]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - drivers/net/wireless/ath/ath9k/eeprom.c
ASoC: dwc: Ensure i2s_reg_comp{1,2} is always initialised
[mirror_ubuntu-disco-kernel.git] / drivers / net / wireless / ath / ath9k / eeprom.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "hw.h"
18
19 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
20 {
21 REG_WRITE(ah, reg, val);
22
23 if (ah->config.analog_shiftreg)
24 udelay(100);
25 }
26
27 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
28 u32 shift, u32 val)
29 {
30 REG_RMW(ah, reg, ((val << shift) & mask), mask);
31
32 if (ah->config.analog_shiftreg)
33 udelay(100);
34 }
35
36 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
37 int16_t targetLeft, int16_t targetRight)
38 {
39 int16_t rv;
40
41 if (srcRight == srcLeft) {
42 rv = targetLeft;
43 } else {
44 rv = (int16_t) (((target - srcLeft) * targetRight +
45 (srcRight - target) * targetLeft) /
46 (srcRight - srcLeft));
47 }
48 return rv;
49 }
50
51 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
52 u16 *indexL, u16 *indexR)
53 {
54 u16 i;
55
56 if (target <= pList[0]) {
57 *indexL = *indexR = 0;
58 return true;
59 }
60 if (target >= pList[listSize - 1]) {
61 *indexL = *indexR = (u16) (listSize - 1);
62 return true;
63 }
64
65 for (i = 0; i < listSize - 1; i++) {
66 if (pList[i] == target) {
67 *indexL = *indexR = i;
68 return true;
69 }
70 if (target < pList[i + 1]) {
71 *indexL = i;
72 *indexR = (u16) (i + 1);
73 return false;
74 }
75 }
76 return false;
77 }
78
79 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
80 int eep_start_loc, int size)
81 {
82 int i = 0, j, addr;
83 u32 addrdata[8];
84 u32 data[8];
85
86 for (addr = 0; addr < size; addr++) {
87 addrdata[i] = AR5416_EEPROM_OFFSET +
88 ((addr + eep_start_loc) << AR5416_EEPROM_S);
89 i++;
90 if (i == 8) {
91 REG_READ_MULTI(ah, addrdata, data, i);
92
93 for (j = 0; j < i; j++) {
94 *eep_data = data[j];
95 eep_data++;
96 }
97 i = 0;
98 }
99 }
100
101 if (i != 0) {
102 REG_READ_MULTI(ah, addrdata, data, i);
103
104 for (j = 0; j < i; j++) {
105 *eep_data = data[j];
106 eep_data++;
107 }
108 }
109 }
110
111 static bool ath9k_hw_nvram_read_blob(struct ath_hw *ah, u32 off,
112 u16 *data)
113 {
114 u16 *blob_data;
115
116 if (off * sizeof(u16) > ah->eeprom_blob->size)
117 return false;
118
119 blob_data = (u16 *)ah->eeprom_blob->data;
120 *data = blob_data[off];
121 return true;
122 }
123
124 bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
125 {
126 struct ath_common *common = ath9k_hw_common(ah);
127 bool ret;
128
129 if (ah->eeprom_blob)
130 ret = ath9k_hw_nvram_read_blob(ah, off, data);
131 else
132 ret = common->bus_ops->eeprom_read(common, off, data);
133
134 if (!ret)
135 ath_dbg(common, EEPROM,
136 "unable to read eeprom region at offset %u\n", off);
137
138 return ret;
139 }
140
141 int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
142 {
143 u16 magic;
144 u16 *eepdata;
145 int i;
146 struct ath_common *common = ath9k_hw_common(ah);
147
148 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
149 ath_err(common, "Reading Magic # failed\n");
150 return -EIO;
151 }
152
153 if (magic == AR5416_EEPROM_MAGIC) {
154 *swap_needed = false;
155 } else if (swab16(magic) == AR5416_EEPROM_MAGIC) {
156 if (ah->ah_flags & AH_NO_EEP_SWAP) {
157 ath_info(common,
158 "Ignoring endianness difference in EEPROM magic bytes.\n");
159
160 *swap_needed = false;
161 } else {
162 *swap_needed = true;
163 }
164 } else {
165 ath_err(common,
166 "Invalid EEPROM Magic (0x%04x).\n", magic);
167 return -EINVAL;
168 }
169
170 eepdata = (u16 *)(&ah->eeprom);
171
172 if (*swap_needed) {
173 ath_dbg(common, EEPROM,
174 "EEPROM Endianness is not native.. Changing.\n");
175
176 for (i = 0; i < size; i++)
177 eepdata[i] = swab16(eepdata[i]);
178 }
179
180 return 0;
181 }
182
183 bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
184 {
185 u32 i, sum = 0;
186 u16 *eepdata = (u16 *)(&ah->eeprom);
187 struct ath_common *common = ath9k_hw_common(ah);
188
189 for (i = 0; i < size; i++)
190 sum ^= eepdata[i];
191
192 if (sum != 0xffff) {
193 ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
194 return false;
195 }
196
197 return true;
198 }
199
200 bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
201 {
