]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - drivers/net/wireless/ralink/rt2x00/rt2400pci.c
ASoC: dwc: Ensure i2s_reg_comp{1,2} is always initialised
[mirror_ubuntu-disco-kernel.git] / drivers / net / wireless / ralink / rt2x00 / rt2400pci.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 /*
20 Module: rt2400pci
21 Abstract: rt2400pci device specific routines.
22 Supported chipsets: RT2460.
23 */
24
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/eeprom_93cx6.h>
31 #include <linux/slab.h>
32
33 #include "rt2x00.h"
34 #include "rt2x00mmio.h"
35 #include "rt2x00pci.h"
36 #include "rt2400pci.h"
37
38 /*
39 * Register access.
40 * All access to the CSR registers will go through the methods
41 * rt2x00mmio_register_read and rt2x00mmio_register_write.
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers BBPCSR and RFCSR to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attempt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
50 */
51 #define WAIT_FOR_BBP(__dev, __reg) \
52 rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
53 #define WAIT_FOR_RF(__dev, __reg) \
54 rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
55
56 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
57 const unsigned int word, const u8 value)
58 {
59 u32 reg;
60
61 mutex_lock(&rt2x00dev->csr_mutex);
62
63 /*
64 * Wait until the BBP becomes available, afterwards we
65 * can safely write the new data into the register.
66 */
67 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
68 reg = 0;
69 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
70 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
71 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
72 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
73
74 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
75 }
76
77 mutex_unlock(&rt2x00dev->csr_mutex);
78 }
79
80 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
81 const unsigned int word, u8 *value)
82 {
83 u32 reg;
84
85 mutex_lock(&rt2x00dev->csr_mutex);
86
87 /*
88 * Wait until the BBP becomes available, afterwards we
89 * can safely write the read request into the register.
90 * After the data has been written, we wait until hardware
91 * returns the correct value, if at any time the register
92 * doesn't become available in time, reg will be 0xffffffff
93 * which means we return 0xff to the caller.
94 */
95 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
96 reg = 0;
97 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
98 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
99 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
100
101 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
102
103 WAIT_FOR_BBP(rt2x00dev, &reg);
104 }
105
106 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
107
108 mutex_unlock(&rt2x00dev->csr_mutex);
109 }
110
111 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
112 const unsigned int word, const u32 value)
113 {
114 u32 reg;
115
116 mutex_lock(&rt2x00dev->csr_mutex);
117
118 /*
119 * Wait until the RF becomes available, afterwards we
120 * can safely write the new data into the register.
121 */
122 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
123 reg = 0;
124 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
125 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
126 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
127 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
128
129 rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
130 rt2x00_rf_write(rt2x00dev, word, value);
131 }
132
133 mutex_unlock(&rt2x00dev->csr_mutex);
134 }
135
136 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
137 {
138 struct rt2x00_dev *rt2x00dev = eeprom->data;
139 u32 reg;
140
141 rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
142
143 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
144 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
145 eeprom->reg_data_clock =
146 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
147 eeprom->reg_chip_select =
148 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
149 }
150
151 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
152 {
153 struct rt2x00_dev *rt2x00dev = eeprom->data;
154 u32 reg = 0;
155
156 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
157 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
158 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
159 !!eeprom->reg_data_clock);
160 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
161 !!eeprom->reg_chip_select);
162
163 rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
164 }
165
166 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
167 static const struct rt2x00debug rt2400pci_rt2x00debug = {
168 .owner = THIS_MODULE,
169 .csr = {
170 .read = rt2x00mmio_register_read,
171 .write = rt2x00mmio_register_write,
172 .flags = RT2X00DEBUGFS_OFFSET,
173 .word_base = CSR_REG_BASE,
174 .word_size = sizeof(u32),
175 .word_count = CSR_REG_SIZE / sizeof(u32),
176 },
177 .eeprom = {
178 .read = rt2x00_eeprom_read,
179 .write = rt2x00_eeprom_write,
180 .word_base = EEPROM_BASE,
181 .word_size = sizeof(u16),
182 .word_count = EEPROM_SIZE / sizeof(u16),
183 },
184 .bbp = {
185 .read = rt2400pci_bbp_read,
186 .write = rt2400pci_bbp_write,
187 .word_base = BBP_BASE,
188 .word_size = sizeof(u8),
189 .word_count = BBP_SIZE / sizeof(u8),
190 },
191 .rf = {
192 .read = rt2x00_rf_read,
193 .write = rt2400pci_rf_write,
194 .word_base = RF_BASE,
195 .word_size = sizeof(u32),
196 .word_count = RF_SIZE / sizeof(u32),
197 },
198 };
199 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
200
201 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
202 {
203 u32 reg;
204
205 rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
206 return rt2x00_get_field32(reg, GPIOCSR_VAL0);
207 }
208
209 #ifdef CONFIG_RT2X00_LIB_LEDS
210 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
211 enum led_brightness brightness)
212 {
213 struct rt2x00_led *led =
214 container_of(led_cdev, struct rt2x00_led, led_dev);
215 unsigned int enabled = brightness != LED_OFF;
216 u32 reg;
217
218 rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
219
220 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
221 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
222 else if (led->type == LED_TYPE_ACTIVITY)
223 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
224
225 rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
226 }
227
228 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
229 unsigned long *delay_on,
230 unsigned long *delay_off)
231 {
232 struct rt2x00_led *led =
233 container_of(led_cdev, struct rt2x00_led, led_dev);
234 u32 reg;
235
236 rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
237 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
238 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
239 rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
240
241 return 0;
242 }
243
244 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
245 struct rt2x00_led *led,
246 enum led_type type)
247 {
248 led->rt2x00dev = rt2x00dev;
249 led->type = type;
250 led->led_dev.brightness_set = rt2400pci_brightness_set;
251 led->led_dev.blink_set = rt2400pci_blink_set;
252 led->flags = LED_INITIALIZED;
253 }
254 #endif /* CONFIG_RT2X00_LIB_LEDS */
255
256 /*
257 * Configuration handlers.
