]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - drivers/net/ethernet/marvell/mvneta.c
net: mvneta: do not explicitly set the carrier state in open
[mirror_ubuntu-disco-kernel.git] / drivers / net / ethernet / marvell / mvneta.c
1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/phylink.h>
32 #include <linux/platform_device.h>
33 #include <linux/skbuff.h>
34 #include <net/hwbm.h>
35 #include "mvneta_bm.h"
36 #include <net/ip.h>
37 #include <net/ipv6.h>
38 #include <net/tso.h>
39
40 /* Registers */
41 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
42 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
43 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
44 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
45 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
46 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
47 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
48 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
49 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
50 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
51 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
52 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
53 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
54 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
55 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
56 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
61 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
62 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
63 #define MVNETA_PORT_RX_RESET 0x1cc0
64 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
65 #define MVNETA_PHY_ADDR 0x2000
66 #define MVNETA_PHY_ADDR_MASK 0x1f
67 #define MVNETA_MBUS_RETRY 0x2010
68 #define MVNETA_UNIT_INTR_CAUSE 0x2080
69 #define MVNETA_UNIT_CONTROL 0x20B0
70 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
71 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
72 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
73 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
74 #define MVNETA_BASE_ADDR_ENABLE 0x2290
75 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
76 #define MVNETA_PORT_CONFIG 0x2400
77 #define MVNETA_UNI_PROMISC_MODE BIT(0)
78 #define MVNETA_DEF_RXQ(q) ((q) << 1)
79 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
80 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
81 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
82 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
83 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
84 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
85 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
86 MVNETA_DEF_RXQ_ARP(q) | \
87 MVNETA_DEF_RXQ_TCP(q) | \
88 MVNETA_DEF_RXQ_UDP(q) | \
89 MVNETA_DEF_RXQ_BPDU(q) | \
90 MVNETA_TX_UNSET_ERR_SUM | \
91 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
92 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
93 #define MVNETA_MAC_ADDR_LOW 0x2414
94 #define MVNETA_MAC_ADDR_HIGH 0x2418
95 #define MVNETA_SDMA_CONFIG 0x241c
96 #define MVNETA_SDMA_BRST_SIZE_16 4
97 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
98 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
99 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
100 #define MVNETA_DESC_SWAP BIT(6)
101 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
102 #define MVNETA_PORT_STATUS 0x2444
103 #define MVNETA_TX_IN_PRGRS BIT(1)
104 #define MVNETA_TX_FIFO_EMPTY BIT(8)
105 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
106 #define MVNETA_SERDES_CFG 0x24A0
107 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
108 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
109 #define MVNETA_TYPE_PRIO 0x24bc
110 #define MVNETA_FORCE_UNI BIT(21)
111 #define MVNETA_TXQ_CMD_1 0x24e4
112 #define MVNETA_TXQ_CMD 0x2448
113 #define MVNETA_TXQ_DISABLE_SHIFT 8
114 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
115 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
116 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
117 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
118 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
119 #define MVNETA_ACC_MODE 0x2500
120 #define MVNETA_BM_ADDRESS 0x2504
121 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
122 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
123 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
124 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
125 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
126 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
127
128 /* Exception Interrupt Port/Queue Cause register
129 *
130 * Their behavior depend of the mapping done using the PCPX2Q
131 * registers. For a given CPU if the bit associated to a queue is not
132 * set, then for the register a read from this CPU will always return
133 * 0 and a write won't do anything
134 */
135
136 #define MVNETA_INTR_NEW_CAUSE 0x25a0
137 #define MVNETA_INTR_NEW_MASK 0x25a4
138
139 /* bits 0..7 = TXQ SENT, one bit per queue.
140 * bits 8..15 = RXQ OCCUP, one bit per queue.
141 * bits 16..23 = RXQ FREE, one bit per queue.
142 * bit 29 = OLD_REG_SUM, see old reg ?
143 * bit 30 = TX_ERR_SUM, one bit for 4 ports
144 * bit 31 = MISC_SUM, one bit for 4 ports
145 */
146 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
147 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
148 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
149 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
150 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
151
152 #define MVNETA_INTR_OLD_CAUSE 0x25a8
153 #define MVNETA_INTR_OLD_MASK 0x25ac
154
155 /* Data Path Port/Queue Cause Register */
156 #define MVNETA_INTR_MISC_CAUSE 0x25b0
157 #define MVNETA_INTR_MISC_MASK 0x25b4
158
159 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
160 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
161 #define MVNETA_CAUSE_PTP BIT(4)
162
163 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
164 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
165 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
166 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
167 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
168 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
169 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
170 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
171
172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
175
176 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
177 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
178 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
179
180 #define MVNETA_INTR_ENABLE 0x25b8
181 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
182 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
183
184 #define MVNETA_RXQ_CMD 0x2680
185 #define MVNETA_RXQ_DISABLE_SHIFT 8
186 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
187 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
188 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
189 #define MVNETA_GMAC_CTRL_0 0x2c00
190 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
191 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
192 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1)
193 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
194 #define MVNETA_GMAC_CTRL_2 0x2c08
195 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
196 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
197 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
198 #define MVNETA_GMAC2_PORT_RESET BIT(6)
199 #define MVNETA_GMAC_STATUS 0x2c10
200 #define MVNETA_GMAC_LINK_UP BIT(0)
201 #define MVNETA_GMAC_SPEED_1000 BIT(1)
202 #define MVNETA_GMAC_SPEED_100 BIT(2)
203 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
204 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
205 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
206 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
207 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
208 #define MVNETA_GMAC_AN_COMPLETE BIT(11)
209 #define MVNETA_GMAC_SYNC_OK BIT(14)
210 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
211 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
212 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
213 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
214 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3)
215 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4)
216 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
217 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
218 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
219 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8)
220 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9)
221 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
222 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
223 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
224 #define MVNETA_MIB_COUNTERS_BASE 0x3000
225 #define MVNETA_MIB_LATE_COLLISION 0x7c
226 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
227 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
228 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
229 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
230 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
231 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
232 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
233 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
234 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
235 #define MVNETA_TXQ_DEC_SENT_MASK 0xff
236 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
237 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
238 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
239 #define MVNETA_PORT_TX_RESET 0x3cf0
240 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
241 #define MVNETA_TX_MTU 0x3e0c
242 #define MVNETA_TX_TOKEN_SIZE 0x3e14
243 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
244 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
245 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
246
247 #define MVNETA_LPI_CTRL_0 0x2cc0
248 #define MVNETA_LPI_CTRL_1 0x2cc4
249 #define MVNETA_LPI_REQUEST_ENABLE BIT(0)
250 #define MVNETA_LPI_CTRL_2 0x2cc8
251 #define MVNETA_LPI_STATUS 0x2ccc
252
253 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
254
255 /* Descriptor ring Macros */
256 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
257 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
258
259 /* Various constants */
260
261 /* Coalescing */
262 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
263 #define MVNETA_RX_COAL_PKTS 32
264 #define MVNETA_RX_COAL_USEC 100
265
266 /* The two bytes Marvell header. Either contains a special value used
267 * by Marvell switches when a specific hardware mode is enabled (not
268 * supported by this driver) or is filled automatically by zeroes on
269 * the RX side. Those two bytes being at the front of the Ethernet
270 * header, they allow to have the IP header aligned on a 4 bytes
271 * boundary automatically: the hardware skips those two bytes on its
272 * own.
273 */
274 #define MVNETA_MH_SIZE 2
275
276 #define MVNETA_VLAN_TAG_LEN 4
277
278 #define MVNETA_TX_CSUM_DEF_SIZE 1600
279 #define MVNETA_TX_CSUM_MAX_SIZE 9800
280 #define MVNETA_ACC_MODE_EXT1 1
281 #define MVNETA_ACC_MODE_EXT2 2
282
283 #define MVNETA_MAX_DECODE_WIN 6
284
285 /* Timeout constants */
286 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
287 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
288 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
289
290 #define MVNETA_TX_MTU_MAX 0x3ffff
291
292 /* The RSS lookup table actually has 256 entries but we do not use
293 * them yet
294 */
295 #define MVNETA_RSS_LU_TABLE_SIZE 1
296
297 /* Max number of Rx descriptors */
298 #define MVNETA_MAX_RXD 512
299
300 /* Max number of Tx descriptors */
301 #define MVNETA_MAX_TXD 1024
302
303 /* Max number of allowed TCP segments for software TSO */
304 #define MVNETA_MAX_TSO_SEGS 100
305
306 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
307
308 /* descriptor aligned size */
309 #define MVNETA_DESC_ALIGNED_SIZE 32
310
311 /* Number of bytes to be taken into account by HW when putting incoming data
312 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
313 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
314 */
315 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64
316
317 #define MVNETA_RX_PKT_SIZE(mtu) \
318 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
319 ETH_HLEN + ETH_FCS_LEN, \
320 cache_line_size())
321
322 #define IS_TSO_HEADER(txq, addr) \
323 ((addr >= txq->tso_hdrs_phys) && \
324 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
325
326 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
327 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
328
329 enum {
330 ETHTOOL_STAT_EEE_WAKEUP,
331 ETHTOOL_STAT_SKB_ALLOC_ERR,
332 ETHTOOL_STAT_REFILL_ERR,
333 ETHTOOL_MAX_STATS,
334 };
335
336 struct mvneta_statistic {
337 unsigned short offset;
338 unsigned short type;
339 const char name[ETH_GSTRING_LEN];
340 };
341
342 #define T_REG_32 32
343 #define T_REG_64 64
344 #define T_SW 1
345
346 static const struct mvneta_statistic mvneta_statistics[] = {
347 { 0x3000, T_REG_64, "good_octets_received", },
348 { 0x3010, T_REG_32, "good_frames_received", },
349 { 0x3008, T_REG_32, "bad_octets_received", },
350 { 0x3014, T_REG_32, "bad_frames_received", },
351 { 0x3018, T_REG_32, "broadcast_frames_received", },
352 { 0x301c, T_REG_32, "multicast_frames_received", },
353 { 0x3050, T_REG_32, "unrec_mac_control_received", },
354 { 0x3058, T_REG_32, "good_fc_received", },
355 { 0x305c, T_REG_32, "bad_fc_received", },
356 { 0x3060, T_REG_32, "undersize_received", },
357 { 0x3064, T_REG_32, "fragments_received", },
358 { 0x3068, T_REG_32, "oversize_received", },
359 { 0x306c, T_REG_32, "jabber_received", },
360 { 0x3070, T_REG_32, "mac_receive_error", },
361 { 0x3074, T_REG_32, "bad_crc_event", },
362 { 0x3078, T_REG_32, "collision", },
363 { 0x307c, T_REG_32, "late_collision", },
364 { 0x2484, T_REG_32, "rx_discard", },
365 { 0x2488, T_REG_32, "rx_overrun", },
366 { 0x3020, T_REG_32, "frames_64_octets", },
367 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
368 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
369 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
370 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
371 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
372 { 0x3038, T_REG_64, "good_octets_sent", },
373 { 0x3040, T_REG_32, "good_frames_sent", },
374 { 0x3044, T_REG_32, "excessive_collision", },
375 { 0x3048, T_REG_32, "multicast_frames_sent", },
376 { 0x304c, T_REG_32, "broadcast_frames_sent", },
377 { 0x3054, T_REG_32, "fc_sent", },
378 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
379 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
380 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
381 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
382 };
383
384 struct mvneta_pcpu_stats {
385 struct u64_stats_sync syncp;
386 u64 rx_packets;
387 u64 rx_bytes;
388 u64 tx_packets;
389 u64 tx_bytes;
390 };
391
392 struct mvneta_pcpu_port {
393 /* Pointer to the shared port */
394 struct mvneta_port *pp;
395
396 /* Pointer to the CPU-local NAPI struct */
397 struct napi_struct napi;
398
399 /* Cause of the previous interrupt */
400 u32 cause_rx_tx;
401 };
402
403 struct mvneta_port {
404 u8 id;
405 struct mvneta_pcpu_port __percpu *ports;
406 struct mvneta_pcpu_stats __percpu *stats;
407
408 int pkt_size;
409 unsigned int frag_size;
410 void __iomem *base;
411 struct mvneta_rx_queue *rxqs;
412 struct mvneta_tx_queue *txqs;
413 struct net_device *dev;
414 struct hlist_node node_online;
415 struct hlist_node node_dead;
416 int rxq_def;
417 /* Protect the access to the percpu interrupt registers,
418 * ensuring that the configuration remains coherent.
419 */
420 spinlock_t lock;
421 bool is_stopped;
422
423 u32 cause_rx_tx;
424 struct napi_struct napi;
425
426 /* Core clock */
427 struct clk *clk;
428 /* AXI clock */
429 struct clk *clk_bus;
430 u8 mcast_count[256];
431 u16 tx_ring_size;
432 u16 rx_ring_size;
433
434 phy_interface_t phy_interface;
435 struct device_node *dn;
436 unsigned int tx_csum_limit;
437 struct phylink *phylink;
438
439 struct mvneta_bm *bm_priv;
440 struct mvneta_bm_pool *pool_long;
441 struct mvneta_bm_pool *pool_short;
442 int bm_win_id;
443
444 bool eee_enabled;
445 bool eee_active;
446 bool tx_lpi_enabled;
447
448 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
449
450 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
451
452 /* Flags for special SoC configurations */
453 bool neta_armada3700;
454 u16 rx_offset_correction;
455 const struct mbus_dram_target_info *dram_target_info;
456 };
457
458 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
459 * layout of the transmit and reception DMA descriptors, and their
460 * layout is therefore defined by the hardware design
461 */
462
463 #define MVNETA_TX_L3_OFF_SHIFT 0
464 #define MVNETA_TX_IP_HLEN_SHIFT 8
465 #define MVNETA_TX_L4_UDP BIT(16)
466 #define MVNETA_TX_L3_IP6 BIT(17)
467 #define MVNETA_TXD_IP_CSUM BIT(18)
468 #define MVNETA_TXD_Z_PAD BIT(19)
469 #define MVNETA_TXD_L_DESC BIT(20)
470 #define MVNETA_TXD_F_DESC BIT(21)
471 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
472 MVNETA_TXD_L_DESC | \
473 MVNETA_TXD_F_DESC)
474 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
475 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
476
477 #define MVNETA_RXD_ERR_CRC 0x0
478 #define MVNETA_RXD_BM_POOL_SHIFT 13
479 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
480 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
481 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
482 #define MVNETA_RXD_ERR_LEN BIT(18)
483 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
484 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
485 #define MVNETA_RXD_L3_IP4 BIT(25)
486 #define MVNETA_RXD_LAST_DESC BIT(26)
487 #define MVNETA_RXD_FIRST_DESC BIT(27)
488 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \
489 MVNETA_RXD_LAST_DESC)
490 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
491
492 #if defined(__LITTLE_ENDIAN)
493 struct mvneta_tx_desc {
494 u32 command; /* Options used by HW for packet transmitting.*/
495 u16 reserverd1; /* csum_l4 (for future use) */
496 u16 data_size; /* Data size of transmitted packet in bytes */
497 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
498 u32 reserved2; /* hw_cmd - (for future use, PMT) */
499 u32 reserved3[4]; /* Reserved - (for future use) */
500 };
501
502 struct mvneta_rx_desc {
503 u32 status; /* Info about received packet */
504 u16 reserved1; /* pnc_info - (for future use, PnC) */
505 u16 data_size; /* Size of received packet in bytes */
506
507 u32 buf_phys_addr; /* Physical address of the buffer */
508 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
509
510 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
511 u16 reserved3; /* prefetch_cmd, for future use */
512 u16 reserved4; /* csum_l4 - (for future use, PnC) */
513
514 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
515 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
516 };
517 #else
518 struct mvneta_tx_desc {
519 u16 data_size; /* Data size of transmitted packet in bytes */
520 u16 reserverd1; /* csum_l4 (for future use) */
521 u32 command; /* Options used by HW for packet transmitting.*/
522 u32 reserved2; /* hw_cmd - (for future use, PMT) */
523 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
524 u32 reserved3[4]; /* Reserved - (for future use) */
525 };
526
527 struct mvneta_rx_desc {
528 u16 data_size; /* Size of received packet in bytes */
529 u16 reserved1; /* pnc_info - (for future use, PnC) */
530 u32 status; /* Info about received packet */
531
532 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
533 u32 buf_phys_addr; /* Physical address of the buffer */
534
535 u16 reserved4; /* csum_l4 - (for future use, PnC) */
536 u16 reserved3; /* prefetch_cmd, for future use */
537 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
538
539 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
540 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
541 };
542 #endif
543
544 struct mvneta_tx_queue {
545 /* Number of this TX queue, in the range 0-7 */
546 u8 id;
547
548 /* Number of TX DMA descriptors in the descriptor ring */
549 int size;
550
551 /* Number of currently used TX DMA descriptor in the
552 * descriptor ring
553 */
554 int count;
555 int pending;
556 int tx_stop_threshold;
557 int tx_wake_threshold;
558
559 /* Array of transmitted skb */
560 struct sk_buff **tx_skb;
561
562 /* Index of last TX DMA descriptor that was inserted */
563 int txq_put_index;
564
565 /* Index of the TX DMA descriptor to be cleaned up */
566 int txq_get_index;
567
568 u32 done_pkts_coal;
569
570 /* Virtual address of the TX DMA descriptors array */
571 struct mvneta_tx_desc *descs;
572
573 /* DMA address of the TX DMA descriptors array */
574 dma_addr_t descs_phys;
575
576 /* Index of the last TX DMA descriptor */
577 int last_desc;
578
579 /* Index of the next TX DMA descriptor to process */
580 int next_desc_to_proc;
581
582 /* DMA buffers for TSO headers */
583 char *tso_hdrs;
584
585 /* DMA address of TSO headers */
586 dma_addr_t tso_hdrs_phys;
587
588 /* Affinity mask for CPUs*/
589 cpumask_t affinity_mask;
590 };
591
592 struct mvneta_rx_queue {
593 /* rx queue number, in the range 0-7 */
594 u8 id;
595
596 /* num of rx descriptors in the rx descriptor ring */
597 int size;
598
599 u32 pkts_coal;
600 u32 time_coal;
601
602 /* Virtual address of the RX buffer */
603 void **buf_virt_addr;
604
605 /* Virtual address of the RX DMA descriptors array */
606 struct mvneta_rx_desc *descs;
607
608 /* DMA address of the RX DMA descriptors array */
609 dma_addr_t descs_phys;
610
611 /* Index of the last RX DMA descriptor */
612 int last_desc;
613
614 /* Index of the next RX DMA descriptor to process */
615 int next_desc_to_proc;
616
617 /* Index of first RX DMA descriptor to refill */
618 int first_to_refill;
619 u32 refill_num;
620
621 /* pointer to uncomplete skb buffer */
622 struct sk_buff *skb;
623 int left_size;
624
625 /* error counters */
626 u32 skb_alloc_err;
627 u32 refill_err;
628 };
629
630 static enum cpuhp_state online_hpstate;
631 /* The hardware supports eight (8) rx queues, but we are only allowing
632 * the first one to be used. Therefore, let's just allocate one queue.