202 struct ath_common *common = ath9k_hw_common(ah);
203
204 if (ah->eep_ops->get_eeprom_ver(ah) != version ||
205 ah->eep_ops->get_eeprom_rev(ah) < minrev) {
206 ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
207 ah->eep_ops->get_eeprom_ver(ah),
208 ah->eep_ops->get_eeprom_rev(ah));
209 return false;
210 }
211
212 return true;
213 }
214
215 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
216 u8 *pVpdList, u16 numIntercepts,
217 u8 *pRetVpdList)
218 {
219 u16 i, k;
220 u8 currPwr = pwrMin;
221 u16 idxL = 0, idxR = 0;
222
223 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
224 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
225 numIntercepts, &(idxL),
226 &(idxR));
227 if (idxR < 1)
228 idxR = 1;
229 if (idxL == numIntercepts - 1)
230 idxL = (u16) (numIntercepts - 2);
231 if (pPwrList[idxL] == pPwrList[idxR])
232 k = pVpdList[idxL];
233 else
234 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
235 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
236 (pPwrList[idxR] - pPwrList[idxL]));
237 pRetVpdList[i] = (u8) k;
238 currPwr += 2;
239 }
240 }
241
242 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
243 struct ath9k_channel *chan,
244 struct cal_target_power_leg *powInfo,
245 u16 numChannels,
246 struct cal_target_power_leg *pNewPower,
247 u16 numRates, bool isExtTarget)
248 {
249 struct chan_centers centers;
250 u16 clo, chi;
251 int i;
252 int matchIndex = -1, lowIndex = -1;
253 u16 freq;
254
255 ath9k_hw_get_channel_centers(ah, chan, &centers);
256 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
257
258 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
259 IS_CHAN_2GHZ(chan))) {
260 matchIndex = 0;
261 } else {
262 for (i = 0; (i < numChannels) &&
263 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
264 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
265 IS_CHAN_2GHZ(chan))) {
266 matchIndex = i;
267 break;
268 } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
269 IS_CHAN_2GHZ(chan)) && i > 0 &&
270 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
271 IS_CHAN_2GHZ(chan))) {
272 lowIndex = i - 1;
273 break;
274 }
275 }
276 if ((matchIndex == -1) && (lowIndex == -1))
277 matchIndex = i - 1;
278 }
279
280 if (matchIndex != -1) {
281 *pNewPower = powInfo[matchIndex];
282 } else {
283 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
284 IS_CHAN_2GHZ(chan));
285 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
286 IS_CHAN_2GHZ(chan));
287
288 for (i = 0; i < numRates; i++) {
289 pNewPower->tPow2x[i] =
290 (u8)ath9k_hw_interpolate(freq, clo, chi,
291 powInfo[lowIndex].tPow2x[i],
292 powInfo[lowIndex + 1].tPow2x[i]);
293 }
294 }
295 }
296
297 void ath9k_hw_get_target_powers(struct ath_hw *ah,
298 struct ath9k_channel *chan,
299 struct cal_target_power_ht *powInfo,
300 u16 numChannels,
301 struct cal_target_power_ht *pNewPower,
302 u16 numRates, bool isHt40Target)
303 {
304 struct chan_centers centers;
305 u16 clo, chi;
306 int i;
307 int matchIndex = -1, lowIndex = -1;
308 u16 freq;
309
310 ath9k_hw_get_channel_centers(ah, chan, &centers);
311 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
312
313 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
314 matchIndex = 0;
315 } else {
316 for (i = 0; (i < numChannels) &&
317 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
318 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
319 IS_CHAN_2GHZ(chan))) {
320 matchIndex = i;
321 break;
322 } else
323 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
324 IS_CHAN_2GHZ(chan)) && i > 0 &&
325 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
326 IS_CHAN_2GHZ(chan))) {
327 lowIndex = i - 1;
328 break;
329 }
330 }
331 if ((matchIndex == -1) && (lowIndex == -1))
332 matchIndex = i - 1;
333 }
334
335 if (matchIndex != -1) {
336 *pNewPower = powInfo[matchIndex];
337 } else {
338 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
339 IS_CHAN_2GHZ(chan));
340 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
341 IS_CHAN_2GHZ(chan));
342
343 for (i = 0; i < numRates; i++) {
344 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
345 clo, chi,
346 powInfo[lowIndex].tPow2x[i],
347 powInfo[lowIndex + 1].tPow2x[i]);
348 }
349 }
350 }
351
352 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