258 */
259 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
260 const unsigned int filter_flags)
261 {
262 u32 reg;
263
264 /*
265 * Start configuration steps.
266 * Note that the version error will always be dropped
267 * since there is no filter for it at this time.
268 */
269 rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
270 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
271 !(filter_flags & FIF_FCSFAIL));
272 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
273 !(filter_flags & FIF_PLCPFAIL));
274 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
275 !(filter_flags & FIF_CONTROL));
276 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME, 1);
277 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
278 !rt2x00dev->intf_ap_count);
279 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
280 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
281 }
282
283 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
284 struct rt2x00_intf *intf,
285 struct rt2x00intf_conf *conf,
286 const unsigned int flags)
287 {
288 unsigned int bcn_preload;
289 u32 reg;
290
291 if (flags & CONFIG_UPDATE_TYPE) {
292 /*
293 * Enable beacon config
294 */
295 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
296 rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
297 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
298 rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
299
300 /*
301 * Enable synchronisation.
302 */
303 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
304 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
305 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
306 }
307
308 if (flags & CONFIG_UPDATE_MAC)
309 rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
310 conf->mac, sizeof(conf->mac));
311
312 if (flags & CONFIG_UPDATE_BSSID)
313 rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
314 conf->bssid,
315 sizeof(conf->bssid));
316 }
317
318 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
319 struct rt2x00lib_erp *erp,
320 u32 changed)
321 {
322 int preamble_mask;
323 u32 reg;
324
325 /*
326 * When short preamble is enabled, we should set bit 0x08
327 */
328 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
329 preamble_mask = erp->short_preamble << 3;
330
331 rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
332 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
333 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
334 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
335 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
336 rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
337
338 rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
339 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
340 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
341 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
342 GET_DURATION(ACK_SIZE, 10));
343 rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
344
345 rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
346 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
347 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
348 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
349 GET_DURATION(ACK_SIZE, 20));
350 rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
351
352 rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
353 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
354 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
355 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
356 GET_DURATION(ACK_SIZE, 55));
357 rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
358
359 rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
360 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
361 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
362 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
363 GET_DURATION(ACK_SIZE, 110));
364 rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
365 }
366
367 if (changed & BSS_CHANGED_BASIC_RATES)
368 rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
369
370 if (changed & BSS_CHANGED_ERP_SLOT) {
371 rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
372 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
373 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
374
375 rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
376 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
377 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
378 rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
379
380 rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
381 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
382 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
383 rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
384 }
385
386 if (changed & BSS_CHANGED_BEACON_INT) {
387 rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
388 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
389 erp->beacon_int * 16);
390 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
391 erp->beacon_int * 16);
392 rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
393 }
394 }
395
396 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
397 struct antenna_setup *ant)
398 {
399 u8 r1;
400 u8 r4;
401
402 /*
403 * We should never come here because rt2x00lib is supposed
404 * to catch this and send us the correct antenna explicitely.
405 */
406 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
407 ant->tx == ANTENNA_SW_DIVERSITY);
408
409 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
410 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
411
412 /*
413 * Configure the TX antenna.
414 */
415 switch (ant->tx) {
416 case ANTENNA_HW_DIVERSITY:
417 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
418 break;
419 case ANTENNA_A:
420 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
421 break;
422 case ANTENNA_B:
423 default:
424 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
425 break;
426 }
427
428 /*
429 * Configure the RX antenna.
430 */
431 switch (ant->rx) {
432 case ANTENNA_HW_DIVERSITY:
433 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
434 break;
435 case ANTENNA_A:
436 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
437 break;
438 case ANTENNA_B:
439 default:
440 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
441 break;
442 }
443
444 rt2400pci_bbp_write(rt2x00dev, 4, r4);
445 rt2400pci_bbp_write(rt2x00dev, 1, r1);
446 }
447
448 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
449 struct rf_channel *rf)
450 {
451 /*
452 * Switch on tuning bits.
453 */
454 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
455 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
456
457 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
458 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
459 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
460
461 /*
462 * RF2420 chipset don't need any additional actions.
463 */
464 if (rt2x00_rf(rt2x00dev, RF2420))
465 return;
466
467 /*
468 * For the RT2421 chipsets we need to write an invalid
469 * reference clock rate to activate auto_tune.
470 * After that we set the value back to the correct channel.
471 */
472 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
473 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
474 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
475
476 msleep(1);
477
478 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
479 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
480 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
481
482 msleep(1);
483
484 /*
485 * Switch off tuning bits.
486 */
487 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
488 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
489
490 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
491 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
492
493 /*
494 * Clear false CRC during channel switch.