633 */
634 static int rxq_number = 8;
635 static int txq_number = 8;
636
637 static int rxq_def;
638
639 static int rx_copybreak __read_mostly = 256;
640 static int rx_header_size __read_mostly = 128;
641
642 /* HW BM need that each port be identify by a unique ID */
643 static int global_port_id;
644
645 #define MVNETA_DRIVER_NAME "mvneta"
646 #define MVNETA_DRIVER_VERSION "1.0"
647
648 /* Utility/helper methods */
649
650 /* Write helper method */
651 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
652 {
653 writel(data, pp->base + offset);
654 }
655
656 /* Read helper method */
657 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
658 {
659 return readl(pp->base + offset);
660 }
661
662 /* Increment txq get counter */
663 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
664 {
665 txq->txq_get_index++;
666 if (txq->txq_get_index == txq->size)
667 txq->txq_get_index = 0;
668 }
669
670 /* Increment txq put counter */
671 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
672 {
673 txq->txq_put_index++;
674 if (txq->txq_put_index == txq->size)
675 txq->txq_put_index = 0;
676 }
677
678
679 /* Clear all MIB counters */
680 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
681 {
682 int i;
683 u32 dummy;
684
685 /* Perform dummy reads from MIB counters */
686 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
687 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
688 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
689 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
690 }
691
692 /* Get System Network Statistics */
693 static void
694 mvneta_get_stats64(struct net_device *dev,
695 struct rtnl_link_stats64 *stats)
696 {
697 struct mvneta_port *pp = netdev_priv(dev);
698 unsigned int start;
699 int cpu;
700
701 for_each_possible_cpu(cpu) {
702 struct mvneta_pcpu_stats *cpu_stats;
703 u64 rx_packets;
704 u64 rx_bytes;
705 u64 tx_packets;
706 u64 tx_bytes;
707
708 cpu_stats = per_cpu_ptr(pp->stats, cpu);
709 do {
710 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
711 rx_packets = cpu_stats->rx_packets;
712 rx_bytes = cpu_stats->rx_bytes;
713 tx_packets = cpu_stats->tx_packets;
714 tx_bytes = cpu_stats->tx_bytes;
715 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
716
717 stats->rx_packets += rx_packets;
718 stats->rx_bytes += rx_bytes;
719 stats->tx_packets += tx_packets;
720 stats->tx_bytes += tx_bytes;
721 }
722
723 stats->rx_errors = dev->stats.rx_errors;
724 stats->rx_dropped = dev->stats.rx_dropped;
725
726 stats->tx_dropped = dev->stats.tx_dropped;
727 }
728
729 /* Rx descriptors helper methods */
730
731 /* Checks whether the RX descriptor having this status is both the first
732 * and the last descriptor for the RX packet. Each RX packet is currently
733 * received through a single RX descriptor, so not having each RX
734 * descriptor with its first and last bits set is an error
735 */
736 static int mvneta_rxq_desc_is_first_last(u32 status)
737 {
738 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
739 MVNETA_RXD_FIRST_LAST_DESC;
740 }
741
742 /* Add number of descriptors ready to receive new packets */
743 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
744 struct mvneta_rx_queue *rxq,
745 int ndescs)
746 {
747 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
748 * be added at once
749 */
750 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
751 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
752 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
753 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
754 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
755 }
756
757 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
758 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
759 }
760
761 /* Get number of RX descriptors occupied by received packets */
762 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
763 struct mvneta_rx_queue *rxq)
764 {
765 u32 val;
766
767 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
768 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
769 }
770
771 /* Update num of rx desc called upon return from rx path or
772 * from mvneta_rxq_drop_pkts().
773 */
774 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
775 struct mvneta_rx_queue *rxq,
776 int rx_done, int rx_filled)
777 {
778 u32 val;
779
780 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
781 val = rx_done |
782 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
783 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
784 return;
785 }
786
787 /* Only 255 descriptors can be added at once */
788 while ((rx_done > 0) || (rx_filled > 0)) {
789 if (rx_done <= 0xff) {
790 val = rx_done;
791 rx_done = 0;
792 } else {
793 val = 0xff;
794 rx_done -= 0xff;
795 }
796 if (rx_filled <= 0xff) {
797 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
798 rx_filled = 0;
799 } else {
800 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
801 rx_filled -= 0xff;
802 }
803 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
804 }
805 }
806
807 /* Get pointer to next RX descriptor to be processed by SW */
808 static struct mvneta_rx_desc *
809 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
810 {
811 int rx_desc = rxq->next_desc_to_proc;
812
813 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
814 prefetch(rxq->descs + rxq->next_desc_to_proc);
815 return rxq->descs + rx_desc;
816 }
817
818 /* Change maximum receive size of the port. */
819 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
820 {
821 u32 val;
822
823 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
824 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
825 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
826 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
827 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
828 }
829
830
831 /* Set rx queue offset */
832 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
833 struct mvneta_rx_queue *rxq,
834 int offset)
835 {
836 u32 val;
837
838 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
839 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
840
841 /* Offset is in */
842 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
843 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
844 }
845
846
847 /* Tx descriptors helper methods */
848
849 /* Update HW with number of TX descriptors to be sent */
850 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
851 struct mvneta_tx_queue *txq,
852 int pend_desc)
853 {
854 u32 val;
855
856 pend_desc += txq->pending;
857
858 /* Only 255 Tx descriptors can be added at once */
859 do {
860 val = min(pend_desc, 255);
861 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
862 pend_desc -= val;
863 } while (pend_desc > 0);
864 txq->pending = 0;
865 }
866
867 /* Get pointer to next TX descriptor to be processed (send) by HW */
868 static struct mvneta_tx_desc *
869 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
870 {
871 int tx_desc = txq->next_desc_to_proc;
872
873 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
874 return txq->descs + tx_desc;
875 }
876
877 /* Release the last allocated TX descriptor. Useful to handle DMA
878 * mapping failures in the TX path.
879 */
880 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
881 {
882 if (txq->next_desc_to_proc == 0)
883 txq->next_desc_to_proc = txq->last_desc - 1;
884 else
885 txq->next_desc_to_proc--;
886 }
887
888 /* Set rxq buf size */
889 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
890 struct mvneta_rx_queue *rxq,
891 int buf_size)
892 {
893 u32 val;
894
895 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
896
897 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
898 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
899
900 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
901 }
902
903 /* Disable buffer management (BM) */
904 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
905 struct mvneta_rx_queue *rxq)
906 {
907 u32 val;
908
909 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
910 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
911 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
912 }
913
914 /* Enable buffer management (BM) */
915 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
916 struct mvneta_rx_queue *rxq)
917 {
918 u32 val;
919
920 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
921 val |= MVNETA_RXQ_HW_BUF_ALLOC;
922 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
923 }
924
925 /* Notify HW about port's assignment of pool for bigger packets */
926 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
927 struct mvneta_rx_queue *rxq)
928 {
929 u32 val;
930
931 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
932 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
933 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
934
935 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
936 }
937
938 /* Notify HW about port's assignment of pool for smaller packets */
939 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
940 struct mvneta_rx_queue *rxq)
941 {
942 u32 val;
943
944 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
945 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
946 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
947
948 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
949 }
950
951 /* Set port's receive buffer size for assigned BM pool */
952 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
953 int buf_size,
954 u8 pool_id)
955 {
956 u32 val;
957
958 if (!IS_ALIGNED(buf_size, 8)) {
959 dev_warn(pp->dev->dev.parent,
960 "illegal buf_size value %d, round to %d\n",
961 buf_size, ALIGN(buf_size, 8));
962 buf_size = ALIGN(buf_size, 8);
963 }
964
965 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
966 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
967 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
968 }
969
970 /* Configure MBUS window in order to enable access BM internal SRAM */
971 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
972 u8 target, u8 attr)
973 {
974 u32 win_enable, win_protect;
975 int i;
976
977 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
978
979 if (pp->bm_win_id < 0) {
980 /* Find first not occupied window */
981 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
982 if (win_enable & (1 << i)) {
983 pp->bm_win_id = i;
984 break;
985 }
986 }
987 if (i == MVNETA_MAX_DECODE_WIN)
988 return -ENOMEM;
989 } else {
990 i = pp->bm_win_id;
991 }
992
993 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
994 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
995
996 if (i < 4)
997 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
998
999 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1000 (attr << 8) | target);
1001
1002 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1003
1004 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1005 win_protect |= 3 << (2 * i);
1006 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1007
1008 win_enable &= ~(1 << i);
1009 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1010
1011 return 0;
1012 }
1013
1014 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1015 {
1016 u32 wsize;
1017 u8 target, attr;
1018 int err;
1019
1020 /* Get BM window information */
1021 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1022 &target, &attr);
1023 if (err < 0)
1024 return err;
1025
1026 pp->bm_win_id = -1;
1027
1028 /* Open NETA -> BM window */
1029 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1030 target, attr);
1031 if (err < 0) {
1032 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1033 return err;
1034 }
1035 return 0;
1036 }
1037
1038 /* Assign and initialize pools for port. In case of fail
1039 * buffer manager will remain disabled for current port.
1040 */
1041 static int mvneta_bm_port_init(struct platform_device *pdev,
1042 struct mvneta_port *pp)
1043 {
1044 struct device_node *dn = pdev->dev.of_node;
1045 u32 long_pool_id, short_pool_id;
1046
1047 if (!pp->neta_armada3700) {
1048 int ret;
1049
1050 ret = mvneta_bm_port_mbus_init(pp);
1051 if (ret)
1052 return ret;
1053 }
1054
1055 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1056 netdev_info(pp->dev, "missing long pool id\n");
1057 return -EINVAL;
1058 }
1059
1060 /* Create port's long pool depending on mtu */
1061 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1062 MVNETA_BM_LONG, pp->id,
1063 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1064 if (!pp->pool_long) {
1065 netdev_info(pp->dev, "fail to obtain long pool for port\n");
1066 return -ENOMEM;
1067 }
1068
1069 pp->pool_long->port_map |= 1 << pp->id;
1070
1071 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1072 pp->pool_long->id);
1073
1074 /* If short pool id is not defined, assume using single pool */
1075 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1076 short_pool_id = long_pool_id;
1077
1078 /* Create port's short pool */
1079 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1080 MVNETA_BM_SHORT, pp->id,
1081 MVNETA_BM_SHORT_PKT_SIZE);
1082 if (!pp->pool_short) {
1083 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1084 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1085 return -ENOMEM;
1086 }
1087
1088 if (short_pool_id != long_pool_id) {
1089 pp->pool_short->port_map |= 1 << pp->id;
1090 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1091 pp->pool_short->id);
1092 }
1093
1094 return 0;
1095 }
1096
1097 /* Update settings of a pool for bigger packets */
1098 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1099 {
1100 struct mvneta_bm_pool *bm_pool = pp->pool_long;
1101 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1102 int num;
1103
1104 /* Release all buffers from long pool */
1105 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1106 if (hwbm_pool->buf_num) {
1107 WARN(1, "cannot free all buffers in pool %d\n",
1108 bm_pool->id);
1109 goto bm_mtu_err;
1110 }
1111
1112 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1113 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1114 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1115 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1116
1117 /* Fill entire long pool */
1118 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1119 if (num != hwbm_pool->size) {
1120 WARN(1, "pool %d: %d of %d allocated\n",
1121 bm_pool->id, num, hwbm_pool->size);
1122 goto bm_mtu_err;
1123 }
1124 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1125
1126 return;
1127
1128 bm_mtu_err:
1129 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1130 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1131
1132 pp->bm_priv = NULL;
1133 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1134 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1135 }
1136
1137 /* Start the Ethernet port RX and TX activity */
1138 static void mvneta_port_up(struct mvneta_port *pp)
1139 {
1140 int queue;
1141 u32 q_map;
1142
1143 /* Enable all initialized TXs. */
1144 q_map = 0;
1145 for (queue = 0; queue < txq_number; queue++) {
1146 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1147 if (txq->descs)
1148 q_map |= (1 << queue);
1149 }
1150 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1151
1152 q_map = 0;
1153 /* Enable all initialized RXQs. */
1154 for (queue = 0; queue < rxq_number; queue++) {
1155 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1156
1157 if (rxq->descs)
1158 q_map |= (1 << queue);
1159 }
1160 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1161 }
1162
1163 /* Stop the Ethernet port activity */
1164 static void mvneta_port_down(struct mvneta_port *pp)
1165 {
1166 u32 val;
1167 int count;
1168
1169 /* Stop Rx port activity. Check port Rx activity. */
1170 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1171
1172 /* Issue stop command for active channels only */
1173 if (val != 0)
1174 mvreg_write(pp, MVNETA_RXQ_CMD,
1175 val << MVNETA_RXQ_DISABLE_SHIFT);
1176
1177 /* Wait for all Rx activity to terminate. */
1178 count = 0;
1179 do {
1180 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1181 netdev_warn(pp->dev,
1182 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1183 val);
1184 break;
1185 }
1186 mdelay(1);
1187
1188 val = mvreg_read(pp, MVNETA_RXQ_CMD);
1189 } while (val & MVNETA_RXQ_ENABLE_MASK);
1190
1191 /* Stop Tx port activity. Check port Tx activity. Issue stop
1192 * command for active channels only
1193 */
1194 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1195
1196 if (val != 0)
1197 mvreg_write(pp, MVNETA_TXQ_CMD,
1198 (val << MVNETA_TXQ_DISABLE_SHIFT));
1199
1200 /* Wait for all Tx activity to terminate. */
1201 count = 0;
1202 do {
1203 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1204 netdev_warn(pp->dev,
1205 "TIMEOUT for TX stopped status=0x%08x\n",
1206 val);
1207 break;
1208 }
1209 mdelay(1);
1210
1211 /* Check TX Command reg that all Txqs are stopped */
1212 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1213
1214 } while (val & MVNETA_TXQ_ENABLE_MASK);
1215
1216 /* Double check to verify that TX FIFO is empty */
1217 count = 0;
1218 do {
1219 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1220 netdev_warn(pp->dev,
1221 "TX FIFO empty timeout status=0x%08x\n",
1222 val);
1223 break;
1224 }
1225 mdelay(1);
1226
1227 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1228 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1229 (val & MVNETA_TX_IN_PRGRS));
1230
1231 udelay(200);
1232 }
1233
1234 /* Enable the port by setting the port enable bit of the MAC control register */
1235 static void mvneta_port_enable(struct mvneta_port *pp)
1236 {
1237 u32 val;
1238
1239 /* Enable port */
1240 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1241 val |= MVNETA_GMAC0_PORT_ENABLE;
1242 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1243 }
1244
1245 /* Disable the port and wait for about 200 usec before retuning */
1246 static void mvneta_port_disable(struct mvneta_port *pp)
1247 {
1248 u32 val;
1249
1250 /* Reset the Enable bit in the Serial Control Register */
1251 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1252 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1253 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1254
1255 udelay(200);
1256 }
1257
1258 /* Multicast tables methods */
1259
1260 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1261 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1262 {
1263 int offset;
1264 u32 val;
1265
1266 if (queue == -1) {
1267 val = 0;
1268 } else {
1269 val = 0x1 | (queue << 1);
1270 val |= (val << 24) | (val << 16) | (val << 8);
1271 }
1272
1273 for (offset = 0; offset <= 0xc; offset += 4)
1274 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1275 }
1276
1277 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1278 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1279 {
1280 int offset;
1281 u32 val;
1282
1283 if (queue == -1) {
1284 val = 0;
1285 } else {
1286 val = 0x1 | (queue << 1);
1287 val |= (val << 24) | (val << 16) | (val << 8);
1288 }
1289
1290 for (offset = 0; offset <= 0xfc; offset += 4)
1291 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1292
1293 }
1294
1295 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1296 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1297 {
1298 int offset;
1299 u32 val;
1300
1301 if (queue == -1) {
1302 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1303 val = 0;
1304 } else {
1305 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1306 val = 0x1 | (queue << 1);
1307 val |= (val << 24) | (val << 16) | (val << 8);
1308 }
1309
1310 for (offset = 0; offset <= 0xfc; offset += 4)
1311 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1312 }
1313
1314 static void mvneta_percpu_unmask_interrupt(void *arg)
1315 {
1316 struct mvneta_port *pp = arg;
1317
1318 /* All the queue are unmasked, but actually only the ones
1319 * mapped to this CPU will be unmasked
1320 */
1321 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1322 MVNETA_RX_INTR_MASK_ALL |
1323 MVNETA_TX_INTR_MASK_ALL |
1324 MVNETA_MISCINTR_INTR_MASK);
1325 }
1326
1327 static void mvneta_percpu_mask_interrupt(void *arg)
1328 {
1329 struct mvneta_port *pp = arg;
1330
1331 /* All the queue are masked, but actually only the ones
1332 * mapped to this CPU will be masked
1333 */
1334 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1335 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1336 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1337 }
1338
1339 static void mvneta_percpu_clear_intr_cause(void *arg)
1340 {
1341 struct mvneta_port *pp = arg;
1342
1343 /* All the queue are cleared, but actually only the ones
1344 * mapped to this CPU will be cleared
1345 */
1346 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1347 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1348 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1349 }
1350
1351 /* This method sets defaults to the NETA port:
1352 * Clears interrupt Cause and Mask registers.