353 bool is2GHz, int num_band_edges)
354 {
355 u16 twiceMaxEdgePower = MAX_RATE_POWER;
356 int i;
357
358 for (i = 0; (i < num_band_edges) &&
359 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
360 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
361 twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
362 break;
363 } else if ((i > 0) &&
364 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
365 is2GHz))) {
366 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
367 is2GHz) < freq &&
368 CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
369 twiceMaxEdgePower =
370 CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
371 }
372 break;
373 }
374 }
375
376 return twiceMaxEdgePower;
377 }
378
379 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
380 u8 antenna_reduction)
381 {
382 u16 reduction = antenna_reduction;
383
384 /*
385 * Reduce scaled Power by number of chains active
386 * to get the per chain tx power level.
387 */
388 switch (ar5416_get_ntxchains(ah->txchainmask)) {
389 case 1:
390 break;
391 case 2:
392 reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
393 break;
394 case 3:
395 reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
396 break;
397 }
398
399 if (power_limit > reduction)
400 power_limit -= reduction;
401 else
402 power_limit = 0;
403
404 return power_limit;
405 }
406
407 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
408 {
409 struct ath_common *common = ath9k_hw_common(ah);
410 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
411
412 switch (ar5416_get_ntxchains(ah->txchainmask)) {
413 case 1:
414 break;
415 case 2:
416 regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
417 break;
418 case 3:
419 regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
420 break;
421 default:
422 ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
423 break;
424 }
425 }
426
427 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
428 struct ath9k_channel *chan,
429 void *pRawDataSet,
430 u8 *bChans, u16 availPiers,
431 u16 tPdGainOverlap,
432 u16 *pPdGainBoundaries, u8 *pPDADCValues,
433 u16 numXpdGains)
434 {
435 int i, j, k;
436 int16_t ss;
437 u16 idxL = 0, idxR = 0, numPiers;
438 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
439 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
440 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
441 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
442 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
443 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
444
445 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
446 u8 minPwrT4[AR5416_NUM_PD_GAINS];
447 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
448 int16_t vpdStep;
449 int16_t tmpVal;
450 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
451 bool match;
452 int16_t minDelta = 0;
453 struct chan_centers centers;
454 int pdgain_boundary_default;
455 struct cal_data_per_freq *data_def = pRawDataSet;
456 struct cal_data_per_freq_4k *data_4k = pRawDataSet;
457 struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
458 bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
459 int intercepts;
460
461 if (AR_SREV_9287(ah))
462 intercepts = AR9287_PD_GAIN_ICEPTS;
463 else
464 intercepts = AR5416_PD_GAIN_ICEPTS;
465
466 memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
467 ath9k_hw_get_channel_centers(ah, chan, &centers);
468
469 for (numPiers = 0; numPiers < availPiers; numPiers++) {
470 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
471 break;
472 }
473
474 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
475 IS_CHAN_2GHZ(chan)),
476 bChans, numPiers, &idxL, &idxR);
477
478 if (match) {
479 if (AR_SREV_9287(ah)) {
480 /* FIXME: array overrun? */
481 for (i = 0; i < numXpdGains; i++) {
482 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
483 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
484 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
485 data_9287[idxL].pwrPdg[i],
486 data_9287[idxL].vpdPdg[i],
487 intercepts,
488 vpdTableI[i]);
489 }
490 } else if (eeprom_4k) {
491 for (i = 0; i < numXpdGains; i++) {
492 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
493 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
494 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
