx_window_errors = ndev->stats.tx_window_errors;
1537 stats->rx_compressed = ndev->stats.rx_compressed;
1538 stats->tx_compressed = ndev->stats.tx_compressed;
1539
1540 return stats;
1541 }
1542
1543 static const struct net_device_ops hns_nic_netdev_ops = {
1544 .ndo_open = hns_nic_net_open,
1545 .ndo_stop = hns_nic_net_stop,
1546 .ndo_start_xmit = hns_nic_net_xmit,
1547 .ndo_tx_timeout = hns_nic_net_timeout,
1548 .ndo_set_mac_address = hns_nic_net_set_mac_address,
1549 .ndo_change_mtu = hns_nic_change_mtu,
1550 .ndo_do_ioctl = hns_nic_do_ioctl,
1551 .ndo_set_features = hns_nic_set_features,
1552 .ndo_fix_features = hns_nic_fix_features,
1553 .ndo_get_stats64 = hns_nic_get_stats64,
1554 #ifdef CONFIG_NET_POLL_CONTROLLER
1555 .ndo_poll_controller = hns_nic_poll_controller,
1556 #endif
1557 .ndo_set_rx_mode = hns_nic_set_rx_mode,
1558 };
1559
1560 static void hns_nic_update_link_status(struct net_device *netdev)
1561 {
1562 struct hns_nic_priv *priv = netdev_priv(netdev);
1563
1564 struct hnae_handle *h = priv->ae_handle;
1565 int state = 1;
1566
1567 if (priv->phy) {
1568 if (!genphy_update_link(priv->phy))
1569 state = priv->phy->link;
1570 else
1571 state = 0;
1572 }
1573 state = state && h->dev->ops->get_status(h);
1574
1575 if (state != priv->link) {
1576 if (state) {
1577 netif_carrier_on(netdev);
1578 netif_tx_wake_all_queues(netdev);
1579 netdev_info(netdev, "link up\n");
1580 } else {
1581 netif_carrier_off(netdev);
1582 netdev_info(netdev, "link down\n");
1583 }
1584 priv->link = state;
1585 }
1586 }
1587
1588 /* for dumping key regs*/
1589 static void hns_nic_dump(struct hns_nic_priv *priv)
1590 {
1591 struct hnae_handle *h = priv->ae_handle;
1592 struct hnae_ae_ops *ops = h->dev->ops;
1593 u32 *data, reg_num, i;
1594
1595 if (ops->get_regs_len && ops->get_regs) {
1596 reg_num = ops->get_regs_len(priv->ae_handle);
1597 reg_num = (reg_num + 3ul) & ~3ul;
1598 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1599 if (data) {
1600 ops->get_regs(priv->ae_handle, data);
1601 for (i = 0; i < reg_num; i += 4)
1602 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1603 i, data[i], data[i + 1],
1604 data[i + 2], data[i + 3]);
1605 kfree(data);
1606 }
1607 }
1608
1609 for (i = 0; i < h->q_num; i++) {
1610 pr_info("tx_queue%d_next_to_clean:%d\n",
1611 i, h->qs[i]->tx_ring.next_to_clean);
1612 pr_info("tx_queue%d_next_to_use:%d\n",
1613 i, h->qs[i]->tx_ring.next_to_use);
1614 pr_info("rx_queue%d_next_to_clean:%d\n",
1615 i, h->qs[i]->rx_ring.next_to_clean);
1616 pr_info("rx_queue%d_next_to_use:%d\n",
1617 i, h->qs[i]->rx_ring.next_to_use);
1618 }
1619 }
1620
1621 /* for resetting suntask*/
1622 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
1623 {
1624 enum hnae_port_type type = priv->ae_handle->port_type;
1625
1626 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
1627 return;
1628 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1629
1630 /* If we're already down, removing or resetting, just bail */
1631 if (test_bit(NIC_STATE_DOWN, &priv->state) ||
1632 test_bit(NIC_STATE_REMOVING, &priv->state) ||
1633 test_bit(NIC_STATE_RESETTING, &priv->state))
1634 return;
1635
1636 hns_nic_dump(priv);
1637 netdev_info(priv->netdev, "try to reset %s port!\n",
1638 (type == HNAE_PORT_DEBUG ? "debug" : "service"));
1639
1640 rtnl_lock();
1641 /* put off any impending NetWatchDogTimeout */
1642 priv->netdev->trans_start = jiffies;
1643
1644 if (type == HNAE_PORT_DEBUG) {
1645 hns_nic_net_reinit(priv->netdev);
1646 } else {
1647 netif_carrier_off(priv->netdev);
1648 netif_tx_disable(priv->netdev);