1353 * Clears all MAC tables.
1354 * Sets defaults to all registers.
1355 * Resets RX and TX descriptor rings.
1356 * Resets PHY.
1357 * This method can be called after mvneta_port_down() to return the port
1358 * settings to defaults.
1359 */
1360 static void mvneta_defaults_set(struct mvneta_port *pp)
1361 {
1362 int cpu;
1363 int queue;
1364 u32 val;
1365 int max_cpu = num_present_cpus();
1366
1367 /* Clear all Cause registers */
1368 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1369
1370 /* Mask all interrupts */
1371 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1372 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1373
1374 /* Enable MBUS Retry bit16 */
1375 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1376
1377 /* Set CPU queue access map. CPUs are assigned to the RX and
1378 * TX queues modulo their number. If there is only one TX
1379 * queue then it is assigned to the CPU associated to the
1380 * default RX queue.
1381 */
1382 for_each_present_cpu(cpu) {
1383 int rxq_map = 0, txq_map = 0;
1384 int rxq, txq;
1385 if (!pp->neta_armada3700) {
1386 for (rxq = 0; rxq < rxq_number; rxq++)
1387 if ((rxq % max_cpu) == cpu)
1388 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1389
1390 for (txq = 0; txq < txq_number; txq++)
1391 if ((txq % max_cpu) == cpu)
1392 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1393
1394 /* With only one TX queue we configure a special case
1395 * which will allow to get all the irq on a single
1396 * CPU
1397 */
1398 if (txq_number == 1)
1399 txq_map = (cpu == pp->rxq_def) ?
1400 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1401
1402 } else {
1403 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1404 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1405 }
1406
1407 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1408 }
1409
1410 /* Reset RX and TX DMAs */
1411 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1412 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1413
1414 /* Disable Legacy WRR, Disable EJP, Release from reset */
1415 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1416 for (queue = 0; queue < txq_number; queue++) {
1417 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1418 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1419 }
1420
1421 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1422 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1423
1424 /* Set Port Acceleration Mode */
1425 if (pp->bm_priv)
1426 /* HW buffer management + legacy parser */
1427 val = MVNETA_ACC_MODE_EXT2;
1428 else
1429 /* SW buffer management + legacy parser */
1430 val = MVNETA_ACC_MODE_EXT1;
1431 mvreg_write(pp, MVNETA_ACC_MODE, val);
1432
1433 if (pp->bm_priv)
1434 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1435
1436 /* Update val of portCfg register accordingly with all RxQueue types */
1437 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1438 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1439
1440 val = 0;
1441 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1442 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1443
1444 /* Build PORT_SDMA_CONFIG_REG */
1445 val = 0;
1446
1447 /* Default burst size */
1448 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1449 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1450 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1451
1452 #if defined(__BIG_ENDIAN)
1453 val |= MVNETA_DESC_SWAP;
1454 #endif
1455
1456 /* Assign port SDMA configuration */
1457 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1458
1459 /* Disable PHY polling in hardware, since we're using the
1460 * kernel phylib to do this.
1461 */
1462 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1463 val &= ~MVNETA_PHY_POLLING_ENABLE;
1464 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1465
1466 mvneta_set_ucast_table(pp, -1);
1467 mvneta_set_special_mcast_table(pp, -1);
1468 mvneta_set_other_mcast_table(pp, -1);
1469
1470 /* Set port interrupt enable register - default enable all */
1471 mvreg_write(pp, MVNETA_INTR_ENABLE,
1472 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1473 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1474
1475 mvneta_mib_counters_clear(pp);
1476 }
1477
1478 /* Set max sizes for tx queues */
1479 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1480
1481 {
1482 u32 val, size, mtu;
1483 int queue;
1484
1485 mtu = max_tx_size * 8;
1486 if (mtu > MVNETA_TX_MTU_MAX)
1487 mtu = MVNETA_TX_MTU_MAX;
1488
1489 /* Set MTU */
1490 val = mvreg_read(pp, MVNETA_TX_MTU);
1491 val &= ~MVNETA_TX_MTU_MAX;
1492 val |= mtu;
1493 mvreg_write(pp, MVNETA_TX_MTU, val);
1494
1495 /* TX token size and all TXQs token size must be larger that MTU */
1496 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1497
1498 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1499 if (size < mtu) {
1500 size = mtu;
1501 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1502 val |= size;
1503 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1504 }
1505 for (queue = 0; queue < txq_number; queue++) {
1506 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1507
1508 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1509 if (size < mtu) {
1510 size = mtu;
1511 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1512 val |= size;
1513 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1514 }
1515 }
1516 }
1517
1518 /* Set unicast address */
1519 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1520 int queue)
1521 {
1522 unsigned int unicast_reg;
1523 unsigned int tbl_offset;
1524 unsigned int reg_offset;
1525
1526 /* Locate the Unicast table entry */
1527 last_nibble = (0xf & last_nibble);
1528
1529 /* offset from unicast tbl base */
1530 tbl_offset = (last_nibble / 4) * 4;
1531
1532 /* offset within the above reg */
1533 reg_offset = last_nibble % 4;
1534
1535 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1536
1537 if (queue == -1) {
1538 /* Clear accepts frame bit at specified unicast DA tbl entry */
1539 unicast_reg &= ~(0xff << (8 * reg_offset));
1540 } else {
1541 unicast_reg &= ~(0xff << (8 * reg_offset));
1542 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1543 }
1544
1545 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1546 }
1547
1548 /* Set mac address */
1549 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1550 int queue)
1551 {
1552 unsigned int mac_h;
1553 unsigned int mac_l;
1554
1555 if (queue != -1) {
1556 mac_l = (addr[4] << 8) | (addr[5]);
1557 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1558 (addr[2] << 8) | (addr[3] << 0);
1559
1560 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1561 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1562 }
1563
1564 /* Accept frames of this address */
1565 mvneta_set_ucast_addr(pp, addr[5], queue);
1566 }
1567
1568 /* Set the number of packets that will be received before RX interrupt
1569 * will be generated by HW.
1570 */
1571 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1572 struct mvneta_rx_queue *rxq, u32 value)
1573 {
1574 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1575 value | MVNETA_RXQ_NON_OCCUPIED(0));
1576 }
1577
1578 /* Set the time delay in usec before RX interrupt will be generated by
1579 * HW.
1580 */
1581 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1582 struct mvneta_rx_queue *rxq, u32 value)
1583 {
1584 u32 val;
1585 unsigned long clk_rate;
1586
1587 clk_rate = clk_get_rate(pp->clk);
1588 val = (clk_rate / 1000000) * value;
1589
1590 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1591 }
1592
1593 /* Set threshold for TX_DONE pkts coalescing */
1594 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1595 struct mvneta_tx_queue *txq, u32 value)
1596 {
1597 u32 val;
1598
1599 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1600
1601 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1602 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1603
1604 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1605 }
1606
1607 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1608 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1609 u32 phys_addr, void *virt_addr,
1610 struct mvneta_rx_queue *rxq)
1611 {
1612 int i;
1613
1614 rx_desc->buf_phys_addr = phys_addr;
1615 i = rx_desc - rxq->descs;
1616 rxq->buf_virt_addr[i] = virt_addr;
1617 }
1618
1619 /* Decrement sent descriptors counter */
1620 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1621 struct mvneta_tx_queue *txq,
1622 int sent_desc)
1623 {
1624 u32 val;
1625
1626 /* Only 255 TX descriptors can be updated at once */
1627 while (sent_desc > 0xff) {
1628 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1629 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1630 sent_desc = sent_desc - 0xff;
1631 }
1632
1633 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1634 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1635 }
1636
1637 /* Get number of TX descriptors already sent by HW */
1638 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1639 struct mvneta_tx_queue *txq)
1640 {
1641 u32 val;
1642 int sent_desc;
1643
1644 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1645 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1646 MVNETA_TXQ_SENT_DESC_SHIFT;
1647
1648 return sent_desc;
1649 }
1650
1651 /* Get number of sent descriptors and decrement counter.
1652 * The number of sent descriptors is returned.
1653 */
1654 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1655 struct mvneta_tx_queue *txq)
1656 {
1657 int sent_desc;
1658
1659 /* Get number of sent descriptors */
1660 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1661
1662 /* Decrement sent descriptors counter */
1663 if (sent_desc)
1664 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1665
1666 return sent_desc;
1667 }
1668
1669 /* Set TXQ descriptors fields relevant for CSUM calculation */
1670 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1671 int ip_hdr_len, int l4_proto)
1672 {
1673 u32 command;
1674
1675 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1676 * G_L4_chk, L4_type; required only for checksum
1677 * calculation
1678 */
1679 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1680 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1681
1682 if (l3_proto == htons(ETH_P_IP))
1683 command |= MVNETA_TXD_IP_CSUM;
1684 else
1685 command |= MVNETA_TX_L3_IP6;
1686
1687 if (l4_proto == IPPROTO_TCP)
1688 command |= MVNETA_TX_L4_CSUM_FULL;
1689 else if (l4_proto == IPPROTO_UDP)
1690 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1691 else
1692 command |= MVNETA_TX_L4_CSUM_NOT;
1693
1694 return command;
1695 }
1696
1697
1698 /* Display more error info */
1699 static void mvneta_rx_error(struct mvneta_port *pp,
1700 struct mvneta_rx_desc *rx_desc)
1701 {
1702 u32 status = rx_desc->status;
1703
1704 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1705 case MVNETA_RXD_ERR_CRC:
1706 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1707 status, rx_desc->data_size);
1708 break;
1709 case MVNETA_RXD_ERR_OVERRUN:
1710 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1711 status, rx_desc->data_size);
1712 break;
1713 case MVNETA_RXD_ERR_LEN:
1714 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1715 status, rx_desc->data_size);
1716 break;
1717 case MVNETA_RXD_ERR_RESOURCE:
1718 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1719 status, rx_desc->data_size);
1720 break;
1721 }
1722 }
1723
1724 /* Handle RX checksum offload based on the descriptor's status */
1725 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1726 struct sk_buff *skb)
1727 {
1728 if ((pp->dev->features & NETIF_F_RXCSUM) &&
1729 (status & MVNETA_RXD_L3_IP4) &&
1730 (status & MVNETA_RXD_L4_CSUM_OK)) {
1731 skb->csum = 0;
1732 skb->ip_summed = CHECKSUM_UNNECESSARY;
1733 return;
1734 }
1735
1736 skb->ip_summed = CHECKSUM_NONE;
1737 }
1738
1739 /* Return tx queue pointer (find last set bit) according to <cause> returned
1740 * form tx_done reg. <cause> must not be null. The return value is always a
1741 * valid queue for matching the first one found in <cause>.
1742 */
1743 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1744 u32 cause)
1745 {
1746 int queue = fls(cause) - 1;
1747
1748 return &pp->txqs[queue];
1749 }
1750
1751 /* Free tx queue skbuffs */
1752 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1753 struct mvneta_tx_queue *txq, int num,
1754 struct netdev_queue *nq)
1755 {
1756 unsigned int bytes_compl = 0, pkts_compl = 0;
1757 int i;
1758
1759 for (i = 0; i < num; i++) {
1760 struct mvneta_tx_desc *tx_desc = txq->descs +
1761 txq->txq_get_index;
1762 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1763
1764 if (skb) {
1765 bytes_compl += skb->len;
1766 pkts_compl++;
1767 }
1768
1769 mvneta_txq_inc_get(txq);
1770
1771 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1772 dma_unmap_single(pp->dev->dev.parent,
1773 tx_desc->buf_phys_addr,
1774 tx_desc->data_size, DMA_TO_DEVICE);
1775 if (!skb)
1776 continue;
1777 dev_kfree_skb_any(skb);
1778 }
1779
1780 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1781 }
1782
1783 /* Handle end of transmission */
1784 static void mvneta_txq_done(struct mvneta_port *pp,
1785 struct mvneta_tx_queue *txq)
1786 {
1787 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1788 int tx_done;
1789
1790 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1791 if (!tx_done)
1792 return;
1793
1794 mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1795
1796 txq->count -= tx_done;
1797
1798 if (netif_tx_queue_stopped(nq)) {
1799 if (txq->count <= txq->tx_wake_threshold)
1800 netif_tx_wake_queue(nq);
1801 }
1802 }
1803
1804 /* Refill processing for SW buffer management */
1805 /* Allocate page per descriptor */
1806 static int mvneta_rx_refill(struct mvneta_port *pp,
1807 struct mvneta_rx_desc *rx_desc,
1808 struct mvneta_rx_queue *rxq,
1809 gfp_t gfp_mask)
1810 {
1811 dma_addr_t phys_addr;
1812 struct page *page;
1813
1814 page = __dev_alloc_page(gfp_mask);
1815 if (!page)
1816 return -ENOMEM;
1817
1818 /* map page for use */
1819 phys_addr = dma_map_page(pp->dev->dev.parent, page, 0, PAGE_SIZE,
1820 DMA_FROM_DEVICE);
1821 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1822 __free_page(page);
1823 return -ENOMEM;
1824 }
1825
1826 phys_addr += pp->rx_offset_correction;
1827 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1828 return 0;
1829 }
1830
1831 /* Handle tx checksum */
1832 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1833 {
1834 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1835 int ip_hdr_len = 0;
1836 __be16 l3_proto = vlan_get_protocol(skb);
1837 u8 l4_proto;
1838
1839 if (l3_proto == htons(ETH_P_IP)) {
1840 struct iphdr *ip4h = ip_hdr(skb);
1841
1842 /* Calculate IPv4 checksum and L4 checksum */
1843 ip_hdr_len = ip4h->ihl;
1844 l4_proto = ip4h->protocol;
1845 } else if (l3_proto == htons(ETH_P_IPV6)) {
1846 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1847
1848 /* Read l4_protocol from one of IPv6 extra headers */
1849 if (skb_network_header_len(skb) > 0)
1850 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1851 l4_proto = ip6h->nexthdr;
1852 } else
1853 return MVNETA_TX_L4_CSUM_NOT;
1854
1855 return mvneta_txq_desc_csum(skb_network_offset(skb),
1856 l3_proto, ip_hdr_len, l4_proto);
1857 }
1858
1859 return MVNETA_TX_L4_CSUM_NOT;
1860 }
1861
1862 /* Drop packets received by the RXQ and free buffers */
1863 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1864 struct mvneta_rx_queue *rxq)
1865 {
1866 int rx_done, i;
1867
1868 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1869 if (rx_done)
1870 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1871
1872 if (pp->bm_priv) {
1873 for (i = 0; i < rx_done; i++) {
1874 struct mvneta_rx_desc *rx_desc =
1875 mvneta_rxq_next_desc_get(rxq);
1876 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1877 struct mvneta_bm_pool *bm_pool;
1878
1879 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1880 /* Return dropped buffer to the pool */
1881 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1882 rx_desc->buf_phys_addr);
1883 }
1884 return;
1885 }
1886
1887 for (i = 0; i < rxq->size; i++) {
1888 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1889 void *data = rxq->buf_virt_addr[i];
1890 if (!data || !(rx_desc->buf_phys_addr))
1891 continue;
1892
1893 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1894 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1895 __free_page(data);
1896 }
1897 }
1898
1899 static inline
1900 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1901 {
1902 struct mvneta_rx_desc *rx_desc;
1903 int curr_desc = rxq->first_to_refill;
1904 int i;
1905
1906 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
1907 rx_desc = rxq->descs + curr_desc;
1908 if (!(rx_desc->buf_phys_addr)) {
1909 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
1910 pr_err("Can't refill queue %d. Done %d from %d\n",
1911 rxq->id, i, rxq->refill_num);
1912 rxq->refill_err++;
1913 break;
1914 }
1915 }
1916 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
1917 }
1918 rxq->refill_num -= i;
1919 rxq->first_to_refill = curr_desc;
1920
1921 return i;
1922 }
1923
1924 /* Main rx processing when using software buffer management */
1925 static int mvneta_rx_swbm(struct napi_struct *napi,
1926 struct mvneta_port *pp, int budget,
1927 struct mvneta_rx_queue *rxq)
1928 {
1929 struct net_device *dev = pp->dev;
