]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - drivers/net/wireless/ralink/rt2x00/rt2500usb.c
ASoC: dwc: Ensure i2s_reg_comp{1,2} is always initialised
[mirror_ubuntu-disco-kernel.git] / drivers / net / wireless / ralink / rt2x00 / rt2500usb.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 /*
20 Module: rt2500usb
21 Abstract: rt2500usb device specific routines.
22 Supported chipsets: RT2570.
23 */
24
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/usb.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00usb.h"
34 #include "rt2500usb.h"
35
36 /*
37 * Allow hardware encryption to be disabled.
38 */
39 static bool modparam_nohwcrypt;
40 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
41 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
42
43 /*
44 * Register access.
45 * All access to the CSR registers will go through the methods
46 * rt2500usb_register_read and rt2500usb_register_write.
47 * BBP and RF register require indirect register access,
48 * and use the CSR registers BBPCSR and RFCSR to achieve this.
49 * These indirect registers work with busy bits,
50 * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
51 * the register while taking a REGISTER_BUSY_DELAY us delay
52 * between each attampt. When the busy bit is still set at that time,
53 * the access attempt is considered to have failed,
54 * and we will print an error.
55 * If the csr_mutex is already held then the _lock variants must
56 * be used instead.
57 */
58 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
59 const unsigned int offset,
60 u16 *value)
61 {
62 __le16 reg;
63 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
64 USB_VENDOR_REQUEST_IN, offset,
65 &reg, sizeof(reg));
66 *value = le16_to_cpu(reg);
67 }
68
69 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
70 const unsigned int offset,
71 u16 *value)
72 {
73 __le16 reg;
74 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
75 USB_VENDOR_REQUEST_IN, offset,
76 &reg, sizeof(reg), REGISTER_TIMEOUT);
77 *value = le16_to_cpu(reg);
78 }
79
80 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
81 const unsigned int offset,
82 void *value, const u16 length)
83 {
84 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
85 USB_VENDOR_REQUEST_IN, offset,
86 value, length);
87 }
88
89 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
90 const unsigned int offset,
91 u16 value)
92 {
93 __le16 reg = cpu_to_le16(value);
94 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
95 USB_VENDOR_REQUEST_OUT, offset,
96 &reg, sizeof(reg));
97 }
98
99 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
100 const unsigned int offset,
101 u16 value)
102 {
103 __le16 reg = cpu_to_le16(value);
104 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
105 USB_VENDOR_REQUEST_OUT, offset,
106 &reg, sizeof(reg), REGISTER_TIMEOUT);
107 }
108
109 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
110 const unsigned int offset,
111 void *value, const u16 length)
112 {
113 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
114 USB_VENDOR_REQUEST_OUT, offset,
115 value, length);
116 }
117
118 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
119 const unsigned int offset,
120 struct rt2x00_field16 field,
121 u16 *reg)
122 {
123 unsigned int i;
124
125 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
126 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
127 if (!rt2x00_get_field16(*reg, field))
128 return 1;
129 udelay(REGISTER_BUSY_DELAY);
130 }
131
132 rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
133 offset, *reg);
134 *reg = ~0;
135
136 return 0;
137 }
138
139 #define WAIT_FOR_BBP(__dev, __reg) \
140 rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
141 #define WAIT_FOR_RF(__dev, __reg) \
142 rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
143
144 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
145 const unsigned int word, const u8 value)
146 {
147 u16 reg;
148
149 mutex_lock(&rt2x00dev->csr_mutex);
150
151 /*
152 * Wait until the BBP becomes available, afterwards we
153 * can safely write the new data into the register.
154 */
155 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
156 reg = 0;
157 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
158 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
159 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
160
161 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
162 }
163
164 mutex_unlock(&rt2x00dev->csr_mutex);
165 }
166
167 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
168 const unsigned int word, u8 *value)
169 {
170 u16 reg;
171
172 mutex_lock(&rt2x00dev->csr_mutex);
173
174 /*
175 * Wait until the BBP becomes available, afterwards we
176 * can safely write the read request into the register.
177 * After the data has been written, we wait until hardware
178 * returns the correct value, if at any time the register
179 * doesn't become available in time, reg will be 0xffffffff
180 * which means we return 0xff to the caller.
181 */
182 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
183 reg = 0;
184 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
185 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
186
187 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
188
189 if (WAIT_FOR_BBP(rt2x00dev, &reg))
190 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
191 }
192
193 *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
194
195 mutex_unlock(&rt2x00dev->csr_mutex);
196 }
197
198 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
199 const unsigned int word, const u32 value)
200 {
201 u16 reg;
202
203 mutex_lock(&rt2x00dev->csr_mutex);
204
205 /*
206 * Wait until the RF becomes available, afterwards we
207 * can safely write the new data into the register.