495 */
496 rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
497 }
498
499 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
500 {
501 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
502 }
503
504 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
505 struct rt2x00lib_conf *libconf)
506 {
507 u32 reg;
508
509 rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
510 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
511 libconf->conf->long_frame_max_tx_count);
512 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
513 libconf->conf->short_frame_max_tx_count);
514 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
515 }
516
517 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
518 struct rt2x00lib_conf *libconf)
519 {
520 enum dev_state state =
521 (libconf->conf->flags & IEEE80211_CONF_PS) ?
522 STATE_SLEEP : STATE_AWAKE;
523 u32 reg;
524
525 if (state == STATE_SLEEP) {
526 rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
527 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
528 (rt2x00dev->beacon_int - 20) * 16);
529 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
530 libconf->conf->listen_interval - 1);
531
532 /* We must first disable autowake before it can be enabled */
533 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
534 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
535
536 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
537 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
538 } else {
539 rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
540 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
541 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
542 }
543
544 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
545 }
546
547 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
548 struct rt2x00lib_conf *libconf,
549 const unsigned int flags)
550 {
551 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
552 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
553 if (flags & IEEE80211_CONF_CHANGE_POWER)
554 rt2400pci_config_txpower(rt2x00dev,
555 libconf->conf->power_level);
556 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
557 rt2400pci_config_retry_limit(rt2x00dev, libconf);
558 if (flags & IEEE80211_CONF_CHANGE_PS)
559 rt2400pci_config_ps(rt2x00dev, libconf);
560 }
561
562 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
563 const int cw_min, const int cw_max)
564 {
565 u32 reg;
566
567 rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
568 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
569 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
570 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
571 }
572
573 /*
574 * Link tuning
575 */
576 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
577 struct link_qual *qual)
578 {
579 u32 reg;
580 u8 bbp;
581
582 /*
583 * Update FCS error count from register.
584 */
585 rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
586 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
587
588 /*
589 * Update False CCA count from register.
590 */
591 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
592 qual->false_cca = bbp;
593 }
594
595 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
596 struct link_qual *qual, u8 vgc_level)
597 {
598 if (qual->vgc_level_reg != vgc_level) {
599 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
600 qual->vgc_level = vgc_level;
601 qual->vgc_level_reg = vgc_level;
602 }
603 }
604
605 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
606 struct link_qual *qual)
607 {
608 rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
609 }
610
611 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
612 struct link_qual *qual, const u32 count)
613 {
614 /*
615 * The link tuner should not run longer then 60 seconds,
616 * and should run once every 2 seconds.
617 */
618 if (count > 60 || !(count & 1))
619 return;
620
621 /*
622 * Base r13 link tuning on the false cca count.
623 */
624 if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
625 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
626 else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
627 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
628 }
629
630 /*
631 * Queue handlers.
632 */
633 static void rt2400pci_start_queue(struct data_queue *queue)
634 {
635 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
636 u32 reg;
637
638 switch (queue->qid) {
639 case QID_RX:
640 rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
641 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
642 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
643 break;
644 case QID_BEACON:
645 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
646 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
647 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
648 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
649 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
650 break;
651 default:
652 break;
653 }
654 }
655
656 static void rt2400pci_kick_queue(struct data_queue *queue)
657 {
658 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
659 u32 reg;
660
661 switch (queue->qid) {
662 case QID_AC_VO:
663 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
664 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
665 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
666 break;
667 case QID_AC_VI:
668 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
669 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
670 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
671 break;
672 case QID_ATIM:
673 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
674 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
675 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
676 break;
677 default:
678 break;
679 }
680 }
681
682 static void rt2400pci_stop_queue(struct data_queue *queue)
683 {
684 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
685 u32 reg;
686
687 switch (queue->qid) {
688 case QID_AC_VO:
689 case QID_AC_VI:
690 case QID_ATIM:
691 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
692 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
693 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
694 break;
695 case QID_RX:
696 rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
697 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
698 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
699 break;
700 case QID_BEACON:
701 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
702 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
703 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
704 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
705 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
706
707 /*
708 * Wait for possibly running tbtt tasklets.
709 */
710 tasklet_kill(&rt2x00dev->tbtt_tasklet);
711 break;
712 default:
713 break;
714 }
715 }
716
717 /*
718 * Initialization functions.
719 */
720 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
721 {
722 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
723 u32 word;
724
725 if (entry->queue->qid == QID_RX) {
726 rt2x00_desc_read(entry_priv->desc, 0, &word);
727
728 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
729 } else {
730 rt2x00_desc_read(entry_priv->desc, 0, &word);
731
732 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
733 rt2x00_get_field32(word, TXD_W0_VALID));
734 }
735 }
736
737 static void rt2400pci_clear_entry(struct queue_entry *entry)
738 {
739 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
740 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
741 u32 word;
742
743 if (entry->queue->qid == QID_RX) {
744 rt2x00_desc_read(entry_priv->desc, 2, &word);
745 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
746 rt2x00_desc_write(entry_priv->desc, 2, word);
747
748 rt2x00_desc_read(entry_priv->desc, 1, &word);
749 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
750 rt2x00_desc_write(entry_priv->desc, 1, word);
751
752 rt2x00_desc_read(entry_priv->desc, 0, &word);
753 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
754 rt2x00_desc_write(entry_priv->desc, 0, word);
755 } else {
756 rt2x00_desc_read(entry_priv->desc, 0, &word);
757 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
758 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
759 rt2x00_desc_write(entry_priv->desc, 0, word);
760 }
761 }
762
763 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
764 {
765 struct queue_entry_priv_mmio *entry_priv;
766 u32 reg;
767
768 /*
769 * Initialize registers.