1930 int rx_todo, rx_proc;
1931 int refill = 0;
1932 u32 rcvd_pkts = 0;
1933 u32 rcvd_bytes = 0;
1934
1935 /* Get number of received packets */
1936 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
1937 rx_proc = 0;
1938
1939 /* Fairness NAPI loop */
1940 while ((rcvd_pkts < budget) && (rx_proc < rx_todo)) {
1941 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1942 unsigned char *data;
1943 struct page *page;
1944 dma_addr_t phys_addr;
1945 u32 rx_status, index;
1946 int rx_bytes, skb_size, copy_size;
1947 int frag_num, frag_size, frag_offset;
1948
1949 index = rx_desc - rxq->descs;
1950 page = (struct page *)rxq->buf_virt_addr[index];
1951 data = page_address(page);
1952 /* Prefetch header */
1953 prefetch(data);
1954
1955 phys_addr = rx_desc->buf_phys_addr;
1956 rx_status = rx_desc->status;
1957 rx_proc++;
1958 rxq->refill_num++;
1959
1960 if (rx_status & MVNETA_RXD_FIRST_DESC) {
1961 /* Check errors only for FIRST descriptor */
1962 if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
1963 mvneta_rx_error(pp, rx_desc);
1964 dev->stats.rx_errors++;
1965 /* leave the descriptor untouched */
1966 continue;
1967 }
1968 rx_bytes = rx_desc->data_size -
1969 (ETH_FCS_LEN + MVNETA_MH_SIZE);
1970
1971 /* Allocate small skb for each new packet */
1972 skb_size = max(rx_copybreak, rx_header_size);
1973 rxq->skb = netdev_alloc_skb_ip_align(dev, skb_size);
1974 if (unlikely(!rxq->skb)) {
1975 netdev_err(dev,
1976 "Can't allocate skb on queue %d\n",
1977 rxq->id);
1978 dev->stats.rx_dropped++;
1979 rxq->skb_alloc_err++;
1980 continue;
1981 }
1982 copy_size = min(skb_size, rx_bytes);
1983
1984 /* Copy data from buffer to SKB, skip Marvell header */
1985 memcpy(rxq->skb->data, data + MVNETA_MH_SIZE,
1986 copy_size);
1987 skb_put(rxq->skb, copy_size);
1988 rxq->left_size = rx_bytes - copy_size;
1989
1990 mvneta_rx_csum(pp, rx_status, rxq->skb);
1991 if (rxq->left_size == 0) {
1992 int size = copy_size + MVNETA_MH_SIZE;
1993
1994 dma_sync_single_range_for_cpu(dev->dev.parent,
1995 phys_addr, 0,
1996 size,
1997 DMA_FROM_DEVICE);
1998
1999 /* leave the descriptor and buffer untouched */
2000 } else {
2001 /* refill descriptor with new buffer later */
2002 rx_desc->buf_phys_addr = 0;
2003
2004 frag_num = 0;
2005 frag_offset = copy_size + MVNETA_MH_SIZE;
2006 frag_size = min(rxq->left_size,
2007 (int)(PAGE_SIZE - frag_offset));
2008 skb_add_rx_frag(rxq->skb, frag_num, page,
2009 frag_offset, frag_size,
2010 PAGE_SIZE);
2011 dma_unmap_single(dev->dev.parent, phys_addr,
2012 PAGE_SIZE, DMA_FROM_DEVICE);
2013 rxq->left_size -= frag_size;
2014 }
2015 } else {
2016 /* Middle or Last descriptor */
2017 if (unlikely(!rxq->skb)) {
2018 pr_debug("no skb for rx_status 0x%x\n",
2019 rx_status);
2020 continue;
2021 }
2022 if (!rxq->left_size) {
2023 /* last descriptor has only FCS */
2024 /* and can be discarded */
2025 dma_sync_single_range_for_cpu(dev->dev.parent,
2026 phys_addr, 0,
2027 ETH_FCS_LEN,
2028 DMA_FROM_DEVICE);
2029 /* leave the descriptor and buffer untouched */
2030 } else {
2031 /* refill descriptor with new buffer later */
2032 rx_desc->buf_phys_addr = 0;
2033
2034 frag_num = skb_shinfo(rxq->skb)->nr_frags;
2035 frag_offset = 0;
2036 frag_size = min(rxq->left_size,
2037 (int)(PAGE_SIZE - frag_offset));
2038 skb_add_rx_frag(rxq->skb, frag_num, page,
2039 frag_offset, frag_size,
2040 PAGE_SIZE);
2041
2042 dma_unmap_single(dev->dev.parent, phys_addr,
2043 PAGE_SIZE,
2044 DMA_FROM_DEVICE);
2045
2046 rxq->left_size -= frag_size;
2047 }
2048 } /* Middle or Last descriptor */
2049
2050 if (!(rx_status & MVNETA_RXD_LAST_DESC))
2051 /* no last descriptor this time */
2052 continue;
2053
2054 if (rxq->left_size) {
2055 pr_err("get last desc, but left_size (%d) != 0\n",
2056 rxq->left_size);
2057 dev_kfree_skb_any(rxq->skb);
2058 rxq->left_size = 0;
2059 rxq->skb = NULL;
2060 continue;
2061 }
2062 rcvd_pkts++;
2063 rcvd_bytes += rxq->skb->len;
2064
2065 /* Linux processing */
2066 rxq->skb->protocol = eth_type_trans(rxq->skb, dev);
2067
2068 napi_gro_receive(napi, rxq->skb);
2069
2070 /* clean uncomplete skb pointer in queue */
2071 rxq->skb = NULL;
2072 rxq->left_size = 0;
2073 }
2074
2075 if (rcvd_pkts) {
2076 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2077
2078 u64_stats_update_begin(&stats->syncp);
2079 stats->rx_packets += rcvd_pkts;
2080 stats->rx_bytes += rcvd_bytes;
2081 u64_stats_update_end(&stats->syncp);
2082 }
2083
2084 /* return some buffers to hardware queue, one at a time is too slow */
2085 refill = mvneta_rx_refill_queue(pp, rxq);
2086
2087 /* Update rxq management counters */
2088 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2089
2090 return rcvd_pkts;
2091 }
2092
2093 /* Main rx processing when using hardware buffer management */
2094 static int mvneta_rx_hwbm(struct napi_struct *napi,
2095 struct mvneta_port *pp, int rx_todo,
2096 struct mvneta_rx_queue *rxq)
2097 {
2098 struct net_device *dev = pp->dev;
2099 int rx_done;
2100 u32 rcvd_pkts = 0;
2101 u32 rcvd_bytes = 0;
2102
2103 /* Get number of received packets */
2104 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2105
2106 if (rx_todo > rx_done)
2107 rx_todo = rx_done;
2108
2109 rx_done = 0;
2110
2111 /* Fairness NAPI loop */
2112 while (rx_done < rx_todo) {
2113 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2114 struct mvneta_bm_pool *bm_pool = NULL;
2115 struct sk_buff *skb;
2116 unsigned char *data;
2117 dma_addr_t phys_addr;
2118 u32 rx_status, frag_size;
2119 int rx_bytes, err;
2120 u8 pool_id;
2121
2122 rx_done++;
2123 rx_status = rx_desc->status;
2124 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2125 data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2126 phys_addr = rx_desc->buf_phys_addr;
2127 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2128 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2129
2130 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2131 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2132 err_drop_frame_ret_pool:
2133 /* Return the buffer to the pool */
2134 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2135 rx_desc->buf_phys_addr);
2136 err_drop_frame:
2137 dev->stats.rx_errors++;
2138 mvneta_rx_error(pp, rx_desc);
2139 /* leave the descriptor untouched */
2140 continue;
2141 }
2142
2143 if (rx_bytes <= rx_copybreak) {
2144 /* better copy a small frame and not unmap the DMA region */
2145 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2146 if (unlikely(!skb))
2147 goto err_drop_frame_ret_pool;
2148
2149 dma_sync_single_range_for_cpu(dev->dev.parent,
2150 rx_desc->buf_phys_addr,
2151 MVNETA_MH_SIZE + NET_SKB_PAD,
2152 rx_bytes,
2153 DMA_FROM_DEVICE);
2154 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2155 rx_bytes);
2156
2157 skb->protocol = eth_type_trans(skb, dev);
2158 mvneta_rx_csum(pp, rx_status, skb);
2159 napi_gro_receive(napi, skb);
2160
2161 rcvd_pkts++;
2162 rcvd_bytes += rx_bytes;
2163
2164 /* Return the buffer to the pool */
2165 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2166 rx_desc->buf_phys_addr);
2167
2168 /* leave the descriptor and buffer untouched */
2169 continue;
2170 }
2171
2172 /* Refill processing */
2173 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2174 if (err) {
2175 netdev_err(dev, "Linux processing - Can't refill\n");
2176 rxq->refill_err++;
2177 goto err_drop_frame_ret_pool;
2178 }
2179
2180 frag_size = bm_pool->hwbm_pool.frag_size;
2181
2182 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2183
2184 /* After refill old buffer has to be unmapped regardless
2185 * the skb is successfully built or not.
2186 */
2187 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2188 bm_pool->buf_size, DMA_FROM_DEVICE);
2189 if (!skb)
2190 goto err_drop_frame;
2191
2192 rcvd_pkts++;
2193 rcvd_bytes += rx_bytes;
2194
2195 /* Linux processing */
2196 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2197 skb_put(skb, rx_bytes);
2198
2199 skb->protocol = eth_type_trans(skb, dev);
2200
2201 mvneta_rx_csum(pp, rx_status, skb);
2202
2203 napi_gro_receive(napi, skb);
2204 }
2205
2206 if (rcvd_pkts) {
2207 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2208
2209 u64_stats_update_begin(&stats->syncp);
2210 stats->rx_packets += rcvd_pkts;
2211 stats->rx_bytes += rcvd_bytes;
2212 u64_stats_update_end(&stats->syncp);
2213 }
2214
2215 /* Update rxq management counters */
2216 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2217
2218 return rx_done;
2219 }
2220
2221 static inline void
2222 mvneta_tso_put_hdr(struct sk_buff *skb,
2223 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2224 {
2225 struct mvneta_tx_desc *tx_desc;
2226 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2227
2228 txq->tx_skb[txq->txq_put_index] = NULL;
2229 tx_desc = mvneta_txq_next_desc_get(txq);
2230 tx_desc->data_size = hdr_len;
2231 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2232 tx_desc->command |= MVNETA_TXD_F_DESC;
2233 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2234 txq->txq_put_index * TSO_HEADER_SIZE;
2235 mvneta_txq_inc_put(txq);
2236 }
2237
2238 static inline int
2239 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2240 struct sk_buff *skb, char *data, int size,
2241 bool last_tcp, bool is_last)
2242 {
2243 struct mvneta_tx_desc *tx_desc;
2244
2245 tx_desc = mvneta_txq_next_desc_get(txq);
2246 tx_desc->data_size = size;
2247 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2248 size, DMA_TO_DEVICE);
2249 if (unlikely(dma_mapping_error(dev->dev.parent,
2250 tx_desc->buf_phys_addr))) {
2251 mvneta_txq_desc_put(txq);
2252 return -ENOMEM;
2253 }
2254
2255 tx_desc->command = 0;
2256 txq->tx_skb[txq->txq_put_index] = NULL;
2257
2258 if (last_tcp) {
2259 /* last descriptor in the TCP packet */
2260 tx_desc->command = MVNETA_TXD_L_DESC;
2261
2262 /* last descriptor in SKB */
2263 if (is_last)
2264 txq->tx_skb[txq->txq_put_index] = skb;
2265 }
2266 mvneta_txq_inc_put(txq);
2267 return 0;
2268 }
2269
2270 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2271 struct mvneta_tx_queue *txq)
2272 {
2273 int total_len, data_left;
2274 int desc_count = 0;
2275 struct mvneta_port *pp = netdev_priv(dev);
2276 struct tso_t tso;
2277 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2278 int i;
2279
2280 /* Count needed descriptors */
2281 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2282 return 0;
2283
2284 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2285 pr_info("*** Is this even possible???!?!?\n");
2286 return 0;
2287 }
2288
2289 /* Initialize the TSO handler, and prepare the first payload */
2290 tso_start(skb, &tso);
2291
2292 total_len = skb->len - hdr_len;
2293 while (total_len > 0) {
2294 char *hdr;
2295
2296 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2297 total_len -= data_left;
2298 desc_count++;
2299
2300 /* prepare packet headers: MAC + IP + TCP */
2301 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2302 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2303
2304 mvneta_tso_put_hdr(skb, pp, txq);
2305
2306 while (data_left > 0) {
2307 int size;
2308 desc_count++;
2309
2310 size = min_t(int, tso.size, data_left);
2311
2312 if (mvneta_tso_put_data(dev, txq, skb,
2313 tso.data, size,
2314 size == data_left,
2315 total_len == 0))
2316 goto err_release;
2317 data_left -= size;
2318
2319 tso_build_data(skb, &tso, size);
2320 }
2321 }
2322
2323 return desc_count;
2324
2325 err_release:
2326 /* Release all used data descriptors; header descriptors must not
2327 * be DMA-unmapped.
2328 */
2329 for (i = desc_count - 1; i >= 0; i--) {
2330 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2331 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2332 dma_unmap_single(pp->dev->dev.parent,
2333 tx_desc->buf_phys_addr,
2334 tx_desc->data_size,
2335 DMA_TO_DEVICE);
2336 mvneta_txq_desc_put(txq);
2337 }
2338 return 0;
2339 }
2340
2341 /* Handle tx fragmentation processing */
2342 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2343 struct mvneta_tx_queue *txq)
2344 {
2345 struct mvneta_tx_desc *tx_desc;
2346 int i, nr_frags = skb_shinfo(skb)->nr_frags;
2347
2348 for (i = 0; i < nr_frags; i++) {
2349 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2350 void *addr = page_address(frag->page.p) + frag->page_offset;
2351
2352 tx_desc = mvneta_txq_next_desc_get(txq);
2353 tx_desc->data_size = frag->size;
2354
2355 tx_desc->buf_phys_addr =
2356 dma_map_single(pp->dev->dev.parent, addr,
2357 tx_desc->data_size, DMA_TO_DEVICE);
2358
2359 if (dma_mapping_error(pp->dev->dev.parent,
2360 tx_desc->buf_phys_addr)) {
2361 mvneta_txq_desc_put(txq);
2362 goto error;
2363 }
2364
2365 if (i == nr_frags - 1) {
2366 /* Last descriptor */
2367 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2368 txq->tx_skb[txq->txq_put_index] = skb;
2369 } else {
2370 /* Descriptor in the middle: Not First, Not Last */
2371 tx_desc->command = 0;
2372 txq->tx_skb[txq->txq_put_index] = NULL;
2373 }
2374 mvneta_txq_inc_put(txq);
2375 }
2376
2377 return 0;
2378
2379 error:
2380 /* Release all descriptors that were used to map fragments of
2381 * this packet, as well as the corresponding DMA mappings
2382 */
2383 for (i = i - 1; i >= 0; i--) {
2384 tx_desc = txq->descs + i;
2385 dma_unmap_single(pp->dev->dev.parent,
2386 tx_desc->buf_phys_addr,
2387 tx_desc->data_size,
2388 DMA_TO_DEVICE);
2389 mvneta_txq_desc_put(txq);
2390 }
2391
2392 return -ENOMEM;
2393 }
2394
2395 /* Main tx processing */
2396 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2397 {
2398 struct mvneta_port *pp = netdev_priv(dev);
2399 u16 txq_id = skb_get_queue_mapping(skb);
2400 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2401 struct mvneta_tx_desc *tx_desc;
2402 int len = skb->len;
2403 int frags = 0;
2404 u32 tx_cmd;
2405
2406 if (!netif_running(dev))
2407 goto out;
2408
2409 if (skb_is_gso(skb)) {
2410 frags = mvneta_tx_tso(skb, dev, txq);
2411 goto out;
2412 }
2413
2414 frags = skb_shinfo(skb)->nr_frags + 1;
2415
2416 /* Get a descriptor for the first part of the packet */
2417 tx_desc = mvneta_txq_next_desc_get(txq);
2418
2419 tx_cmd = mvneta_skb_tx_csum(pp, skb);
2420
2421 tx_desc->data_size = skb_headlen(skb);
2422
2423 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2424 tx_desc->data_size,
2425 DMA_TO_DEVICE);
2426 if (unlikely(dma_mapping_error(dev->dev.parent,
2427 tx_desc->buf_phys_addr))) {
2428 mvneta_txq_desc_put(txq);
2429 frags = 0;
2430 goto out;
2431 }
2432
2433 if (frags == 1) {
2434 /* First and Last descriptor */
2435 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2436 tx_desc->command = tx_cmd;
2437 txq->tx_skb[txq->txq_put_index] = skb;
2438 mvneta_txq_inc_put(txq);
2439 } else {
2440 /* First but not Last */
2441 tx_cmd |= MVNETA_TXD_F_DESC;
2442 txq->tx_skb[txq->txq_put_index] = NULL;
2443 mvneta_txq_inc_put(txq);
2444 tx_desc->command = tx_cmd;
2445 /* Continue with other skb fragments */
2446 if (mvneta_tx_frag_process(pp, skb, txq)) {
2447 dma_unmap_single(dev->dev.parent,
2448 tx_desc->buf_phys_addr,
2449 tx_desc->data_size,
2450 DMA_TO_DEVICE);
2451 mvneta_txq_desc_put(txq);
2452 frags = 0;
2453 goto out;
2454 }
2455 }
2456
2457 out:
2458 if (frags > 0) {
2459 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2460 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2461
2462 netdev_tx_sent_queue(nq, len);
2463
2464 txq->count += frags;
2465 if (txq->count >= txq->tx_stop_threshold)
2466 netif_tx_stop_queue(nq);
2467
2468 if (!skb->xmit_more || netif_xmit_stopped(nq) ||
2469 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2470 mvneta_txq_pend_desc_add(pp, txq, frags);
2471 else
2472 txq->pending += frags;
2473
2474 u64_stats_update_begin(&stats->syncp);
2475 stats->tx_packets++;
2476 stats->tx_bytes += len;
2477 u64_stats_update_end(&stats->syncp);
2478 } else {
2479 dev->stats.tx_dropped++;
2480 dev_kfree_skb_any(skb);
2481 }
2482
2483 return NETDEV_TX_OK;
2484 }
2485
2486
2487 /* Free tx resources, when resetting a port */
2488 static void mvneta_txq_done_force(struct mvneta_port *pp,
2489 struct mvneta_tx_queue *txq)
2490
2491 {
2492 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2493 int tx_done = txq->count;
2494
2495 mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2496
2497 /* reset txq */
2498 txq->count = 0;
2499 txq->txq_put_index = 0;
2500 txq->txq_get_index = 0;
2501 }
2502
2503 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2504 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2505 */
2506 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2507 {
2508 struct mvneta_tx_queue *txq;
2509 struct netdev_queue *nq;
2510 int cpu = smp_processor_id();
2511
2512 while (cause_tx_done) {
2513 txq = mvneta_tx_done_policy(pp, cause_tx_done);
2514
2515 nq = netdev_get_tx_queue(pp->dev, txq->id);
2516 __netif_tx_lock(nq, cpu);
2517
2518 if (txq->count)
2519 mvneta_txq_done(pp, txq);
2520
2521 __netif_tx_unlock(nq);
2522 cause_tx_done &= ~((1 << txq->id));
2523 }
2524 }
2525
2526 /* Compute crc8 of the specified address, using a unique algorithm ,
2527 * according to hw spec, different than generic crc8 algorithm
2528 */
2529 static int mvneta_addr_crc(unsigned char *addr)
2530 {
2531 int crc = 0;
2532 int i;
2533
2534 for (i = 0; i < ETH_ALEN; i++) {
2535 int j;
2536
2537 crc = (crc ^ addr[i]) << 8;
2538 for (j = 7; j >= 0; j--) {
2539 if (crc & (0x100 << j))
2540 crc ^= 0x107 << j;
2541 }
2542 }
2543
2544 return crc;
2545 }
2546
2547 /* This method controls the net device special MAC multicast support.