208 */
209 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
210 reg = 0;
211 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
212 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
213
214 reg = 0;
215 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
216 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
217 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
218 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
219
220 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
221 rt2x00_rf_write(rt2x00dev, word, value);
222 }
223
224 mutex_unlock(&rt2x00dev->csr_mutex);
225 }
226
227 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
228 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
229 const unsigned int offset,
230 u32 *value)
231 {
232 u16 tmp;
233
234 rt2500usb_register_read(rt2x00dev, offset, &tmp);
235 *value = tmp;
236 }
237
238 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
239 const unsigned int offset,
240 u32 value)
241 {
242 rt2500usb_register_write(rt2x00dev, offset, value);
243 }
244
245 static const struct rt2x00debug rt2500usb_rt2x00debug = {
246 .owner = THIS_MODULE,
247 .csr = {
248 .read = _rt2500usb_register_read,
249 .write = _rt2500usb_register_write,
250 .flags = RT2X00DEBUGFS_OFFSET,
251 .word_base = CSR_REG_BASE,
252 .word_size = sizeof(u16),
253 .word_count = CSR_REG_SIZE / sizeof(u16),
254 },
255 .eeprom = {
256 .read = rt2x00_eeprom_read,
257 .write = rt2x00_eeprom_write,
258 .word_base = EEPROM_BASE,
259 .word_size = sizeof(u16),
260 .word_count = EEPROM_SIZE / sizeof(u16),
261 },
262 .bbp = {
263 .read = rt2500usb_bbp_read,
264 .write = rt2500usb_bbp_write,
265 .word_base = BBP_BASE,
266 .word_size = sizeof(u8),
267 .word_count = BBP_SIZE / sizeof(u8),
268 },
269 .rf = {
270 .read = rt2x00_rf_read,
271 .write = rt2500usb_rf_write,
272 .word_base = RF_BASE,
273 .word_size = sizeof(u32),
274 .word_count = RF_SIZE / sizeof(u32),
275 },
276 };
277 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
278
279 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
280 {
281 u16 reg;
282
283 rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
284 return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
285 }
286
287 #ifdef CONFIG_RT2X00_LIB_LEDS
288 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
289 enum led_brightness brightness)
290 {
291 struct rt2x00_led *led =
292 container_of(led_cdev, struct rt2x00_led, led_dev);
293 unsigned int enabled = brightness != LED_OFF;
294 u16 reg;
295
296 rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
297
298 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
299 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
300 else if (led->type == LED_TYPE_ACTIVITY)
301 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
302
303 rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
304 }
305
306 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
307 unsigned long *delay_on,
308 unsigned long *delay_off)
309 {
310 struct rt2x00_led *led =
311 container_of(led_cdev, struct rt2x00_led, led_dev);
312 u16 reg;
313
314 rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
315 rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
316 rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
317 rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
318
319 return 0;
320 }
321
322 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
323 struct rt2x00_led *led,
324 enum led_type type)
325 {
326 led->rt2x00dev = rt2x00dev;
327 led->type = type;
328 led->led_dev.brightness_set = rt2500usb_brightness_set;
329 led->led_dev.blink_set = rt2500usb_blink_set;
330 led->flags = LED_INITIALIZED;
331 }
332 #endif /* CONFIG_RT2X00_LIB_LEDS */
333
334 /*
335 * Configuration handlers.
336 */
337
338 /*
339 * rt2500usb does not differentiate between shared and pairwise
340 * keys, so we should use the same function for both key types.
341 */
342 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
343 struct rt2x00lib_crypto *crypto,
344 struct ieee80211_key_conf *key)
345 {
346 u32 mask;
347 u16 reg;
348 enum cipher curr_cipher;
349
350 if (crypto->cmd == SET_KEY) {
351 /*
352 * Disallow to set WEP key other than with index 0,
353 * it is known that not work at least on some hardware.
354 * SW crypto will be used in that case.
355 */
356 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
357 key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
358 key->keyidx != 0)
359 return -EOPNOTSUPP;
360
361 /*
362 * Pairwise key will always be entry 0, but this
363 * could collide with a shared key on the same
364 * position...
365 */
366 mask = TXRX_CSR0_KEY_ID.bit_mask;
367
368 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
369 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
370 reg &= mask;
371
372 if (reg && reg == mask)
373 return -ENOSPC;
374
375 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
376
377 key->hw_key_idx += reg ? ffz(reg) : 0;
378 /*
379 * Hardware requires that all keys use the same cipher
380 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
381 * If this is not the first key, compare the cipher with the
382 * first one and fall back to SW crypto if not the same.
383 */
384 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
385 return -EOPNOTSUPP;
386
387 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
388 crypto->key, sizeof(crypto->key));
389
390 /*
391 * The driver does not support the IV/EIV generation
392 * in hardware. However it demands the data to be provided
393 * both separately as well as inside the frame.
394 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
395 * to ensure rt2x00lib will not strip the data from the
396 * frame after the copy, now we must tell mac80211
397 * to generate the IV/EIV data.
398 */
399 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
400 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
401 }
402
403 /*
404 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
405 * a particular key is valid.
406 */
407 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
408 rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
409 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
410
411 mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
412 if (crypto->cmd == SET_KEY)
413 mask |= 1 << key->hw_key_idx;
414 else if (crypto->cmd == DISABLE_KEY)
415 mask &= ~(1 << key->hw_key_idx);
416 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
417 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
418
419 return 0;
420 }
421
422 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
423 const unsigned int filter_flags)
424 {
425 u16 reg;
426
427 /*
428 * Start configuration steps.