1649 }
1650 rtnl_unlock();
1651 }
1652
1653 /* for doing service complete*/
1654 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
1655 {
1656 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
1657
1658 smp_mb__before_atomic();
1659 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1660 }
1661
1662 static void hns_nic_service_task(struct work_struct *work)
1663 {
1664 struct hns_nic_priv *priv
1665 = container_of(work, struct hns_nic_priv, service_task);
1666 struct hnae_handle *h = priv->ae_handle;
1667
1668 hns_nic_update_link_status(priv->netdev);
1669 h->dev->ops->update_led_status(h);
1670 hns_nic_update_stats(priv->netdev);
1671
1672 hns_nic_reset_subtask(priv);
1673 hns_nic_service_event_complete(priv);
1674 }
1675
1676 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
1677 {
1678 if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
1679 !test_bit(NIC_STATE_REMOVING, &priv->state) &&
1680 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
1681 (void)schedule_work(&priv->service_task);
1682 }
1683
1684 static void hns_nic_service_timer(unsigned long data)
1685 {
1686 struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
1687
1688 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1689
1690 hns_nic_task_schedule(priv);
1691 }
1692
1693 /**
1694 * hns_tx_timeout_reset - initiate reset due to Tx timeout
1695 * @priv: driver private struct
1696 **/
1697 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
1698 {
1699 /* Do the reset outside of interrupt context */
1700 if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
1701 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1702 netdev_warn(priv->netdev,
1703 "initiating reset due to tx timeout(%llu,0x%lx)\n",
1704 priv->tx_timeout_count, priv->state);
1705 priv->tx_timeout_count++;
1706 hns_nic_task_schedule(priv);
1707 }
1708 }
1709
1710 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
1711 {
1712 struct hnae_handle *h = priv->ae_handle;
1713 struct hns_nic_ring_data *rd;
1714 int i;
1715
1716 if (h->q_num > NIC_MAX_Q_PER_VF) {
1717 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
1718 return -EINVAL;
1719 }
1720
1721 priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
1722 GFP_KERNEL);
1723 if (!priv->ring_data)
1724 return -ENOMEM;
1725
1726 for (i = 0; i < h->q_num; i++) {
1727 rd = &priv->ring_data[i];
1728 rd->queue_index = i;
1729 rd->ring = &h->qs[i]->tx_ring;
1730 rd->poll_one = hns_nic_tx_poll_one;
1731 rd->fini_process = hns_nic_tx_fini_pro;
1732
1733 netif_napi_add(priv->netdev, &rd->napi,
1734 hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
1735 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1736 }
1737 for (i = h->q_num; i < h->q_num * 2; i++) {
1738 rd = &priv->ring_data[i];
1739 rd->queue_index = i - h->q_num;
1740 rd->ring = &h->qs[i - h->q_num]->rx_ring;
1741 rd->poll_one = hns_nic_rx_poll_one;
1742 rd->ex_process = hns_nic_rx_up_pro;
1743 rd->fini_process = hns_nic_rx_fini_pro;
1744
1745 netif_napi_add(priv->netdev, &rd->napi,
1746 hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
1747 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1748 }
1749
1750 return 0;
1751 }
1752
1753 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
1754 {
1755 struct hnae_handle *h = priv->ae_handle;
1756 int i;
1757
1758 for (i = 0; i < h->q_num * 2; i++) {
1759 netif_napi_del(&priv->ring_data[i].napi);
1760 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1761 (void)irq_set_affinity_hint(
1762 priv->ring_data[i].ring->irq,
1763 NULL);
1764 free_irq(priv->ring_data[i].ring->irq,