770 */
771 rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
772 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
773 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
774 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
775 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
776 rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
777
778 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
779 rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
780 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
781 entry_priv->desc_dma);
782 rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
783
784 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
785 rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
786 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
787 entry_priv->desc_dma);
788 rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
789
790 entry_priv = rt2x00dev->atim->entries[0].priv_data;
791 rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
792 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
793 entry_priv->desc_dma);
794 rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
795
796 entry_priv = rt2x00dev->bcn->entries[0].priv_data;
797 rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
798 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
799 entry_priv->desc_dma);
800 rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
801
802 rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
803 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
804 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
805 rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
806
807 entry_priv = rt2x00dev->rx->entries[0].priv_data;
808 rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
809 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
810 entry_priv->desc_dma);
811 rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
812
813 return 0;
814 }
815
816 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
817 {
818 u32 reg;
819
820 rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
821 rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
822 rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00023f20);
823 rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
824
825 rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
826 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
827 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
828 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
829 rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
830
831 rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
832 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
833 (rt2x00dev->rx->data_size / 128));
834 rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
835
836 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
837 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
838 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
839 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
840 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
841 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
842 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
843 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
844 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
845 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
846
847 rt2x00mmio_register_write(rt2x00dev, CNT3, 0x3f080000);
848
849 rt2x00mmio_register_read(rt2x00dev, ARCSR0, &reg);
850 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
851 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
852 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
853 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
854 rt2x00mmio_register_write(rt2x00dev, ARCSR0, reg);
855
856 rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
857 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
858 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
859 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
860 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
861 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
862 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
863 rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
864
865 rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
866
867 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
868 return -EBUSY;
869
870 rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00217223);
871 rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
872
873 rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
874 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
875 rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
876
877 rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
878 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
879 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
880 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
881 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
882 rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
883
884 rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
885 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
886 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
887 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
888 rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
889
890 rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
891 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
892 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
893 rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
894
895 /*
896 * We must clear the FCS and FIFO error count.
897 * These registers are cleared on read,
898 * so we may pass a useless variable to store the value.
899 */
900 rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
901 rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
902
903 return 0;
904 }
905
906 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
907 {
908 unsigned int i;
909 u8 value;
910
911 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
912 rt2400pci_bbp_read(rt2x00dev, 0, &value);
913 if ((value != 0xff) && (value != 0x00))
914 return 0;
915 udelay(REGISTER_BUSY_DELAY);
916 }
917
918 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
919 return -EACCES;
920 }
921
922 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
923 {
924 unsigned int i;
925 u16 eeprom;
926 u8 reg_id;
927 u8 value;
928
929 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
930 return -EACCES;
931
932 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
933 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
934 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
935 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
936 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
937 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
938 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
939 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
940 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
941 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
942 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
943 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
944 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
945 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
946
947 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
948 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
949
950 if (eeprom != 0xffff && eeprom != 0x0000) {
951 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
952 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
953 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
954 }
955 }
956
957 return 0;
958 }
959
960 /*
961 * Device state switch handlers.
962 */
963 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
964 enum dev_state state)
965 {
966 int mask = (state == STATE_RADIO_IRQ_OFF);
967 u32 reg;
968 unsigned long flags;
969
970 /*
971 * When interrupts are being enabled, the interrupt registers
972 * should clear the register to assure a clean state.
973 */
974 if (state == STATE_RADIO_IRQ_ON) {
975 rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
976 rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
977 }
978
979 /*
980 * Only toggle the interrupts bits we are going to use.
981 * Non-checked interrupt bits are disabled by default.
982 */
983 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
984
985 rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
986 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
987 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
988 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
989 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
990 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
991 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
992
993 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
994
995 if (state == STATE_RADIO_IRQ_OFF) {
996 /*
997 * Ensure that all tasklets are finished before
998 * disabling the interrupts.
999 */
1000 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1001 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1002 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1003 }
1004 }
1005
1006 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1007 {
1008 /*
1009 * Initialize all registers.
1010 */
1011 if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
1012 rt2400pci_init_registers(rt2x00dev) ||
1013 rt2400pci_init_bbp(rt2x00dev)))
1014 return -EIO;
1015
1016 return 0;
1017 }
1018
1019 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1020 {
1021 /*
1022 * Disable power
1023 */
1024 rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1025 }
1026
1027 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
1028 enum dev_state state)
1029 {
1030 u32 reg, reg2;
1031 unsigned int i;
1032 char put_to_sleep;
1033 char bbp_state;
1034 char rf_state;
1035
1036 put_to_sleep = (state != STATE_AWAKE);
1037
1038 rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
1039 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1040 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1041 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1042 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1043 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1044
1045 /*
1046 * Device is not guaranteed to be in the requested state yet.
1047 * We must wait until the register indicates that the
1048 * device has entered the correct state.