2548 * The Special Multicast Table for MAC addresses supports MAC of the form
2549 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2550 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2551 * Table entries in the DA-Filter table. This method set the Special
2552 * Multicast Table appropriate entry.
2553 */
2554 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2555 unsigned char last_byte,
2556 int queue)
2557 {
2558 unsigned int smc_table_reg;
2559 unsigned int tbl_offset;
2560 unsigned int reg_offset;
2561
2562 /* Register offset from SMC table base */
2563 tbl_offset = (last_byte / 4);
2564 /* Entry offset within the above reg */
2565 reg_offset = last_byte % 4;
2566
2567 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2568 + tbl_offset * 4));
2569
2570 if (queue == -1)
2571 smc_table_reg &= ~(0xff << (8 * reg_offset));
2572 else {
2573 smc_table_reg &= ~(0xff << (8 * reg_offset));
2574 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2575 }
2576
2577 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2578 smc_table_reg);
2579 }
2580
2581 /* This method controls the network device Other MAC multicast support.
2582 * The Other Multicast Table is used for multicast of another type.
2583 * A CRC-8 is used as an index to the Other Multicast Table entries
2584 * in the DA-Filter table.
2585 * The method gets the CRC-8 value from the calling routine and
2586 * sets the Other Multicast Table appropriate entry according to the
2587 * specified CRC-8 .
2588 */
2589 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2590 unsigned char crc8,
2591 int queue)
2592 {
2593 unsigned int omc_table_reg;
2594 unsigned int tbl_offset;
2595 unsigned int reg_offset;
2596
2597 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2598 reg_offset = crc8 % 4; /* Entry offset within the above reg */
2599
2600 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2601
2602 if (queue == -1) {
2603 /* Clear accepts frame bit at specified Other DA table entry */
2604 omc_table_reg &= ~(0xff << (8 * reg_offset));
2605 } else {
2606 omc_table_reg &= ~(0xff << (8 * reg_offset));
2607 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2608 }
2609
2610 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2611 }
2612
2613 /* The network device supports multicast using two tables:
2614 * 1) Special Multicast Table for MAC addresses of the form
2615 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2616 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2617 * Table entries in the DA-Filter table.
2618 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2619 * is used as an index to the Other Multicast Table entries in the
2620 * DA-Filter table.
2621 */
2622 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2623 int queue)
2624 {
2625 unsigned char crc_result = 0;
2626
2627 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2628 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2629 return 0;
2630 }
2631
2632 crc_result = mvneta_addr_crc(p_addr);
2633 if (queue == -1) {
2634 if (pp->mcast_count[crc_result] == 0) {
2635 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2636 crc_result);
2637 return -EINVAL;
2638 }
2639
2640 pp->mcast_count[crc_result]--;
2641 if (pp->mcast_count[crc_result] != 0) {
2642 netdev_info(pp->dev,
2643 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2644 pp->mcast_count[crc_result], crc_result);
2645 return -EINVAL;
2646 }
2647 } else
2648 pp->mcast_count[crc_result]++;
2649
2650 mvneta_set_other_mcast_addr(pp, crc_result, queue);
2651
2652 return 0;
2653 }
2654
2655 /* Configure Fitering mode of Ethernet port */
2656 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2657 int is_promisc)
2658 {
2659 u32 port_cfg_reg, val;
2660
2661 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2662
2663 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2664
2665 /* Set / Clear UPM bit in port configuration register */
2666 if (is_promisc) {
2667 /* Accept all Unicast addresses */
2668 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2669 val |= MVNETA_FORCE_UNI;
2670 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2671 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2672 } else {
2673 /* Reject all Unicast addresses */
2674 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2675 val &= ~MVNETA_FORCE_UNI;
2676 }
2677
2678 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2679 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2680 }
2681
2682 /* register unicast and multicast addresses */
2683 static void mvneta_set_rx_mode(struct net_device *dev)
2684 {
2685 struct mvneta_port *pp = netdev_priv(dev);
2686 struct netdev_hw_addr *ha;
2687
2688 if (dev->flags & IFF_PROMISC) {
2689 /* Accept all: Multicast + Unicast */
2690 mvneta_rx_unicast_promisc_set(pp, 1);
2691 mvneta_set_ucast_table(pp, pp->rxq_def);
2692 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2693 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2694 } else {
2695 /* Accept single Unicast */
2696 mvneta_rx_unicast_promisc_set(pp, 0);
2697 mvneta_set_ucast_table(pp, -1);
2698 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2699
2700 if (dev->flags & IFF_ALLMULTI) {
2701 /* Accept all multicast */
2702 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2703 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2704 } else {
2705 /* Accept only initialized multicast */
2706 mvneta_set_special_mcast_table(pp, -1);
2707 mvneta_set_other_mcast_table(pp, -1);
2708
2709 if (!netdev_mc_empty(dev)) {
2710 netdev_for_each_mc_addr(ha, dev) {
2711 mvneta_mcast_addr_set(pp, ha->addr,
2712 pp->rxq_def);
2713 }
2714 }
2715 }
2716 }
2717 }
2718
2719 /* Interrupt handling - the callback for request_irq() */
2720 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2721 {
2722 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2723
2724 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2725 napi_schedule(&pp->napi);
2726
2727 return IRQ_HANDLED;
2728 }
2729
2730 /* Interrupt handling - the callback for request_percpu_irq() */
2731 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2732 {
2733 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2734
2735 disable_percpu_irq(port->pp->dev->irq);
2736 napi_schedule(&port->napi);
2737
2738 return IRQ_HANDLED;
2739 }
2740
2741 static void mvneta_link_change(struct mvneta_port *pp)
2742 {
2743 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2744
2745 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
2746 }
2747
2748 /* NAPI handler
2749 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2750 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2751 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2752 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2753 * Each CPU has its own causeRxTx register
2754 */
2755 static int mvneta_poll(struct napi_struct *napi, int budget)
2756 {
2757 int rx_done = 0;
2758 u32 cause_rx_tx;
2759 int rx_queue;
2760 struct mvneta_port *pp = netdev_priv(napi->dev);
2761 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2762
2763 if (!netif_running(pp->dev)) {
2764 napi_complete(napi);
2765 return rx_done;
2766 }
2767
2768 /* Read cause register */
2769 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2770 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2771 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2772
2773 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2774
2775 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2776 MVNETA_CAUSE_LINK_CHANGE))
2777 mvneta_link_change(pp);
2778 }
2779
2780 /* Release Tx descriptors */
2781 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2782 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2783 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2784 }
2785
2786 /* For the case where the last mvneta_poll did not process all
2787 * RX packets
2788 */
2789 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2790
2791 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2792 port->cause_rx_tx;
2793
2794 if (rx_queue) {
2795 rx_queue = rx_queue - 1;
2796 if (pp->bm_priv)
2797 rx_done = mvneta_rx_hwbm(napi, pp, budget,
2798 &pp->rxqs[rx_queue]);
2799 else
2800 rx_done = mvneta_rx_swbm(napi, pp, budget,
2801 &pp->rxqs[rx_queue]);
2802 }
2803
2804 if (rx_done < budget) {
2805 cause_rx_tx = 0;
2806 napi_complete_done(napi, rx_done);
2807
2808 if (pp->neta_armada3700) {
2809 unsigned long flags;
2810
2811 local_irq_save(flags);
2812 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2813 MVNETA_RX_INTR_MASK(rxq_number) |
2814 MVNETA_TX_INTR_MASK(txq_number) |
2815 MVNETA_MISCINTR_INTR_MASK);
2816 local_irq_restore(flags);
2817 } else {
2818 enable_percpu_irq(pp->dev->irq, 0);
2819 }
2820 }
2821
2822 if (pp->neta_armada3700)
2823 pp->cause_rx_tx = cause_rx_tx;
2824 else
2825 port->cause_rx_tx = cause_rx_tx;
2826
2827 return rx_done;
2828 }
2829
2830 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2831 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2832 int num)
2833 {
2834 int i;
2835
2836 for (i = 0; i < num; i++) {
2837 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2838 if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
2839 GFP_KERNEL) != 0) {
2840 netdev_err(pp->dev,
2841 "%s:rxq %d, %d of %d buffs filled\n",
2842 __func__, rxq->id, i, num);
2843 break;
2844 }
2845 }
2846
2847 /* Add this number of RX descriptors as non occupied (ready to
2848 * get packets)
2849 */
2850 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2851
2852 return i;
2853 }
2854
2855 /* Free all packets pending transmit from all TXQs and reset TX port */
2856 static void mvneta_tx_reset(struct mvneta_port *pp)
2857 {
2858 int queue;
2859
2860 /* free the skb's in the tx ring */
2861 for (queue = 0; queue < txq_number; queue++)
2862 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2863
2864 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2865 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2866 }
2867
2868 static void mvneta_rx_reset(struct mvneta_port *pp)
2869 {
2870 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2871 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2872 }
2873
2874 /* Rx/Tx queue initialization/cleanup methods */
2875
2876 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
2877 struct mvneta_rx_queue *rxq)
2878 {
2879 rxq->size = pp->rx_ring_size;
2880
2881 /* Allocate memory for RX descriptors */
2882 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2883 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2884 &rxq->descs_phys, GFP_KERNEL);
2885 if (!rxq->descs)
2886 return -ENOMEM;
2887
2888 rxq->last_desc = rxq->size - 1;
2889
2890 return 0;
2891 }
2892
2893 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
2894 struct mvneta_rx_queue *rxq)
2895 {
2896 /* Set Rx descriptors queue starting address */
2897 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2898 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2899
2900 /* Set coalescing pkts and time */
2901 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2902 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2903
2904 if (!pp->bm_priv) {
2905 /* Set Offset */
2906 mvneta_rxq_offset_set(pp, rxq, 0);
2907 mvneta_rxq_buf_size_set(pp, rxq, pp->frag_size);
2908 mvneta_rxq_bm_disable(pp, rxq);
2909 mvneta_rxq_fill(pp, rxq, rxq->size);
2910 } else {
2911 /* Set Offset */
2912 mvneta_rxq_offset_set(pp, rxq,
2913 NET_SKB_PAD - pp->rx_offset_correction);
2914
2915 mvneta_rxq_bm_enable(pp, rxq);
2916 /* Fill RXQ with buffers from RX pool */
2917 mvneta_rxq_long_pool_set(pp, rxq);
2918 mvneta_rxq_short_pool_set(pp, rxq);
2919 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2920 }
2921 }
2922
2923 /* Create a specified RX queue */
2924 static int mvneta_rxq_init(struct mvneta_port *pp,
2925 struct mvneta_rx_queue *rxq)
2926
2927 {
2928 int ret;
2929
2930 ret = mvneta_rxq_sw_init(pp, rxq);
2931 if (ret < 0)
2932 return ret;
2933
2934 mvneta_rxq_hw_init(pp, rxq);
2935
2936 return 0;
2937 }
2938
2939 /* Cleanup Rx queue */
2940 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2941 struct mvneta_rx_queue *rxq)
2942 {
2943 mvneta_rxq_drop_pkts(pp, rxq);
2944
2945 if (rxq->skb)
2946 dev_kfree_skb_any(rxq->skb);
2947
2948 if (rxq->descs)
2949 dma_free_coherent(pp->dev->dev.parent,
2950 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2951 rxq->descs,
2952 rxq->descs_phys);
2953
2954 rxq->descs = NULL;
2955 rxq->last_desc = 0;
2956 rxq->next_desc_to_proc = 0;
2957 rxq->descs_phys = 0;
2958 rxq->first_to_refill = 0;
2959 rxq->refill_num = 0;
2960 rxq->skb = NULL;
2961 rxq->left_size = 0;
2962 }
2963
2964 static int mvneta_txq_sw_init(struct mvneta_port *pp,
2965 struct mvneta_tx_queue *txq)
2966 {
2967 int cpu;
2968
2969 txq->size = pp->tx_ring_size;
2970
2971 /* A queue must always have room for at least one skb.
2972 * Therefore, stop the queue when the free entries reaches
2973 * the maximum number of descriptors per skb.