1765 &priv->ring_data[i]);
1766 }
1767
1768 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1769 }
1770 kfree(priv->ring_data);
1771 }
1772
1773 static void hns_nic_set_priv_ops(struct net_device *netdev)
1774 {
1775 struct hns_nic_priv *priv = netdev_priv(netdev);
1776 struct hnae_handle *h = priv->ae_handle;
1777
1778 if (AE_IS_VER1(priv->enet_ver)) {
1779 priv->ops.fill_desc = fill_desc;
1780 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
1781 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1782 } else {
1783 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
1784 if ((netdev->features & NETIF_F_TSO) ||
1785 (netdev->features & NETIF_F_TSO6)) {
1786 priv->ops.fill_desc = fill_tso_desc;
1787 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1788 /* This chip only support 7*4096 */
1789 netif_set_gso_max_size(netdev, 7 * 4096);
1790 h->dev->ops->set_tso_stats(h, 1);
1791 } else {
1792 priv->ops.fill_desc = fill_v2_desc;
1793 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1794 }
1795 }
1796 }
1797
1798 static int hns_nic_try_get_ae(struct net_device *ndev)
1799 {
1800 struct hns_nic_priv *priv = netdev_priv(ndev);
1801 struct hnae_handle *h;
1802 int ret;
1803
1804 h = hnae_get_handle(&priv->netdev->dev,
1805 priv->ae_node, priv->port_id, NULL);
1806 if (IS_ERR_OR_NULL(h)) {
1807 ret = PTR_ERR(h);
1808 dev_dbg(priv->dev, "has not handle, register notifier!\n");
1809 goto out;
1810 }
1811 priv->ae_handle = h;
1812
1813 ret = hns_nic_init_phy(ndev, h);
1814 if (ret) {
1815 dev_err(priv->dev, "probe phy device fail!\n");
1816 goto out_init_phy;
1817 }
1818
1819 ret = hns_nic_init_ring_data(priv);
1820 if (ret) {
1821 ret = -ENOMEM;
1822 goto out_init_ring_data;
1823 }
1824
1825 hns_nic_set_priv_ops(ndev);
1826
1827 ret = register_netdev(ndev);
1828 if (ret) {
1829 dev_err(priv->dev, "probe register netdev fail!\n");
1830 goto out_reg_ndev_fail;
1831 }
1832 return 0;
1833
1834 out_reg_ndev_fail:
1835 hns_nic_uninit_ring_data(priv);
1836 priv->ring_data = NULL;
1837 out_init_phy:
1838 out_init_ring_data:
1839 hnae_put_handle(priv->ae_handle);
1840 priv->ae_handle = NULL;
1841 out:
1842 return ret;
1843 }
1844
1845 static int hns_nic_notifier_action(struct notifier_block *nb,
1846 unsigned long action, void *data)
1847 {
1848 struct hns_nic_priv *priv =
1849 container_of(nb, struct hns_nic_priv, notifier_block);
1850
1851 assert(action == HNAE_AE_REGISTER);
1852
1853 if (!hns_nic_try_get_ae(priv->netdev)) {
1854 hnae_unregister_notifier(&priv->notifier_block);
1855 priv->notifier_block.notifier_call = NULL;
1856 }
1857 return 0;
1858 }
1859
1860 static int hns_nic_dev_probe(struct platform_device *pdev)
1861 {
1862 struct device *dev = &pdev->dev;
1863 struct net_device *ndev;
1864 struct hns_nic_priv *priv;
1865 struct device_node *node = dev->of_node;
1866 int ret;
1867
1868 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
1869 if (!ndev)
1870 return -ENOMEM;
1871
1872 platform_set_drvdata(pdev, ndev);
1873
1874 priv = netdev_priv(ndev);
1875 priv->dev = dev;
1876 priv->netdev = ndev;
1877
1878 if (of_device_is_compatible(node, "hisilicon,hns-nic-v1"))
1879 priv->enet_ver = AE_VERSION_1;
1880 else
1881 priv->enet_ver = AE_VERSION_2;
1882
1883 priv->ae_node = (void *)of_parse_phandle(node, "ae-handle", 0);
1884 if (IS_ERR_OR_NULL(priv->ae_node)) {
1885 ret = PTR_ERR(priv->ae_node);
1886 dev_err(dev, "not find ae-handle\n");
1887 goto out_read_prop_fail;
1888 }
1889
1890 ret = of_property_read_u32(node, "port-id", &priv->port_id);
1891 if (ret)