1049 */
1050 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1051 rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
1052 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1053 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1054 if (bbp_state == state && rf_state == state)
1055 return 0;
1056 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1057 msleep(10);
1058 }
1059
1060 return -EBUSY;
1061 }
1062
1063 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1064 enum dev_state state)
1065 {
1066 int retval = 0;
1067
1068 switch (state) {
1069 case STATE_RADIO_ON:
1070 retval = rt2400pci_enable_radio(rt2x00dev);
1071 break;
1072 case STATE_RADIO_OFF:
1073 rt2400pci_disable_radio(rt2x00dev);
1074 break;
1075 case STATE_RADIO_IRQ_ON:
1076 case STATE_RADIO_IRQ_OFF:
1077 rt2400pci_toggle_irq(rt2x00dev, state);
1078 break;
1079 case STATE_DEEP_SLEEP:
1080 case STATE_SLEEP:
1081 case STATE_STANDBY:
1082 case STATE_AWAKE:
1083 retval = rt2400pci_set_state(rt2x00dev, state);
1084 break;
1085 default:
1086 retval = -ENOTSUPP;
1087 break;
1088 }
1089
1090 if (unlikely(retval))
1091 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1092 state, retval);
1093
1094 return retval;
1095 }
1096
1097 /*
1098 * TX descriptor initialization
1099 */
1100 static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1101 struct txentry_desc *txdesc)
1102 {
1103 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1104 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1105 __le32 *txd = entry_priv->desc;
1106 u32 word;
1107
1108 /*
1109 * Start writing the descriptor words.
1110 */
1111 rt2x00_desc_read(txd, 1, &word);
1112 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1113 rt2x00_desc_write(txd, 1, word);
1114
1115 rt2x00_desc_read(txd, 2, &word);
1116 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1117 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1118 rt2x00_desc_write(txd, 2, word);
1119
1120 rt2x00_desc_read(txd, 3, &word);
1121 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1122 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1123 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1124 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1125 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1126 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1127 rt2x00_desc_write(txd, 3, word);
1128
1129 rt2x00_desc_read(txd, 4, &word);
1130 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
1131 txdesc->u.plcp.length_low);
1132 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1133 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1134 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
1135 txdesc->u.plcp.length_high);
1136 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1137 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1138 rt2x00_desc_write(txd, 4, word);
1139
1140 /*
1141 * Writing TXD word 0 must the last to prevent a race condition with
1142 * the device, whereby the device may take hold of the TXD before we
1143 * finished updating it.
1144 */
1145 rt2x00_desc_read(txd, 0, &word);
1146 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1147 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1148 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1149 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1150 rt2x00_set_field32(&word, TXD_W0_ACK,
1151 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1152 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1153 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1154 rt2x00_set_field32(&word, TXD_W0_RTS,
1155 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1156 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1157 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1158 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1159 rt2x00_desc_write(txd, 0, word);
1160
1161 /*
1162 * Register descriptor details in skb frame descriptor.
1163 */
1164 skbdesc->desc = txd;
1165 skbdesc->desc_len = TXD_DESC_SIZE;
1166 }
1167
1168 /*
1169 * TX data initialization
1170 */
1171 static void rt2400pci_write_beacon(struct queue_entry *entry,
1172 struct txentry_desc *txdesc)
1173 {
1174 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1175 u32 reg;
1176
1177 /*
1178 * Disable beaconing while we are reloading the beacon data,
1179 * otherwise we might be sending out invalid data.
1180 */
1181 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
1182 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1183 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1184
1185 if (rt2x00queue_map_txskb(entry)) {
1186 rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1187 goto out;
1188 }
1189 /*
1190 * Enable beaconing again.
1191 */
1192 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1193 /*
1194 * Write the TX descriptor for the beacon.
1195 */
1196 rt2400pci_write_tx_desc(entry, txdesc);
1197
1198 /*
1199 * Dump beacon to userspace through debugfs.
1200 */
1201 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1202 out:
1203 /*
1204 * Enable beaconing again.
1205 */
1206 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1207 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1208 }
1209
1210 /*
1211 * RX control handlers
1212 */
1213 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1214 struct rxdone_entry_desc *rxdesc)
1215 {
1216 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1217 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1218 u32 word0;
1219 u32 word2;
1220 u32 word3;
1221 u32 word4;
1222 u64 tsf;
1223 u32 rx_low;
1224 u32 rx_high;
1225
1226 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1227 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1228 rt2x00_desc_read(entry_priv->desc, 3, &word3);
1229 rt2x00_desc_read(entry_priv->desc, 4, &word4);
1230
1231 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1232 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1233 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1234 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1235
1236 /*
1237 * We only get the lower 32bits from the timestamp,
1238 * to get the full 64bits we must complement it with
1239 * the timestamp from get_tsf().
1240 * Note that when a wraparound of the lower 32bits
1241 * has occurred between the frame arrival and the get_tsf()
1242 * call, we must decrease the higher 32bits with 1 to get
1243 * to correct value.
1244 */
1245 tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
1246 rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1247 rx_high = upper_32_bits(tsf);
1248
1249 if ((u32)tsf <= rx_low)
1250 rx_high--;
1251
1252 /*
1253 * Obtain the status about this packet.
1254 * The signal is the PLCP value, and needs to be stripped
1255 * of the preamble bit (0x08).
1256 */
1257 rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1258 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1259 rxdesc->rssi = rt2x00_get_field32(word3, RXD_W3_RSSI) -
1260 entry->queue->rt2x00dev->rssi_offset;
1261 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1262
1263 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1264 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1265 rxdesc->dev_flags |= RXDONE_MY_BSS;
1266 }
1267
1268 /*
1269 * Interrupt functions.