2974 */
2975 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2976 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2977
2978 /* Allocate memory for TX descriptors */
2979 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2980 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2981 &txq->descs_phys, GFP_KERNEL);
2982 if (!txq->descs)
2983 return -ENOMEM;
2984
2985 txq->last_desc = txq->size - 1;
2986
2987 txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
2988 GFP_KERNEL);
2989 if (!txq->tx_skb) {
2990 dma_free_coherent(pp->dev->dev.parent,
2991 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2992 txq->descs, txq->descs_phys);
2993 return -ENOMEM;
2994 }
2995
2996 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2997 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2998 txq->size * TSO_HEADER_SIZE,
2999 &txq->tso_hdrs_phys, GFP_KERNEL);
3000 if (!txq->tso_hdrs) {
3001 kfree(txq->tx_skb);
3002 dma_free_coherent(pp->dev->dev.parent,
3003 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3004 txq->descs, txq->descs_phys);
3005 return -ENOMEM;
3006 }
3007
3008 /* Setup XPS mapping */
3009 if (txq_number > 1)
3010 cpu = txq->id % num_present_cpus();
3011 else
3012 cpu = pp->rxq_def % num_present_cpus();
3013 cpumask_set_cpu(cpu, &txq->affinity_mask);
3014 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3015
3016 return 0;
3017 }
3018
3019 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3020 struct mvneta_tx_queue *txq)
3021 {
3022 /* Set maximum bandwidth for enabled TXQs */
3023 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3024 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3025
3026 /* Set Tx descriptors queue starting address */
3027 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3028 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3029
3030 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3031 }
3032
3033 /* Create and initialize a tx queue */
3034 static int mvneta_txq_init(struct mvneta_port *pp,
3035 struct mvneta_tx_queue *txq)
3036 {
3037 int ret;
3038
3039 ret = mvneta_txq_sw_init(pp, txq);
3040 if (ret < 0)
3041 return ret;
3042
3043 mvneta_txq_hw_init(pp, txq);
3044
3045 return 0;
3046 }
3047
3048 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3049 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3050 struct mvneta_tx_queue *txq)
3051 {
3052 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3053
3054 kfree(txq->tx_skb);
3055
3056 if (txq->tso_hdrs)
3057 dma_free_coherent(pp->dev->dev.parent,
3058 txq->size * TSO_HEADER_SIZE,
3059 txq->tso_hdrs, txq->tso_hdrs_phys);
3060 if (txq->descs)
3061 dma_free_coherent(pp->dev->dev.parent,
3062 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3063 txq->descs, txq->descs_phys);
3064
3065 netdev_tx_reset_queue(nq);
3066
3067 txq->descs = NULL;
3068 txq->last_desc = 0;
3069 txq->next_desc_to_proc = 0;
3070 txq->descs_phys = 0;
3071 }
3072
3073 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3074 struct mvneta_tx_queue *txq)
3075 {
3076 /* Set minimum bandwidth for disabled TXQs */
3077 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3078 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3079
3080 /* Set Tx descriptors queue starting address and size */
3081 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3082 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3083 }
3084
3085 static void mvneta_txq_deinit(struct mvneta_port *pp,
3086 struct mvneta_tx_queue *txq)
3087 {
3088 mvneta_txq_sw_deinit(pp, txq);
3089 mvneta_txq_hw_deinit(pp, txq);
3090 }
3091
3092 /* Cleanup all Tx queues */
3093 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3094 {
3095 int queue;
3096
3097 for (queue = 0; queue < txq_number; queue++)
3098 mvneta_txq_deinit(pp, &pp->txqs[queue]);
3099 }
3100
3101 /* Cleanup all Rx queues */
3102 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3103 {
3104 int queue;
3105
3106 for (queue = 0; queue < rxq_number; queue++)
3107 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3108 }
3109
3110
3111 /* Init all Rx queues */
3112 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3113 {
3114 int queue;
3115
3116 for (queue = 0; queue < rxq_number; queue++) {
3117 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3118
3119 if (err) {
3120 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3121 __func__, queue);
3122 mvneta_cleanup_rxqs(pp);
3123 return err;
3124 }
3125 }
3126
3127 return 0;
3128 }
3129
3130 /* Init all tx queues */
3131 static int mvneta_setup_txqs(struct mvneta_port *pp)
3132 {
3133 int queue;
3134
3135 for (queue = 0; queue < txq_number; queue++) {
3136 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3137 if (err) {
3138 netdev_err(pp->dev, "%s: can't create txq=%d\n",
3139 __func__, queue);
3140 mvneta_cleanup_txqs(pp);
3141 return err;
3142 }
3143 }
3144
3145 return 0;
3146 }
3147
3148 static void mvneta_start_dev(struct mvneta_port *pp)
3149 {
3150 int cpu;
3151
3152 mvneta_max_rx_size_set(pp, pp->pkt_size);
3153 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3154
3155 /* start the Rx/Tx activity */
3156 mvneta_port_enable(pp);
3157
3158 if (!pp->neta_armada3700) {
3159 /* Enable polling on the port */
3160 for_each_online_cpu(cpu) {
3161 struct mvneta_pcpu_port *port =
3162 per_cpu_ptr(pp->ports, cpu);
3163
3164 napi_enable(&port->napi);
3165 }
3166 } else {
3167 napi_enable(&pp->napi);
3168 }
3169
3170 /* Unmask interrupts. It has to be done from each CPU */
3171 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3172
3173 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3174 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3175 MVNETA_CAUSE_LINK_CHANGE);
3176
3177 phylink_start(pp->phylink);
3178 netif_tx_start_all_queues(pp->dev);
3179 }
3180
3181 static void mvneta_stop_dev(struct mvneta_port *pp)
3182 {
3183 unsigned int cpu;
3184
3185 phylink_stop(pp->phylink);
3186
3187 if (!pp->neta_armada3700) {
3188 for_each_online_cpu(cpu) {
3189 struct mvneta_pcpu_port *port =
3190 per_cpu_ptr(pp->ports, cpu);
3191
3192 napi_disable(&port->napi);
3193 }
3194 } else {
3195 napi_disable(&pp->napi);
3196 }
3197
3198 netif_carrier_off(pp->dev);
3199
3200 mvneta_port_down(pp);
3201 netif_tx_stop_all_queues(pp->dev);
3202
3203 /* Stop the port activity */
3204 mvneta_port_disable(pp);
3205
3206 /* Clear all ethernet port interrupts */
3207 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3208
3209 /* Mask all ethernet port interrupts */
3210 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3211
3212 mvneta_tx_reset(pp);
3213 mvneta_rx_reset(pp);
3214 }
3215
3216 static void mvneta_percpu_enable(void *arg)
3217 {
3218 struct mvneta_port *pp = arg;
3219
3220 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3221 }
3222
3223 static void mvneta_percpu_disable(void *arg)
3224 {
3225 struct mvneta_port *pp = arg;
3226
3227 disable_percpu_irq(pp->dev->irq);
3228 }
3229
3230 /* Change the device mtu */
3231 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3232 {
3233 struct mvneta_port *pp = netdev_priv(dev);
3234 int ret;
3235
3236 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3237 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3238 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3239 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3240 }
3241
3242 dev->mtu = mtu;
3243
3244 if (!netif_running(dev)) {
3245 if (pp->bm_priv)
3246 mvneta_bm_update_mtu(pp, mtu);
3247
3248 netdev_update_features(dev);
3249 return 0;
3250 }
3251
3252 /* The interface is running, so we have to force a
3253 * reallocation of the queues
3254 */
3255 mvneta_stop_dev(pp);
3256 on_each_cpu(mvneta_percpu_disable, pp, true);
3257
3258 mvneta_cleanup_txqs(pp);
3259 mvneta_cleanup_rxqs(pp);
3260
3261 if (pp->bm_priv)
3262 mvneta_bm_update_mtu(pp, mtu);
3263
3264 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3265
3266 ret = mvneta_setup_rxqs(pp);
3267 if (ret) {
3268 netdev_err(dev, "unable to setup rxqs after MTU change\n");
3269 return ret;
3270 }
3271
3272 ret = mvneta_setup_txqs(pp);
3273 if (ret) {
3274 netdev_err(dev, "unable to setup txqs after MTU change\n");
3275 return ret;
3276 }
3277
3278 on_each_cpu(mvneta_percpu_enable, pp, true);
3279 mvneta_start_dev(pp);
3280
3281 netdev_update_features(dev);
3282
3283 return 0;
3284 }
3285
3286 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3287 netdev_features_t features)
3288 {
3289 struct mvneta_port *pp = netdev_priv(dev);
3290
3291 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3292 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3293 netdev_info(dev,
3294 "Disable IP checksum for MTU greater than %dB\n",
3295 pp->tx_csum_limit);
3296 }
3297
3298 return features;
3299 }
3300
3301 /* Get mac address */
3302 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3303 {
3304 u32 mac_addr_l, mac_addr_h;
3305
3306 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3307 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3308 addr[0] = (mac_addr_h >> 24) & 0xFF;
3309 addr[1] = (mac_addr_h >> 16) & 0xFF;
3310 addr[2] = (mac_addr_h >> 8) & 0xFF;
3311 addr[3] = mac_addr_h & 0xFF;
3312 addr[4] = (mac_addr_l >> 8) & 0xFF;
3313 addr[5] = mac_addr_l & 0xFF;
3314 }
3315
3316 /* Handle setting mac address */
3317 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3318 {
3319 struct mvneta_port *pp = netdev_priv(dev);
3320 struct sockaddr *sockaddr = addr;
3321 int ret;
3322
3323 ret = eth_prepare_mac_addr_change(dev, addr);
3324 if (ret < 0)
3325 return ret;
3326 /* Remove previous address table entry */
3327 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3328
3329 /* Set new addr in hw */
3330 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3331
3332 eth_commit_mac_addr_change(dev, addr);
3333 return 0;
3334 }
3335
3336 static void mvneta_validate(struct net_device *ndev, unsigned long *supported,
3337 struct phylink_link_state *state)
3338 {
3339 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3340
3341 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3342 if (state->interface != PHY_INTERFACE_MODE_NA &&
3343 state->interface != PHY_INTERFACE_MODE_QSGMII &&
3344 state->interface != PHY_INTERFACE_MODE_SGMII &&
3345 !phy_interface_mode_is_8023z(state->interface) &&
3346 !phy_interface_mode_is_rgmii(state->interface)) {
3347 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3348 return;
3349 }
3350
3351 /* Allow all the expected bits */
3352 phylink_set(mask, Autoneg);
3353 phylink_set_port_modes(mask);
3354
3355 /* Asymmetric pause is unsupported */
3356 phylink_set(mask, Pause);
3357 /* Half-duplex at speeds higher than 100Mbit is unsupported */
3358 phylink_set(mask, 1000baseT_Full);
3359 phylink_set(mask, 1000baseX_Full);
3360
3361 if (!phy_interface_mode_is_8023z(state->interface)) {
3362 /* 10M and 100M are only supported in non-802.3z mode */
3363 phylink_set(mask, 10baseT_Half);
3364 phylink_set(mask, 10baseT_Full);
3365 phylink_set(mask, 100baseT_Half);
3366 phylink_set(mask, 100baseT_Full);
3367 }
3368
3369 bitmap_and(supported, supported, mask,
3370 __ETHTOOL_LINK_MODE_MASK_NBITS);
3371 bitmap_and(state->advertising, state->advertising, mask,
3372 __ETHTOOL_LINK_MODE_MASK_NBITS);
3373 }
3374
3375 static int mvneta_mac_link_state(struct net_device *ndev,
3376 struct phylink_link_state *state)
3377 {
3378 struct mvneta_port *pp = netdev_priv(ndev);
3379 u32 gmac_stat;
3380
3381 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3382
3383 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3384 state->speed = SPEED_1000;
3385 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3386 state->speed = SPEED_100;
3387 else
3388 state->speed = SPEED_10;
3389
3390 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3391 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3392 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3393
3394 state->pause = 0;
3395 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3396 state->pause |= MLO_PAUSE_RX;
3397 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3398 state->pause |= MLO_PAUSE_TX;
3399
3400 return 1;
3401 }
3402
3403 static void mvneta_mac_an_restart(struct net_device *ndev)
3404 {
3405 struct mvneta_port *pp = netdev_priv(ndev);
3406 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3407
3408 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3409 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3410 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3411 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3412 }
3413
3414 static void mvneta_mac_config(struct net_device *ndev, unsigned int mode,
3415 const struct phylink_link_state *state)
3416 {
3417 struct mvneta_port *pp = netdev_priv(ndev);
3418 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3419 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3420 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3421 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3422
3423 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3424 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3425 MVNETA_GMAC2_PORT_RESET);
3426 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3427 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3428 MVNETA_GMAC_INBAND_RESTART_AN |
3429 MVNETA_GMAC_CONFIG_MII_SPEED |
3430 MVNETA_GMAC_CONFIG_GMII_SPEED |
3431 MVNETA_GMAC_AN_SPEED_EN |
3432 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3433 MVNETA_GMAC_CONFIG_FLOW_CTRL |
3434 MVNETA_GMAC_AN_FLOW_CTRL_EN |
3435 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
3436 MVNETA_GMAC_AN_DUPLEX_EN);
3437
3438 /* Even though it might look weird, when we're configured in
3439 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3440 */
3441 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3442
3443 if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3444 state->interface == PHY_INTERFACE_MODE_SGMII ||
3445 phy_interface_mode_is_8023z(state->interface))
3446 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3447
3448 if (phylink_test(state->advertising, Pause))
3449 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3450 if (state->pause & MLO_PAUSE_TXRX_MASK)
3451 new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
3452
3453 if (!phylink_autoneg_inband(mode)) {
3454 /* Phy or fixed speed */
3455 if (state->duplex)
3456 new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3457
3458 if (state->speed == SPEED_1000)
3459 new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3460 else if (state->speed == SPEED_100)
3461 new_an |= MVNETA_GMAC_CONFIG_MII_SPEED;
3462 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3463 /* SGMII mode receives the state from the PHY */
3464 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3465 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3466 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3467 MVNETA_GMAC_FORCE_LINK_PASS)) |
3468 MVNETA_GMAC_INBAND_AN_ENABLE |
3469 MVNETA_GMAC_AN_SPEED_EN |
3470 MVNETA_GMAC_AN_DUPLEX_EN;
3471 } else {
3472 /* 802.3z negotiation - only 1000base-X */
3473 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3474 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3475 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3476 MVNETA_GMAC_FORCE_LINK_PASS)) |
3477 MVNETA_GMAC_INBAND_AN_ENABLE |
3478 MVNETA_GMAC_CONFIG_GMII_SPEED |
3479 /* The MAC only supports FD mode */
3480 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3481
3482 if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3483 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3484 }
3485
3486 /* Armada 370 documentation says we can only change the port mode
3487 * and in-band enable when the link is down, so force it down
3488 * while making these changes. We also do this for GMAC_CTRL2 */
3489 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3490 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3491 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3492 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3493 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3494 MVNETA_GMAC_FORCE_LINK_DOWN);
3495 }
3496
3497 if (new_ctrl0 != gmac_ctrl0)
3498 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3499 if (new_ctrl2 != gmac_ctrl2)
3500 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3501 if (new_clk != gmac_clk)
3502 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3503 if (new_an != gmac_an)
3504 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3505
3506 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3507 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3508 MVNETA_GMAC2_PORT_RESET) != 0)
3509 continue;
3510 }
3511 }
3512
3513 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3514 {
3515 u32 lpi_ctl1;
3516
3517 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
3518 if (enable)
3519 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
3520 else
3521 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
3522 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
3523 }
3524
3525 static void mvneta_mac_link_down(struct net_device *ndev, unsigned int mode,
3526 phy_interface_t interface)
3527 {
3528 struct mvneta_port *pp = netdev_priv(ndev);
3529 u32 val;
3530
3531 mvneta_port_down(pp);
3532
3533 if (!phylink_autoneg_inband(mode)) {
3534 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3535 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3536 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3537 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3538 }
3539
3540 pp->eee_active = false;
3541 mvneta_set_eee(pp, false);
3542 }
3543
3544 static void mvneta_mac_link_up(struct net_device *ndev, unsigned int mode,
3545 phy_interface_t interface,
3546 struct phy_device *phy)
3547 {
3548 struct mvneta_port *pp = netdev_priv(ndev);
3549 u32 val;
3550
3551 if (!phylink_autoneg_inband(mode)) {
3552 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3553 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3554 val |= MVNETA_GMAC_FORCE_LINK_PASS;
3555 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3556 }
3557
3558 mvneta_port_up(pp);
3559
3560 if (phy && pp->eee_enabled) {
3561 pp->eee_active = phy_init_eee(phy, 0) >= 0;
3562 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
3563 }
3564 }
3565
3566 static const struct phylink_mac_ops mvneta_phylink_ops = {
3567 .validate = mvneta_validate,
3568 .mac_link_state = mvneta_mac_link_state,
3569 .mac_an_restart = mvneta_mac_an_restart,
3570 .mac_config = mvneta_mac_config,
3571 .mac_link_down = mvneta_mac_link_down,
3572 .mac_link_up = mvneta_mac_link_up,
3573 };
3574
3575 static int mvneta_mdio_probe(struct mvneta_port *pp)
3576 {
3577 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3578 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
3579
3580 if (err)
3581 netdev_err(pp->dev, "could not attach PHY: %d\n", err);
3582
3583 phylink_ethtool_get_wol(pp->phylink, &wol);
3584 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3585
3586 return err;
3587 }
3588
3589 static void mvneta_mdio_remove(struct mvneta_port *pp)
3590 {
3591 phylink_disconnect_phy(pp->phylink);
3592 }
3593
3594 /* Electing a CPU must be done in an atomic way: it should be done
3595 * after or before the removal/insertion of a CPU and this function is
3596 * not reentrant.
3597 */
3598 static void mvneta_percpu_elect(struct mvneta_port *pp)
3599 {
3600 int elected_cpu = 0, max_cpu, cpu, i = 0;
3601
3602 /* Use the cpu associated to the rxq when it is online, in all
3603 * the other cases, use the cpu 0 which can't be offline.
3604 */
3605 if (cpu_online(pp->rxq_def))
3606 elected_cpu = pp->rxq_def;
3607
3608 max_cpu = num_present_cpus();
3609
3610 for_each_online_cpu(cpu) {
3611 int rxq_map = 0, txq_map = 0;
3612 int rxq;
3613
3614 for (rxq = 0; rxq < rxq_number; rxq++)
3615 if ((rxq % max_cpu) == cpu)
3616 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3617
3618 if (cpu == elected_cpu)
3619 /* Map the default receive queue queue to the
3620 * elected CPU
3621 */
3622 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3623
3624 /* We update the TX queue map only if we have one
3625 * queue. In this case we associate the TX queue to
3626 * the CPU bound to the default RX queue
3627 */
3628 if (txq_number == 1)
3629 txq_map = (cpu == elected_cpu) ?
3630 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3631 else
3632 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3633 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3634
3635 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3636
3637 /* Update the interrupt mask on each CPU according the
3638 * new mapping
3639 */
3640 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3641 pp, true);
3642 i++;
3643
3644 }
3645 };
3646
3647 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3648 {
3649 int other_cpu;
3650 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3651 node_online);
3652 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3653
3654
3655 spin_lock(&pp->lock);
3656 /*
3657 * Configuring the driver for a new CPU while the driver is
3658 * stopping is racy, so just avoid it.
3659 */
3660 if (pp->is_stopped) {
3661 spin_unlock(&pp->lock);
3662 return 0;
3663 }
3664 netif_tx_stop_all_queues(pp->dev);
3665
3666 /*
3667 * We have to synchronise on tha napi of each CPU except the one
3668 * just being woken up
3669 */
3670 for_each_online_cpu(other_cpu) {
3671 if (other_cpu != cpu) {
3672 struct mvneta_pcpu_port *other_port =
3673 per_cpu_ptr(pp->ports, other_cpu);
3674
3675 napi_synchronize(&other_port->napi);
3676 }
3677 }
3678
3679 /* Mask all ethernet port interrupts */
3680 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3681 napi_enable(&port->napi);
3682
3683 /*
3684 * Enable per-CPU interrupts on the CPU that is
3685 * brought up.
3686 */
3687 mvneta_percpu_enable(pp);
3688
3689 /*
3690 * Enable per-CPU interrupt on the one CPU we care
3691 * about.
3692 */
3693 mvneta_percpu_elect(pp);
3694
3695 /* Unmask all ethernet port interrupts */
3696 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3697 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3698 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3699 MVNETA_CAUSE_LINK_CHANGE);
3700 netif_tx_start_all_queues(pp->dev);
3701 spin_unlock(&pp->lock);
3702 return 0;
3703 }
3704
3705 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3706 {
3707 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3708 node_online);
3709 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3710
3711 /*
3712 * Thanks to this lock we are sure that any pending cpu election is
3713 * done.