1892 goto out_read_prop_fail;
1893
1894 hns_init_mac_addr(ndev);
1895
1896 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1897 ndev->priv_flags |= IFF_UNICAST_FLT;
1898 ndev->netdev_ops = &hns_nic_netdev_ops;
1899 hns_ethtool_set_ops(ndev);
1900
1901 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1902 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1903 NETIF_F_GRO;
1904 ndev->vlan_features |=
1905 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
1906 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
1907
1908 switch (priv->enet_ver) {
1909 case AE_VERSION_2:
1910 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1911 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1912 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1913 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
1914 break;
1915 default:
1916 break;
1917 }
1918
1919 SET_NETDEV_DEV(ndev, dev);
1920
1921 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
1922 dev_dbg(dev, "set mask to 64bit\n");
1923 else
1924 dev_err(dev, "set mask to 32bit fail!\n");
1925
1926 /* carrier off reporting is important to ethtool even BEFORE open */
1927 netif_carrier_off(ndev);
1928
1929 setup_timer(&priv->service_timer, hns_nic_service_timer,
1930 (unsigned long)priv);
1931 INIT_WORK(&priv->service_task, hns_nic_service_task);
1932
1933 set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
1934 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1935 set_bit(NIC_STATE_DOWN, &priv->state);
1936
1937 if (hns_nic_try_get_ae(priv->netdev)) {
1938 priv->notifier_block.notifier_call = hns_nic_notifier_action;
1939 ret = hnae_register_notifier(&priv->notifier_block);
1940 if (ret) {
1941 dev_err(dev, "register notifier fail!\n");
1942 goto out_notify_fail;
1943 }
1944 dev_dbg(dev, "has not handle, register notifier!\n");
1945 }
1946
1947 return 0;
1948
1949 out_notify_fail:
1950 (void)cancel_work_sync(&priv->service_task);
1951 out_read_prop_fail:
1952 free_netdev(ndev);
1953 return ret;
1954 }
1955
1956 static int hns_nic_dev_remove(struct platform_device *pdev)
1957 {
1958 struct net_device *ndev = platform_get_drvdata(pdev);
1959 struct hns_nic_priv *priv = netdev_priv(ndev);
1960
1961 if (ndev->reg_state != NETREG_UNINITIALIZED)
1962 unregister_netdev(ndev);
1963
1964 if (priv->ring_data)
1965 hns_nic_uninit_ring_data(priv);
1966 priv->ring_data = NULL;
1967
1968 if (priv->phy)
1969 phy_disconnect(priv->phy);
1970 priv->phy = NULL;
1971
1972 if (!IS_ERR_OR_NULL(priv->ae_handle))
1973 hnae_put_handle(priv->ae_handle);
1974 priv->ae_handle = NULL;
1975 if (priv->notifier_block.notifier_call)
1976 hnae_unregister_notifier(&priv->notifier_block);
1977 priv->notifier_block.notifier_call = NULL;
1978
1979 set_bit(NIC_STATE_REMOVING, &priv->state);
1980 (void)cancel_work_sync(&priv->service_task);
1981
1982 free_netdev(ndev);
1983 return 0;
1984 }
1985
1986 static const struct of_device_id hns_enet_of_match[] = {
1987 {.compatible = "hisilicon,hns-nic-v1",},
1988 {.compatible = "hisilicon,hns-nic-v2",},
1989 {},
1990 };
1991
1992 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
1993
1994 static struct platform_driver hns_nic_dev_driver = {
1995 .driver = {
1996 .name = "hns-nic",
1997 .of_match_table = hns_enet_of_match,
1998 },
1999 .probe = hns_nic_dev_probe,
2000 .remove = hns_nic_dev_remove,
2001 };
2002
2003 module_platform_driver(hns_nic_dev_driver);
2004
2005 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2006 MODULE_AUTHOR("Hisilicon, Inc.");
2007 MODULE_LICENSE("GPL");
2008 MODULE_ALIAS("platform:hns-nic");