1270 */
1271 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1272 const enum data_queue_qid queue_idx)
1273 {
1274 struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1275 struct queue_entry_priv_mmio *entry_priv;
1276 struct queue_entry *entry;
1277 struct txdone_entry_desc txdesc;
1278 u32 word;
1279
1280 while (!rt2x00queue_empty(queue)) {
1281 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1282 entry_priv = entry->priv_data;
1283 rt2x00_desc_read(entry_priv->desc, 0, &word);
1284
1285 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1286 !rt2x00_get_field32(word, TXD_W0_VALID))
1287 break;
1288
1289 /*
1290 * Obtain the status about this packet.
1291 */
1292 txdesc.flags = 0;
1293 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1294 case 0: /* Success */
1295 case 1: /* Success with retry */
1296 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1297 break;
1298 case 2: /* Failure, excessive retries */
1299 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1300 /* Don't break, this is a failed frame! */
1301 default: /* Failure */
1302 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1303 }
1304 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1305
1306 rt2x00lib_txdone(entry, &txdesc);
1307 }
1308 }
1309
1310 static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1311 struct rt2x00_field32 irq_field)
1312 {
1313 u32 reg;
1314
1315 /*
1316 * Enable a single interrupt. The interrupt mask register
1317 * access needs locking.
1318 */
1319 spin_lock_irq(&rt2x00dev->irqmask_lock);
1320
1321 rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1322 rt2x00_set_field32(&reg, irq_field, 0);
1323 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1324
1325 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1326 }
1327
1328 static void rt2400pci_txstatus_tasklet(unsigned long data)
1329 {
1330 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1331 u32 reg;
1332
1333 /*
1334 * Handle all tx queues.
1335 */
1336 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1337 rt2400pci_txdone(rt2x00dev, QID_AC_VO);
1338 rt2400pci_txdone(rt2x00dev, QID_AC_VI);
1339
1340 /*
1341 * Enable all TXDONE interrupts again.
1342 */
1343 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1344 spin_lock_irq(&rt2x00dev->irqmask_lock);
1345
1346 rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1347 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1348 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1349 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1350 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1351
1352 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1353 }
1354 }
1355
1356 static void rt2400pci_tbtt_tasklet(unsigned long data)
1357 {
1358 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1359 rt2x00lib_beacondone(rt2x00dev);
1360 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1361 rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1362 }
1363
1364 static void rt2400pci_rxdone_tasklet(unsigned long data)
1365 {
1366 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1367 if (rt2x00mmio_rxdone(rt2x00dev))
1368 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1369 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1370 rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1371 }
1372
1373 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1374 {
1375 struct rt2x00_dev *rt2x00dev = dev_instance;
1376 u32 reg, mask;
1377
1378 /*
1379 * Get the interrupt sources & saved to local variable.
1380 * Write register value back to clear pending interrupts.
1381 */
1382 rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1383 rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1384
1385 if (!reg)
1386 return IRQ_NONE;
1387
1388 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1389 return IRQ_HANDLED;
1390
1391 mask = reg;
1392
1393 /*
1394 * Schedule tasklets for interrupt handling.
1395 */
1396 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1397 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1398
1399 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1400 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1401
1402 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1403 rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1404 rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1405 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1406 /*
1407 * Mask out all txdone interrupts.
1408 */
1409 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1410 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1411 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1412 }
1413
1414 /*
1415 * Disable all interrupts for which a tasklet was scheduled right now,
1416 * the tasklet will reenable the appropriate interrupts.
1417 */
1418 spin_lock(&rt2x00dev->irqmask_lock);
1419
1420 rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1421 reg |= mask;
1422 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1423
1424 spin_unlock(&rt2x00dev->irqmask_lock);
1425
1426
1427
1428 return IRQ_HANDLED;
1429 }
1430
1431 /*
1432 * Device probe functions.
1433 */
1434 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1435 {
1436 struct eeprom_93cx6 eeprom;
1437 u32 reg;
1438 u16 word;
1439 u8 *mac;
1440
1441 rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
1442
1443 eeprom.data = rt2x00dev;
1444 eeprom.register_read = rt2400pci_eepromregister_read;
1445 eeprom.register_write = rt2400pci_eepromregister_write;
1446 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1447 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1448 eeprom.reg_data_in = 0;
1449 eeprom.reg_data_out = 0;
1450 eeprom.reg_data_clock = 0;
1451 eeprom.reg_chip_select = 0;
1452
1453 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1454 EEPROM_SIZE / sizeof(u16));
1455
1456 /*
1457 * Start validation of the data that has been read.
1458 */
1459 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1460 if (!is_valid_ether_addr(mac)) {
1461 eth_random_addr(mac);
1462 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1463 }
1464
1465 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1466 if (word == 0xffff) {
1467 rt2x00_err(rt2x00dev, "Invalid EEPROM data detected\n");
1468 return -EINVAL;
1469 }
1470
1471 return 0;
1472 }
1473
1474 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1475 {
1476 u32 reg;
1477 u16 value;
1478 u16 eeprom;
1479
1480 /*
1481 * Read EEPROM word for configuration.
1482 */
1483 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1484
1485 /*
1486 * Identify RF chipset.
1487 */
1488 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1489 rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
1490 rt2x00_set_chip(rt2x00dev, RT2460, value,
1491 rt2x00_get_field32(reg, CSR0_REVISION));
1492
1493 if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1494 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1495 return -ENODEV;
1496 }
1497
1498 /*
1499 * Identify default antenna configuration.