3714 */
3715 spin_lock(&pp->lock);
3716 /* Mask all ethernet port interrupts */
3717 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3718 spin_unlock(&pp->lock);
3719
3720 napi_synchronize(&port->napi);
3721 napi_disable(&port->napi);
3722 /* Disable per-CPU interrupts on the CPU that is brought down. */
3723 mvneta_percpu_disable(pp);
3724 return 0;
3725 }
3726
3727 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3728 {
3729 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3730 node_dead);
3731
3732 /* Check if a new CPU must be elected now this on is down */
3733 spin_lock(&pp->lock);
3734 mvneta_percpu_elect(pp);
3735 spin_unlock(&pp->lock);
3736 /* Unmask all ethernet port interrupts */
3737 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3738 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3739 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3740 MVNETA_CAUSE_LINK_CHANGE);
3741 netif_tx_start_all_queues(pp->dev);
3742 return 0;
3743 }
3744
3745 static int mvneta_open(struct net_device *dev)
3746 {
3747 struct mvneta_port *pp = netdev_priv(dev);
3748 int ret;
3749
3750 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3751 pp->frag_size = PAGE_SIZE;
3752
3753 ret = mvneta_setup_rxqs(pp);
3754 if (ret)
3755 return ret;
3756
3757 ret = mvneta_setup_txqs(pp);
3758 if (ret)
3759 goto err_cleanup_rxqs;
3760
3761 /* Connect to port interrupt line */
3762 if (pp->neta_armada3700)
3763 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3764 dev->name, pp);
3765 else
3766 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3767 dev->name, pp->ports);
3768 if (ret) {
3769 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3770 goto err_cleanup_txqs;
3771 }
3772
3773 if (!pp->neta_armada3700) {
3774 /* Enable per-CPU interrupt on all the CPU to handle our RX
3775 * queue interrupts
3776 */
3777 on_each_cpu(mvneta_percpu_enable, pp, true);
3778
3779 pp->is_stopped = false;
3780 /* Register a CPU notifier to handle the case where our CPU
3781 * might be taken offline.
3782 */
3783 ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3784 &pp->node_online);
3785 if (ret)
3786 goto err_free_irq;
3787
3788 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3789 &pp->node_dead);
3790 if (ret)
3791 goto err_free_online_hp;
3792 }
3793
3794 ret = mvneta_mdio_probe(pp);
3795 if (ret < 0) {
3796 netdev_err(dev, "cannot probe MDIO bus\n");
3797 goto err_free_dead_hp;
3798 }
3799
3800 mvneta_start_dev(pp);
3801
3802 return 0;
3803
3804 err_free_dead_hp:
3805 if (!pp->neta_armada3700)
3806 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3807 &pp->node_dead);
3808 err_free_online_hp:
3809 if (!pp->neta_armada3700)
3810 cpuhp_state_remove_instance_nocalls(online_hpstate,
3811 &pp->node_online);
3812 err_free_irq:
3813 if (pp->neta_armada3700) {
3814 free_irq(pp->dev->irq, pp);
3815 } else {
3816 on_each_cpu(mvneta_percpu_disable, pp, true);
3817 free_percpu_irq(pp->dev->irq, pp->ports);
3818 }
3819 err_cleanup_txqs:
3820 mvneta_cleanup_txqs(pp);
3821 err_cleanup_rxqs:
3822 mvneta_cleanup_rxqs(pp);
3823 return ret;
3824 }
3825
3826 /* Stop the port, free port interrupt line */
3827 static int mvneta_stop(struct net_device *dev)
3828 {
3829 struct mvneta_port *pp = netdev_priv(dev);
3830
3831 if (!pp->neta_armada3700) {
3832 /* Inform that we are stopping so we don't want to setup the
3833 * driver for new CPUs in the notifiers. The code of the
3834 * notifier for CPU online is protected by the same spinlock,
3835 * so when we get the lock, the notifer work is done.
3836 */
3837 spin_lock(&pp->lock);
3838 pp->is_stopped = true;
3839 spin_unlock(&pp->lock);
3840
3841 mvneta_stop_dev(pp);
3842 mvneta_mdio_remove(pp);
3843
3844 cpuhp_state_remove_instance_nocalls(online_hpstate,
3845 &pp->node_online);
3846 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3847 &pp->node_dead);
3848 on_each_cpu(mvneta_percpu_disable, pp, true);
3849 free_percpu_irq(dev->irq, pp->ports);
3850 } else {
3851 mvneta_stop_dev(pp);
3852 mvneta_mdio_remove(pp);
3853 free_irq(dev->irq, pp);
3854 }
3855
3856 mvneta_cleanup_rxqs(pp);
3857 mvneta_cleanup_txqs(pp);
3858
3859 return 0;
3860 }
3861
3862 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3863 {
3864 struct mvneta_port *pp = netdev_priv(dev);
3865
3866 return phylink_mii_ioctl(pp->phylink, ifr, cmd);
3867 }
3868
3869 /* Ethtool methods */
3870
3871 /* Set link ksettings (phy address, speed) for ethtools */
3872 static int
3873 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3874 const struct ethtool_link_ksettings *cmd)
3875 {
3876 struct mvneta_port *pp = netdev_priv(ndev);
3877
3878 return phylink_ethtool_ksettings_set(pp->phylink, cmd);
3879 }
3880
3881 /* Get link ksettings for ethtools */
3882 static int
3883 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
3884 struct ethtool_link_ksettings *cmd)
3885 {
3886 struct mvneta_port *pp = netdev_priv(ndev);
3887
3888 return phylink_ethtool_ksettings_get(pp->phylink, cmd);
3889 }
3890
3891 static int mvneta_ethtool_nway_reset(struct net_device *dev)
3892 {
3893 struct mvneta_port *pp = netdev_priv(dev);
3894
3895 return phylink_ethtool_nway_reset(pp->phylink);
3896 }
3897
3898 /* Set interrupt coalescing for ethtools */
3899 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3900 struct ethtool_coalesce *c)
3901 {
3902 struct mvneta_port *pp = netdev_priv(dev);
3903 int queue;
3904
3905 for (queue = 0; queue < rxq_number; queue++) {
3906 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3907 rxq->time_coal = c->rx_coalesce_usecs;
3908 rxq->pkts_coal = c->rx_max_coalesced_frames;
3909 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3910 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3911 }
3912
3913 for (queue = 0; queue < txq_number; queue++) {
3914 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3915 txq->done_pkts_coal = c->tx_max_coalesced_frames;
3916 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3917 }
3918
3919 return 0;
3920 }
3921
3922 /* get coalescing for ethtools */
3923 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3924 struct ethtool_coalesce *c)
3925 {
3926 struct mvneta_port *pp = netdev_priv(dev);
3927
3928 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
3929 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
3930
3931 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
3932 return 0;
3933 }
3934
3935
3936 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3937 struct ethtool_drvinfo *drvinfo)
3938 {
3939 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3940 sizeof(drvinfo->driver));
3941 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3942 sizeof(drvinfo->version));
3943 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3944 sizeof(drvinfo->bus_info));
3945 }
3946
3947
3948 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3949 struct ethtool_ringparam *ring)
3950 {
3951 struct mvneta_port *pp = netdev_priv(netdev);
3952
3953 ring->rx_max_pending = MVNETA_MAX_RXD;
3954 ring->tx_max_pending = MVNETA_MAX_TXD;
3955 ring->rx_pending = pp->rx_ring_size;
3956 ring->tx_pending = pp->tx_ring_size;
3957 }
3958
3959 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3960 struct ethtool_ringparam *ring)
3961 {
3962 struct mvneta_port *pp = netdev_priv(dev);
3963
3964 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3965 return -EINVAL;
3966 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3967 ring->rx_pending : MVNETA_MAX_RXD;
3968
3969 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3970 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3971 if (pp->tx_ring_size != ring->tx_pending)
3972 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3973 pp->tx_ring_size, ring->tx_pending);
3974
3975 if (netif_running(dev)) {
3976 mvneta_stop(dev);
3977 if (mvneta_open(dev)) {
3978 netdev_err(dev,
3979 "error on opening device after ring param change\n");
3980 return -ENOMEM;
3981 }
3982 }
3983
3984 return 0;
3985 }
3986
3987 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
3988 struct ethtool_pauseparam *pause)
3989 {
3990 struct mvneta_port *pp = netdev_priv(dev);
3991
3992 phylink_ethtool_get_pauseparam(pp->phylink, pause);
3993 }
3994
3995 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
3996 struct ethtool_pauseparam *pause)
3997 {
3998 struct mvneta_port *pp = netdev_priv(dev);
3999
4000 return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4001 }
4002
4003 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4004 u8 *data)
4005 {
4006 if (sset == ETH_SS_STATS) {
4007 int i;
4008
4009 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4010 memcpy(data + i * ETH_GSTRING_LEN,
4011 mvneta_statistics[i].name, ETH_GSTRING_LEN);
4012 }
4013 }
4014
4015 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4016 {
4017 const struct mvneta_statistic *s;
4018 void __iomem *base = pp->base;
4019 u32 high, low;
4020 u64 val;
4021 int i;
4022
4023 for (i = 0, s = mvneta_statistics;
4024 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4025 s++, i++) {
4026 val = 0;
4027
4028 switch (s->type) {
4029 case T_REG_32:
4030 val = readl_relaxed(base + s->offset);
4031 break;
4032 case T_REG_64:
4033 /* Docs say to read low 32-bit then high */
4034 low = readl_relaxed(base + s->offset);
4035 high = readl_relaxed(base + s->offset + 4);
4036 val = (u64)high << 32 | low;
4037 break;
4038 case T_SW:
4039 switch (s->offset) {
4040 case ETHTOOL_STAT_EEE_WAKEUP:
4041 val = phylink_get_eee_err(pp->phylink);
4042 break;
4043 case ETHTOOL_STAT_SKB_ALLOC_ERR:
4044 val = pp->rxqs[0].skb_alloc_err;
4045 break;
4046 case ETHTOOL_STAT_REFILL_ERR:
4047 val = pp->rxqs[0].refill_err;
4048 break;
4049 }
4050 break;
4051 }
4052
4053 pp->ethtool_stats[i] += val;
4054 }
4055 }
4056
4057 static void mvneta_ethtool_get_stats(struct net_device *dev,
4058 struct ethtool_stats *stats, u64 *data)
4059 {
4060 struct mvneta_port *pp = netdev_priv(dev);
4061 int i;
4062
4063 mvneta_ethtool_update_stats(pp);
4064
4065 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4066 *data++ = pp->ethtool_stats[i];
4067 }
4068
4069 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4070 {
4071 if (sset == ETH_SS_STATS)
4072 return ARRAY_SIZE(mvneta_statistics);
4073 return -EOPNOTSUPP;
4074 }
4075
4076 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4077 {
4078 return MVNETA_RSS_LU_TABLE_SIZE;
4079 }
4080
4081 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4082 struct ethtool_rxnfc *info,
4083 u32 *rules __always_unused)
4084 {
4085 switch (info->cmd) {
4086 case ETHTOOL_GRXRINGS:
4087 info->data = rxq_number;
4088 return 0;
4089 case ETHTOOL_GRXFH:
4090 return -EOPNOTSUPP;
4091 default:
4092 return -EOPNOTSUPP;
4093 }
4094 }
4095
4096 static int mvneta_config_rss(struct mvneta_port *pp)
4097 {
4098 int cpu;
4099 u32 val;
4100
4101 netif_tx_stop_all_queues(pp->dev);
4102
4103 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4104
4105 if (!pp->neta_armada3700) {
4106 /* We have to synchronise on the napi of each CPU */
4107 for_each_online_cpu(cpu) {
4108 struct mvneta_pcpu_port *pcpu_port =
4109 per_cpu_ptr(pp->ports, cpu);
4110
4111 napi_synchronize(&pcpu_port->napi);
4112 napi_disable(&pcpu_port->napi);
4113 }
4114 } else {
4115 napi_synchronize(&pp->napi);
4116 napi_disable(&pp->napi);
4117 }
4118
4119 pp->rxq_def = pp->indir[0];
4120
4121 /* Update unicast mapping */
4122 mvneta_set_rx_mode(pp->dev);
4123
4124 /* Update val of portCfg register accordingly with all RxQueue types */
4125 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4126 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4127
4128 /* Update the elected CPU matching the new rxq_def */
4129 spin_lock(&pp->lock);
4130 mvneta_percpu_elect(pp);
4131 spin_unlock(&pp->lock);
4132
4133 if (!pp->neta_armada3700) {
4134 /* We have to synchronise on the napi of each CPU */
4135 for_each_online_cpu(cpu) {
4136 struct mvneta_pcpu_port *pcpu_port =
4137 per_cpu_ptr(pp->ports, cpu);
4138
4139 napi_enable(&pcpu_port->napi);
4140 }
4141 } else {
4142 napi_enable(&pp->napi);
4143 }
4144
4145 netif_tx_start_all_queues(pp->dev);
4146
4147 return 0;
4148 }
4149
4150 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4151 const u8 *key, const u8 hfunc)
4152 {
4153 struct mvneta_port *pp = netdev_priv(dev);
4154
4155 /* Current code for Armada 3700 doesn't support RSS features yet */
4156 if (pp->neta_armada3700)
4157 return -EOPNOTSUPP;
4158
4159 /* We require at least one supported parameter to be changed
4160 * and no change in any of the unsupported parameters
4161 */
4162 if (key ||
4163 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4164 return -EOPNOTSUPP;
4165
4166 if (!indir)
4167 return 0;
4168
4169 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4170
4171 return mvneta_config_rss(pp);
4172 }
4173
4174 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4175 u8 *hfunc)
4176 {
4177 struct mvneta_port *pp = netdev_priv(dev);
4178
4179 /* Current code for Armada 3700 doesn't support RSS features yet */
4180 if (pp->neta_armada3700)
4181 return -EOPNOTSUPP;
4182
4183 if (hfunc)
4184 *hfunc = ETH_RSS_HASH_TOP;
4185
4186 if (!indir)
4187 return 0;
4188
4189 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4190
4191 return 0;
4192 }
4193
4194 static void mvneta_ethtool_get_wol(struct net_device *dev,
4195 struct ethtool_wolinfo *wol)
4196 {
4197 struct mvneta_port *pp = netdev_priv(dev);
4198
4199 phylink_ethtool_get_wol(pp->phylink, wol);
4200 }
4201
4202 static int mvneta_ethtool_set_wol(struct net_device *dev,
4203 struct ethtool_wolinfo *wol)
4204 {
4205 struct mvneta_port *pp = netdev_priv(dev);
4206 int ret;
4207
4208 ret = phylink_ethtool_set_wol(pp->phylink, wol);
4209 if (!ret)
4210 device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4211
4212 return ret;
4213 }
4214
4215 static int mvneta_ethtool_get_eee(struct net_device *dev,
4216 struct ethtool_eee *eee)
4217 {
4218 struct mvneta_port *pp = netdev_priv(dev);
4219 u32 lpi_ctl0;
4220
4221 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4222
4223 eee->eee_enabled = pp->eee_enabled;
4224 eee->eee_active = pp->eee_active;
4225 eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4226 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4227
4228 return phylink_ethtool_get_eee(pp->phylink, eee);
4229 }
4230
4231 static int mvneta_ethtool_set_eee(struct net_device *dev,
4232 struct ethtool_eee *eee)
4233 {
4234 struct mvneta_port *pp = netdev_priv(dev);
4235 u32 lpi_ctl0;
4236
4237 /* The Armada 37x documents do not give limits for this other than
4238 * it being an 8-bit register. */
4239 if (eee->tx_lpi_enabled &&
4240 (eee->tx_lpi_timer < 0 || eee->tx_lpi_timer > 255))
4241 return -EINVAL;
4242
4243 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4244 lpi_ctl0 &= ~(0xff << 8);
4245 lpi_ctl0 |= eee->tx_lpi_timer << 8;
4246 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4247
4248 pp->eee_enabled = eee->eee_enabled;
4249 pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4250
4251 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4252
4253 return phylink_ethtool_set_eee(pp->phylink, eee);
4254 }
4255
4256 static const struct net_device_ops mvneta_netdev_ops = {
4257 .ndo_open = mvneta_open,
4258 .ndo_stop = mvneta_stop,
4259 .ndo_start_xmit = mvneta_tx,
4260 .ndo_set_rx_mode = mvneta_set_rx_mode,
4261 .ndo_set_mac_address = mvneta_set_mac_addr,
4262 .ndo_change_mtu = mvneta_change_mtu,
4263 .ndo_fix_features = mvneta_fix_features,
4264 .ndo_get_stats64 = mvneta_get_stats64,
4265 .ndo_do_ioctl = mvneta_ioctl,
4266 };
4267
4268 static const struct ethtool_ops mvneta_eth_tool_ops = {
4269 .nway_reset = mvneta_ethtool_nway_reset,
4270 .get_link = ethtool_op_get_link,
4271 .set_coalesce = mvneta_ethtool_set_coalesce,
4272 .get_coalesce = mvneta_ethtool_get_coalesce,
4273 .get_drvinfo = mvneta_ethtool_get_drvinfo,
4274 .get_ringparam = mvneta_ethtool_get_ringparam,
4275 .set_ringparam = mvneta_ethtool_set_ringparam,
4276 .get_pauseparam = mvneta_ethtool_get_pauseparam,
4277 .set_pauseparam = mvneta_ethtool_set_pauseparam,
4278 .get_strings = mvneta_ethtool_get_strings,
4279 .get_ethtool_stats = mvneta_ethtool_get_stats,
4280 .get_sset_count = mvneta_ethtool_get_sset_count,
4281 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4282 .get_rxnfc = mvneta_ethtool_get_rxnfc,
4283 .get_rxfh = mvneta_ethtool_get_rxfh,
4284 .set_rxfh = mvneta_ethtool_set_rxfh,
4285 .get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4286 .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4287 .get_wol = mvneta_ethtool_get_wol,
4288 .set_wol = mvneta_ethtool_set_wol,
4289 .get_eee = mvneta_ethtool_get_eee,
4290 .set_eee = mvneta_ethtool_set_eee,
4291 };
4292
4293 /* Initialize hw */
4294 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4295 {
4296 int queue;
4297
4298 /* Disable port */
4299 mvneta_port_disable(pp);
4300
4301 /* Set port default values */
4302 mvneta_defaults_set(pp);
4303
4304 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4305 if (!pp->txqs)
4306 return -ENOMEM;
4307
4308 /* Initialize TX descriptor rings */
4309 for (queue = 0; queue < txq_number; queue++) {
4310 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4311 txq->id = queue;
4312 txq->size = pp->tx_ring_size;
4313 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4314 }
4315
4316 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4317 if (!pp->rxqs)
4318 return -ENOMEM;
4319
4320 /* Create Rx descriptor rings */
4321 for (queue = 0; queue < rxq_number; queue++) {
4322 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4323 rxq->id = queue;
4324 rxq->size = pp->rx_ring_size;
4325 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4326 rxq->time_coal = MVNETA_RX_COAL_USEC;
4327 rxq->buf_virt_addr
4328 = devm_kmalloc_array(pp->dev->dev.parent,
4329 rxq->size,
4330 sizeof(*rxq->buf_virt_addr),
4331 GFP_KERNEL);
4332 if (!rxq->buf_virt_addr)
4333 return -ENOMEM;
4334 }
4335
4336 return 0;
4337 }
4338
4339 /* platform glue : initialize decoding windows */
4340 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4341 const struct mbus_dram_target_info *dram)
4342 {
4343 u32 win_enable;
4344 u32 win_protect;
4345 int i;
4346
4347 for (i = 0; i < 6; i++) {
4348 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4349 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4350
4351 if (i < 4)
4352 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4353 }
4354
4355 win_enable = 0x3f;
4356 win_protect = 0;
4357
4358 if (dram) {
4359 for (i = 0; i < dram->num_cs; i++) {
4360 const struct mbus_dram_window *cs = dram->cs + i;
4361
4362 mvreg_write(pp, MVNETA_WIN_BASE(i),
4363 (cs->base & 0xffff0000) |
4364 (cs->mbus_attr << 8) |
4365 dram->mbus_dram_target_id);
4366
4367 mvreg_write(pp, MVNETA_WIN_SIZE(i),
4368 (cs->size - 1) & 0xffff0000);
4369
4370 win_enable &= ~(1 << i);
4371 win_protect |= 3 << (2 * i);
4372 }
4373 } else {
4374 /* For Armada3700 open default 4GB Mbus window, leaving
4375 * arbitration of target/attribute to a different layer
4376 * of configuration.