495 data_4k[idxL].pwrPdg[i],
496 data_4k[idxL].vpdPdg[i],
497 intercepts,
498 vpdTableI[i]);
499 }
500 } else {
501 for (i = 0; i < numXpdGains; i++) {
502 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
503 maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
504 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
505 data_def[idxL].pwrPdg[i],
506 data_def[idxL].vpdPdg[i],
507 intercepts,
508 vpdTableI[i]);
509 }
510 }
511 } else {
512 for (i = 0; i < numXpdGains; i++) {
513 if (AR_SREV_9287(ah)) {
514 pVpdL = data_9287[idxL].vpdPdg[i];
515 pPwrL = data_9287[idxL].pwrPdg[i];
516 pVpdR = data_9287[idxR].vpdPdg[i];
517 pPwrR = data_9287[idxR].pwrPdg[i];
518 } else if (eeprom_4k) {
519 pVpdL = data_4k[idxL].vpdPdg[i];
520 pPwrL = data_4k[idxL].pwrPdg[i];
521 pVpdR = data_4k[idxR].vpdPdg[i];
522 pPwrR = data_4k[idxR].pwrPdg[i];
523 } else {
524 pVpdL = data_def[idxL].vpdPdg[i];
525 pPwrL = data_def[idxL].pwrPdg[i];
526 pVpdR = data_def[idxR].vpdPdg[i];
527 pPwrR = data_def[idxR].pwrPdg[i];
528 }
529
530 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
531
532 maxPwrT4[i] =
533 min(pPwrL[intercepts - 1],
534 pPwrR[intercepts - 1]);
535
536
537 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
538 pPwrL, pVpdL,
539 intercepts,
540 vpdTableL[i]);
541 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
542 pPwrR, pVpdR,
543 intercepts,
544 vpdTableR[i]);
545
546 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
547 vpdTableI[i][j] =
548 (u8)(ath9k_hw_interpolate((u16)
549 FREQ2FBIN(centers.
550 synth_center,
551 IS_CHAN_2GHZ
552 (chan)),
553 bChans[idxL], bChans[idxR],
554 vpdTableL[i][j], vpdTableR[i][j]));
555 }
556 }
557 }
558
559 k = 0;
560
561 for (i = 0; i < numXpdGains; i++) {
562 if (i == (numXpdGains - 1))
563 pPdGainBoundaries[i] =
564 (u16)(maxPwrT4[i] / 2);
565 else
566 pPdGainBoundaries[i] =
567 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
568
569 pPdGainBoundaries[i] =
570 min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
571
572 minDelta = 0;
573
574 if (i == 0) {
575 if (AR_SREV_9280_20_OR_LATER(ah))
576 ss = (int16_t)(0 - (minPwrT4[i] / 2));
577 else
578 ss = 0;
579 } else {
580 ss = (int16_t)((pPdGainBoundaries[i - 1] -
581 (minPwrT4[i] / 2)) -
582 tPdGainOverlap + 1 + minDelta);
583 }
584 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
585 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
586
587 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
588 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
589 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
590 ss++;
591 }
592
593 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
594 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
595 (minPwrT4[i] / 2));
596 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
597 tgtIndex : sizeCurrVpdTable;
598
599 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
600 pPDADCValues[k++] = vpdTableI[i][ss++];
601 }
602
603 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
604 vpdTableI[i][sizeCurrVpdTable - 2]);
605 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
606
607 if (tgtIndex >= maxIndex) {
608 while ((ss <= tgtIndex) &&
609 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
610 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
611 (ss - maxIndex + 1) * vpdStep));
612 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
613 255 : tmpVal);
614 ss++;
615 }
616 }
617 }
618
619 if (eeprom_4k)
620 pdgain_boundary_default = 58;
621 else
622 pdgain_boundary_default = pPdGainBoundaries[i - 1];
623
624 while (i < AR5416_PD_GAINS_IN_MASK) {
625 pPdGainBoundaries[i] = pdgain_boundary_default;
626 i++;
627 }
628
629 while (k < AR5416_NUM_PDADC_VALUES) {
630 pPDADCValues[k] = pPDADCValues[k - 1];
631 k++;
632 }
633 }
634
635 int ath9k_hw_eeprom_init(struct ath_hw *ah)
636 {
637 int status;
638
639 if (AR_SREV_9300_20_OR_LATER(ah))
640 ah->eep_ops = &eep_ar9300_ops;
641 else if (AR_SREV_9287(ah)) {
642 ah->eep_ops = &eep_ar9287_ops;
643 } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
644 ah->eep_ops = &eep_4k_ops;
645 } else {
646 ah->eep_ops = &eep_def_ops;
647 }
648
649 if (!ah->eep_ops->fill_eeprom(ah))
650 return -EIO;
651
652 status = ah->eep_ops->check_eeprom(ah);
653
654 return status;
655 }