1500 */
1501 rt2x00dev->default_ant.tx =
1502 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1503 rt2x00dev->default_ant.rx =
1504 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1505
1506 /*
1507 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1508 * I am not 100% sure about this, but the legacy drivers do not
1509 * indicate antenna swapping in software is required when
1510 * diversity is enabled.
1511 */
1512 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1513 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1514 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1515 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1516
1517 /*
1518 * Store led mode, for correct led behaviour.
1519 */
1520 #ifdef CONFIG_RT2X00_LIB_LEDS
1521 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1522
1523 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1524 if (value == LED_MODE_TXRX_ACTIVITY ||
1525 value == LED_MODE_DEFAULT ||
1526 value == LED_MODE_ASUS)
1527 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1528 LED_TYPE_ACTIVITY);
1529 #endif /* CONFIG_RT2X00_LIB_LEDS */
1530
1531 /*
1532 * Detect if this device has an hardware controlled radio.
1533 */
1534 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1535 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1536
1537 /*
1538 * Check if the BBP tuning should be enabled.
1539 */
1540 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1541 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1542
1543 return 0;
1544 }
1545
1546 /*
1547 * RF value list for RF2420 & RF2421
1548 * Supports: 2.4 GHz
1549 */
1550 static const struct rf_channel rf_vals_b[] = {
1551 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1552 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1553 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1554 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1555 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1556 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1557 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1558 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1559 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1560 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1561 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1562 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1563 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1564 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1565 };
1566
1567 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1568 {
1569 struct hw_mode_spec *spec = &rt2x00dev->spec;
1570 struct channel_info *info;
1571 char *tx_power;
1572 unsigned int i;
1573
1574 /*
1575 * Initialize all hw fields.
1576 */
1577 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1578 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1579 ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1580 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1581
1582 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1583 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1584 rt2x00_eeprom_addr(rt2x00dev,
1585 EEPROM_MAC_ADDR_0));
1586
1587 /*
1588 * Initialize hw_mode information.
1589 */
1590 spec->supported_bands = SUPPORT_BAND_2GHZ;
1591 spec->supported_rates = SUPPORT_RATE_CCK;
1592
1593 spec->num_channels = ARRAY_SIZE(rf_vals_b);
1594 spec->channels = rf_vals_b;
1595
1596 /*
1597 * Create channel information array
1598 */
1599 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1600 if (!info)
1601 return -ENOMEM;
1602
1603 spec->channels_info = info;
1604
1605 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1606 for (i = 0; i < 14; i++) {
1607 info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1608 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1609 }
1610
1611 return 0;
1612 }
1613
1614 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1615 {
1616 int retval;
1617 u32 reg;
1618
1619 /*
1620 * Allocate eeprom data.
1621 */
1622 retval = rt2400pci_validate_eeprom(rt2x00dev);
1623 if (retval)
1624 return retval;
1625
1626 retval = rt2400pci_init_eeprom(rt2x00dev);
1627 if (retval)
1628 return retval;
1629
1630 /*
1631 * Enable rfkill polling by setting GPIO direction of the
1632 * rfkill switch GPIO pin correctly.
1633 */
1634 rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
1635 rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1636 rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1637
1638 /*
1639 * Initialize hw specifications.
1640 */
1641 retval = rt2400pci_probe_hw_mode(rt2x00dev);
1642 if (retval)
1643 return retval;
1644
1645 /*
1646 * This device requires the atim queue and DMA-mapped skbs.
1647 */
1648 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1649 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1650 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1651
1652 /*
1653 * Set the rssi offset.
1654 */
1655 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1656
1657 return 0;
1658 }
1659
1660 /*
1661 * IEEE80211 stack callback functions.
1662 */
1663 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1664 struct ieee80211_vif *vif, u16 queue,
1665 const struct ieee80211_tx_queue_params *params)
1666 {
1667 struct rt2x00_dev *rt2x00dev = hw->priv;
1668
1669 /*
1670 * We don't support variating cw_min and cw_max variables
1671 * per queue. So by default we only configure the TX queue,
1672 * and ignore all other configurations.
1673 */
1674 if (queue != 0)
1675 return -EINVAL;
1676
1677 if (rt2x00mac_conf_tx(hw, vif, queue, params))
1678 return -EINVAL;
1679
1680 /*
1681 * Write configuration to register.