4377 */
4378 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4379 win_enable &= ~BIT(0);
4380 win_protect = 3;
4381 }
4382
4383 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4384 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4385 }
4386
4387 /* Power up the port */
4388 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4389 {
4390 /* MAC Cause register should be cleared */
4391 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4392
4393 if (phy_mode == PHY_INTERFACE_MODE_QSGMII)
4394 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4395 else if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
4396 phy_mode == PHY_INTERFACE_MODE_1000BASEX)
4397 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4398 else if (!phy_interface_mode_is_rgmii(phy_mode))
4399 return -EINVAL;
4400
4401 return 0;
4402 }
4403
4404 /* Device initialization routine */
4405 static int mvneta_probe(struct platform_device *pdev)
4406 {
4407 struct resource *res;
4408 struct device_node *dn = pdev->dev.of_node;
4409 struct device_node *bm_node;
4410 struct mvneta_port *pp;
4411 struct net_device *dev;
4412 struct phylink *phylink;
4413 const char *dt_mac_addr;
4414 char hw_mac_addr[ETH_ALEN];
4415 const char *mac_from;
4416 int tx_csum_limit;
4417 int phy_mode;
4418 int err;
4419 int cpu;
4420
4421 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4422 if (!dev)
4423 return -ENOMEM;
4424
4425 dev->irq = irq_of_parse_and_map(dn, 0);
4426 if (dev->irq == 0) {
4427 err = -EINVAL;
4428 goto err_free_netdev;
4429 }
4430
4431 phy_mode = of_get_phy_mode(dn);
4432 if (phy_mode < 0) {
4433 dev_err(&pdev->dev, "incorrect phy-mode\n");
4434 err = -EINVAL;
4435 goto err_free_irq;
4436 }
4437
4438 phylink = phylink_create(dev, pdev->dev.fwnode, phy_mode,
4439 &mvneta_phylink_ops);
4440 if (IS_ERR(phylink)) {
4441 err = PTR_ERR(phylink);
4442 goto err_free_irq;
4443 }
4444
4445 dev->tx_queue_len = MVNETA_MAX_TXD;
4446 dev->watchdog_timeo = 5 * HZ;
4447 dev->netdev_ops = &mvneta_netdev_ops;
4448
4449 dev->ethtool_ops = &mvneta_eth_tool_ops;
4450
4451 pp = netdev_priv(dev);
4452 spin_lock_init(&pp->lock);
4453 pp->phylink = phylink;
4454 pp->phy_interface = phy_mode;
4455 pp->dn = dn;
4456
4457 pp->rxq_def = rxq_def;
4458 pp->indir[0] = rxq_def;
4459
4460 /* Get special SoC configurations */
4461 if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4462 pp->neta_armada3700 = true;
4463
4464 pp->clk = devm_clk_get(&pdev->dev, "core");
4465 if (IS_ERR(pp->clk))
4466 pp->clk = devm_clk_get(&pdev->dev, NULL);
4467 if (IS_ERR(pp->clk)) {
4468 err = PTR_ERR(pp->clk);
4469 goto err_free_phylink;
4470 }
4471
4472 clk_prepare_enable(pp->clk);
4473
4474 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4475 if (!IS_ERR(pp->clk_bus))
4476 clk_prepare_enable(pp->clk_bus);
4477
4478 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4479 pp->base = devm_ioremap_resource(&pdev->dev, res);
4480 if (IS_ERR(pp->base)) {
4481 err = PTR_ERR(pp->base);
4482 goto err_clk;
4483 }
4484
4485 /* Alloc per-cpu port structure */
4486 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4487 if (!pp->ports) {
4488 err = -ENOMEM;
4489 goto err_clk;
4490 }
4491
4492 /* Alloc per-cpu stats */
4493 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4494 if (!pp->stats) {
4495 err = -ENOMEM;
4496 goto err_free_ports;
4497 }
4498
4499 dt_mac_addr = of_get_mac_address(dn);
4500 if (dt_mac_addr) {
4501 mac_from = "device tree";
4502 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4503 } else {
4504 mvneta_get_mac_addr(pp, hw_mac_addr);
4505 if (is_valid_ether_addr(hw_mac_addr)) {
4506 mac_from = "hardware";
4507 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4508 } else {
4509 mac_from = "random";
4510 eth_hw_addr_random(dev);
4511 }
4512 }
4513
4514 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4515 if (tx_csum_limit < 0 ||
4516 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4517 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4518 dev_info(&pdev->dev,
4519 "Wrong TX csum limit in DT, set to %dB\n",
4520 MVNETA_TX_CSUM_DEF_SIZE);
4521 }
4522 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4523 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4524 } else {
4525 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4526 }
4527
4528 pp->tx_csum_limit = tx_csum_limit;
4529
4530 pp->dram_target_info = mv_mbus_dram_info();
4531 /* Armada3700 requires setting default configuration of Mbus
4532 * windows, however without using filled mbus_dram_target_info
4533 * structure.
4534 */
4535 if (pp->dram_target_info || pp->neta_armada3700)
4536 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4537
4538 pp->tx_ring_size = MVNETA_MAX_TXD;
4539 pp->rx_ring_size = MVNETA_MAX_RXD;
4540
4541 pp->dev = dev;
4542 SET_NETDEV_DEV(dev, &pdev->dev);
4543
4544 pp->id = global_port_id++;
4545 pp->rx_offset_correction = 0; /* not relevant for SW BM */
4546
4547 /* Obtain access to BM resources if enabled and already initialized */
4548 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4549 if (bm_node) {
4550 pp->bm_priv = mvneta_bm_get(bm_node);
4551 if (pp->bm_priv) {
4552 err = mvneta_bm_port_init(pdev, pp);
4553 if (err < 0) {
4554 dev_info(&pdev->dev,
4555 "use SW buffer management\n");
4556 mvneta_bm_put(pp->bm_priv);
4557 pp->bm_priv = NULL;
4558 }
4559 }
4560 /* Set RX packet offset correction for platforms, whose
4561 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4562 * platforms and 0B for 32-bit ones.
4563 */
4564 pp->rx_offset_correction = max(0,
4565 NET_SKB_PAD -
4566 MVNETA_RX_PKT_OFFSET_CORRECTION);
4567 }
4568 of_node_put(bm_node);
4569
4570 err = mvneta_init(&pdev->dev, pp);
4571 if (err < 0)
4572 goto err_netdev;
4573
4574 err = mvneta_port_power_up(pp, phy_mode);
4575 if (err < 0) {
4576 dev_err(&pdev->dev, "can't power up port\n");
4577 goto err_netdev;
4578 }
4579
4580 /* Armada3700 network controller does not support per-cpu
4581 * operation, so only single NAPI should be initialized.
4582 */
4583 if (pp->neta_armada3700) {
4584 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4585 } else {
4586 for_each_present_cpu(cpu) {
4587 struct mvneta_pcpu_port *port =
4588 per_cpu_ptr(pp->ports, cpu);
4589
4590 netif_napi_add(dev, &port->napi, mvneta_poll,
4591 NAPI_POLL_WEIGHT);
4592 port->pp = pp;
4593 }
4594 }
4595
4596 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4597 NETIF_F_TSO | NETIF_F_RXCSUM;
4598 dev->hw_features |= dev->features;
4599 dev->vlan_features |= dev->features;
4600 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4601 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4602
4603 /* MTU range: 68 - 9676 */
4604 dev->min_mtu = ETH_MIN_MTU;
4605 /* 9676 == 9700 - 20 and rounding to 8 */
4606 dev->max_mtu = 9676;
4607
4608 err = register_netdev(dev);
4609 if (err < 0) {
4610 dev_err(&pdev->dev, "failed to register\n");
4611 goto err_free_stats;
4612 }
4613
4614 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4615 dev->dev_addr);
4616
4617 platform_set_drvdata(pdev, pp->dev);
4618
4619 return 0;
4620
4621 err_netdev:
4622 unregister_netdev(dev);
4623 if (pp->bm_priv) {
4624 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4625 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4626 1 << pp->id);
4627 mvneta_bm_put(pp->bm_priv);
4628 }
4629 err_free_stats:
4630 free_percpu(pp->stats);
4631 err_free_ports:
4632 free_percpu(pp->ports);
4633 err_clk:
4634 clk_disable_unprepare(pp->clk_bus);
4635 clk_disable_unprepare(pp->clk);
4636 err_free_phylink:
4637 if (pp->phylink)
4638 phylink_destroy(pp->phylink);
4639 err_free_irq:
4640 irq_dispose_mapping(dev->irq);
4641 err_free_netdev:
4642 free_netdev(dev);
4643 return err;
4644 }
4645
4646 /* Device removal routine */
4647 static int mvneta_remove(struct platform_device *pdev)
4648 {
4649 struct net_device *dev = platform_get_drvdata(pdev);
4650 struct mvneta_port *pp = netdev_priv(dev);
4651
4652 unregister_netdev(dev);
4653 clk_disable_unprepare(pp->clk_bus);
4654 clk_disable_unprepare(pp->clk);
4655 free_percpu(pp->ports);
4656 free_percpu(pp->stats);
4657 irq_dispose_mapping(dev->irq);
4658 phylink_destroy(pp->phylink);
4659 free_netdev(dev);
4660
4661 if (pp->bm_priv) {
4662 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4663 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4664 1 << pp->id);
4665 mvneta_bm_put(pp->bm_priv);
4666 }
4667
4668 return 0;
4669 }
4670
4671 #ifdef CONFIG_PM_SLEEP
4672 static int mvneta_suspend(struct device *device)
4673 {
4674 int queue;
4675 struct net_device *dev = dev_get_drvdata(device);
4676 struct mvneta_port *pp = netdev_priv(dev);
4677
4678 if (!netif_running(dev))
4679 goto clean_exit;
4680
4681 if (!pp->neta_armada3700) {
4682 spin_lock(&pp->lock);
4683 pp->is_stopped = true;
4684 spin_unlock(&pp->lock);
4685
4686 cpuhp_state_remove_instance_nocalls(online_hpstate,
4687 &pp->node_online);
4688 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4689 &pp->node_dead);
4690 }
4691
4692 rtnl_lock();
4693 mvneta_stop_dev(pp);
4694 rtnl_unlock();
4695
4696 for (queue = 0; queue < rxq_number; queue++) {
4697 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4698
4699 mvneta_rxq_drop_pkts(pp, rxq);
4700 }
4701
4702 for (queue = 0; queue < txq_number; queue++) {
4703 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4704
4705 mvneta_txq_hw_deinit(pp, txq);
4706 }
4707
4708 clean_exit:
4709 netif_device_detach(dev);
4710 clk_disable_unprepare(pp->clk_bus);
4711 clk_disable_unprepare(pp->clk);
4712
4713 return 0;
4714 }
4715
4716 static int mvneta_resume(struct device *device)
4717 {
4718 struct platform_device *pdev = to_platform_device(device);
4719 struct net_device *dev = dev_get_drvdata(device);
4720 struct mvneta_port *pp = netdev_priv(dev);
4721 int err, queue;
4722
4723 clk_prepare_enable(pp->clk);
4724 if (!IS_ERR(pp->clk_bus))
4725 clk_prepare_enable(pp->clk_bus);
4726 if (pp->dram_target_info || pp->neta_armada3700)
4727 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4728 if (pp->bm_priv) {
4729 err = mvneta_bm_port_init(pdev, pp);
4730 if (err < 0) {
4731 dev_info(&pdev->dev, "use SW buffer management\n");
4732 pp->bm_priv = NULL;
4733 }
4734 }
4735 mvneta_defaults_set(pp);
4736 err = mvneta_port_power_up(pp, pp->phy_interface);
4737 if (err < 0) {
4738 dev_err(device, "can't power up port\n");
4739 return err;
4740 }
4741
4742 netif_device_attach(dev);
4743
4744 if (!netif_running(dev))
4745 return 0;
4746
4747 for (queue = 0; queue < rxq_number; queue++) {
4748 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4749
4750 rxq->next_desc_to_proc = 0;
4751 mvneta_rxq_hw_init(pp, rxq);
4752 }
4753
4754 for (queue = 0; queue < txq_number; queue++) {
4755 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4756
4757 txq->next_desc_to_proc = 0;
4758 mvneta_txq_hw_init(pp, txq);
4759 }
4760
4761 if (!pp->neta_armada3700) {
4762 spin_lock(&pp->lock);
4763 pp->is_stopped = false;
4764 spin_unlock(&pp->lock);
4765 cpuhp_state_add_instance_nocalls(online_hpstate,
4766 &pp->node_online);
4767 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4768 &pp->node_dead);
4769 }
4770
4771 rtnl_lock();
4772 mvneta_start_dev(pp);
4773 rtnl_unlock();
4774 mvneta_set_rx_mode(dev);
4775
4776 return 0;
4777 }
4778 #endif
4779
4780 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
4781
4782 static const struct of_device_id mvneta_match[] = {
4783 { .compatible = "marvell,armada-370-neta" },
4784 { .compatible = "marvell,armada-xp-neta" },
4785 { .compatible = "marvell,armada-3700-neta" },
4786 { }
4787 };
4788 MODULE_DEVICE_TABLE(of, mvneta_match);
4789
4790 static struct platform_driver mvneta_driver = {
4791 .probe = mvneta_probe,
4792 .remove = mvneta_remove,
4793 .driver = {
4794 .name = MVNETA_DRIVER_NAME,
4795 .of_match_table = mvneta_match,
4796 .pm = &mvneta_pm_ops,
4797 },
4798 };
4799
4800 static int __init mvneta_driver_init(void)
4801 {
4802 int ret;
4803
4804 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4805 mvneta_cpu_online,
4806 mvneta_cpu_down_prepare);
4807 if (ret < 0)
4808 goto out;
4809 online_hpstate = ret;
4810 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4811 NULL, mvneta_cpu_dead);
4812 if (ret)
4813 goto err_dead;
4814
4815 ret = platform_driver_register(&mvneta_driver);
4816 if (ret)
4817 goto err;
4818 return 0;
4819
4820 err:
4821 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4822 err_dead:
4823 cpuhp_remove_multi_state(online_hpstate);
4824 out:
4825 return ret;
4826 }
4827 module_init(mvneta_driver_init);
4828
4829 static void __exit mvneta_driver_exit(void)
4830 {
4831 platform_driver_unregister(&mvneta_driver);
4832 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4833 cpuhp_remove_multi_state(online_hpstate);
4834 }
4835 module_exit(mvneta_driver_exit);
4836
4837 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4838 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4839 MODULE_LICENSE("GPL");
4840
4841 module_param(rxq_number, int, 0444);
4842 module_param(txq_number, int, 0444);
4843
4844 module_param(rxq_def, int, 0444);
4845 module_param(rx_copybreak, int, 0644);