1682 */
1683 rt2400pci_config_cw(rt2x00dev,
1684 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1685
1686 return 0;
1687 }
1688
1689 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
1690 struct ieee80211_vif *vif)
1691 {
1692 struct rt2x00_dev *rt2x00dev = hw->priv;
1693 u64 tsf;
1694 u32 reg;
1695
1696 rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
1697 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1698 rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
1699 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1700
1701 return tsf;
1702 }
1703
1704 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1705 {
1706 struct rt2x00_dev *rt2x00dev = hw->priv;
1707 u32 reg;
1708
1709 rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
1710 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1711 }
1712
1713 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1714 .tx = rt2x00mac_tx,
1715 .start = rt2x00mac_start,
1716 .stop = rt2x00mac_stop,
1717 .add_interface = rt2x00mac_add_interface,
1718 .remove_interface = rt2x00mac_remove_interface,
1719 .config = rt2x00mac_config,
1720 .configure_filter = rt2x00mac_configure_filter,
1721 .sw_scan_start = rt2x00mac_sw_scan_start,
1722 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1723 .get_stats = rt2x00mac_get_stats,
1724 .bss_info_changed = rt2x00mac_bss_info_changed,
1725 .conf_tx = rt2400pci_conf_tx,
1726 .get_tsf = rt2400pci_get_tsf,
1727 .tx_last_beacon = rt2400pci_tx_last_beacon,
1728 .rfkill_poll = rt2x00mac_rfkill_poll,
1729 .flush = rt2x00mac_flush,
1730 .set_antenna = rt2x00mac_set_antenna,
1731 .get_antenna = rt2x00mac_get_antenna,
1732 .get_ringparam = rt2x00mac_get_ringparam,
1733 .tx_frames_pending = rt2x00mac_tx_frames_pending,
1734 };
1735
1736 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1737 .irq_handler = rt2400pci_interrupt,
1738 .txstatus_tasklet = rt2400pci_txstatus_tasklet,
1739 .tbtt_tasklet = rt2400pci_tbtt_tasklet,
1740 .rxdone_tasklet = rt2400pci_rxdone_tasklet,
1741 .probe_hw = rt2400pci_probe_hw,
1742 .initialize = rt2x00mmio_initialize,
1743 .uninitialize = rt2x00mmio_uninitialize,
1744 .get_entry_state = rt2400pci_get_entry_state,
1745 .clear_entry = rt2400pci_clear_entry,
1746 .set_device_state = rt2400pci_set_device_state,
1747 .rfkill_poll = rt2400pci_rfkill_poll,
1748 .link_stats = rt2400pci_link_stats,
1749 .reset_tuner = rt2400pci_reset_tuner,
1750 .link_tuner = rt2400pci_link_tuner,
1751 .start_queue = rt2400pci_start_queue,
1752 .kick_queue = rt2400pci_kick_queue,
1753 .stop_queue = rt2400pci_stop_queue,
1754 .flush_queue = rt2x00mmio_flush_queue,
1755 .write_tx_desc = rt2400pci_write_tx_desc,
1756 .write_beacon = rt2400pci_write_beacon,
1757 .fill_rxdone = rt2400pci_fill_rxdone,
1758 .config_filter = rt2400pci_config_filter,
1759 .config_intf = rt2400pci_config_intf,
1760 .config_erp = rt2400pci_config_erp,
1761 .config_ant = rt2400pci_config_ant,
1762 .config = rt2400pci_config,
1763 };
1764
1765 static void rt2400pci_queue_init(struct data_queue *queue)
1766 {
1767 switch (queue->qid) {
1768 case QID_RX:
1769 queue->limit = 24;
1770 queue->data_size = DATA_FRAME_SIZE;
1771 queue->desc_size = RXD_DESC_SIZE;
1772 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1773 break;
1774
1775 case QID_AC_VO:
1776 case QID_AC_VI:
1777 case QID_AC_BE:
1778 case QID_AC_BK:
1779 queue->limit = 24;
1780 queue->data_size = DATA_FRAME_SIZE;
1781 queue->desc_size = TXD_DESC_SIZE;
1782 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1783 break;
1784
1785 case QID_BEACON:
1786 queue->limit = 1;
1787 queue->data_size = MGMT_FRAME_SIZE;
1788 queue->desc_size = TXD_DESC_SIZE;
1789 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1790 break;
1791
1792 case QID_ATIM:
1793 queue->limit = 8;
1794 queue->data_size = DATA_FRAME_SIZE;
1795 queue->desc_size = TXD_DESC_SIZE;
1796 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1797 break;
1798
1799 default:
1800 BUG();
1801 break;
1802 }
1803 }
1804
1805 static const struct rt2x00_ops rt2400pci_ops = {
1806 .name = KBUILD_MODNAME,
1807 .max_ap_intf = 1,
1808 .eeprom_size = EEPROM_SIZE,
1809 .rf_size = RF_SIZE,
1810 .tx_queues = NUM_TX_QUEUES,
1811 .queue_init = rt2400pci_queue_init,
1812 .lib = &rt2400pci_rt2x00_ops,
1813 .hw = &rt2400pci_mac80211_ops,
1814 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1815 .debugfs = &rt2400pci_rt2x00debug,
1816 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1817 };
1818
1819 /*
1820 * RT2400pci module information.
1821 */
1822 static const struct pci_device_id rt2400pci_device_table[] = {
1823 { PCI_DEVICE(0x1814, 0x0101) },
1824 { 0, }
1825 };
1826
1827
1828 MODULE_AUTHOR(DRV_PROJECT);
1829 MODULE_VERSION(DRV_VERSION);
1830 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1831 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1832 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1833 MODULE_LICENSE("GPL");
1834
1835 static int rt2400pci_probe(struct pci_dev *pci_dev,
1836 const struct pci_device_id *id)
1837 {
1838 return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
1839 }
1840
1841 static struct pci_driver rt2400pci_driver = {
1842 .name = KBUILD_MODNAME,
1843 .id_table = rt2400pci_device_table,
1844 .probe = rt2400pci_probe,
1845 .remove = rt2x00pci_remove,
1846 .suspend = rt2x00pci_suspend,
1847 .resume = rt2x00pci_resume,
1848 };
1849
1850 module_pci_driver(rt2400pci_driver);