429 * Note that the version error will always be dropped
430 * and broadcast frames will always be accepted since
431 * there is no filter for it at this time.
432 */
433 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
434 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
435 !(filter_flags & FIF_FCSFAIL));
436 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
437 !(filter_flags & FIF_PLCPFAIL));
438 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
439 !(filter_flags & FIF_CONTROL));
440 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME, 1);
441 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
442 !rt2x00dev->intf_ap_count);
443 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
444 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
445 !(filter_flags & FIF_ALLMULTI));
446 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
447 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
448 }
449
450 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
451 struct rt2x00_intf *intf,
452 struct rt2x00intf_conf *conf,
453 const unsigned int flags)
454 {
455 unsigned int bcn_preload;
456 u16 reg;
457
458 if (flags & CONFIG_UPDATE_TYPE) {
459 /*
460 * Enable beacon config
461 */
462 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
463 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
464 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
465 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
466 2 * (conf->type != NL80211_IFTYPE_STATION));
467 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
468
469 /*
470 * Enable synchronisation.
471 */
472 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
473 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
474 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
475
476 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
477 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
478 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
479 }
480
481 if (flags & CONFIG_UPDATE_MAC)
482 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
483 (3 * sizeof(__le16)));
484
485 if (flags & CONFIG_UPDATE_BSSID)
486 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
487 (3 * sizeof(__le16)));
488 }
489
490 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
491 struct rt2x00lib_erp *erp,
492 u32 changed)
493 {
494 u16 reg;
495
496 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
497 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
498 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
499 !!erp->short_preamble);
500 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
501 }
502
503 if (changed & BSS_CHANGED_BASIC_RATES)
504 rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
505 erp->basic_rates);
506
507 if (changed & BSS_CHANGED_BEACON_INT) {
508 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
509 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
510 erp->beacon_int * 4);
511 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
512 }
513
514 if (changed & BSS_CHANGED_ERP_SLOT) {
515 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
516 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
517 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
518 }
519 }
520
521 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
522 struct antenna_setup *ant)
523 {
524 u8 r2;
525 u8 r14;
526 u16 csr5;
527 u16 csr6;
528
529 /*
530 * We should never come here because rt2x00lib is supposed
531 * to catch this and send us the correct antenna explicitely.
532 */
533 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
534 ant->tx == ANTENNA_SW_DIVERSITY);
535
536 rt2500usb_bbp_read(rt2x00dev, 2, &r2);
537 rt2500usb_bbp_read(rt2x00dev, 14, &r14);
538 rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
539 rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
540
541 /*
542 * Configure the TX antenna.
543 */
544 switch (ant->tx) {
545 case ANTENNA_HW_DIVERSITY:
546 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
547 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
548 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
549 break;
550 case ANTENNA_A:
551 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
552 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
553 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
554 break;
555 case ANTENNA_B:
556 default:
557 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
558 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
559 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
560 break;
561 }
562
563 /*
564 * Configure the RX antenna.
565 */
566 switch (ant->rx) {
567 case ANTENNA_HW_DIVERSITY:
568 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
569 break;
570 case ANTENNA_A:
571 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
572 break;
573 case ANTENNA_B:
574 default:
575 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
576 break;
577 }
578
579 /*
580 * RT2525E and RT5222 need to flip TX I/Q
581 */
582 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
583 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
584 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
585 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
586
587 /*
588 * RT2525E does not need RX I/Q Flip.
589 */
590 if (rt2x00_rf(rt2x00dev, RF2525E))
591 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
592 } else {
593 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
594 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
595 }
596
597 rt2500usb_bbp_write(rt2x00dev, 2, r2);
598 rt2500usb_bbp_write(rt2x00dev, 14, r14);
599 rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
600 rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
601 }
602
603 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
604 struct rf_channel *rf, const int txpower)
605 {
606 /*
607 * Set TXpower.
608 */
609 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
610
611 /*
612 * For RT2525E we should first set the channel to half band higher.
613 */
614 if (rt2x00_rf(rt2x00dev, RF2525E)) {
615 static const u32 vals[] = {
616 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
617 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
618 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
619 0x00000902, 0x00000906
620 };
621
622 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
623 if (rf->rf4)
624 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
625 }
626
627 rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
628 rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
629 rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
630 if (rf->rf4)
631 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
632 }
633
634 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
635 const int txpower)
636 {
637 u32 rf3;
638
639 rt2x00_rf_read(rt2x00dev, 3, &rf3);
640 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
641 rt2500usb_rf_write(rt2x00dev, 3, rf3);
642 }
643
644 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
645 struct rt2x00lib_conf *libconf)
646 {
647 enum dev_state state =
648 (libconf->conf->flags & IEEE80211_CONF_PS) ?
649 STATE_SLEEP : STATE_AWAKE;
650 u16 reg;
651
652 if (state == STATE_SLEEP) {
653 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
654 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
655 rt2x00dev->beacon_int - 20);
656 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
657 libconf->conf->listen_interval - 1);
658
659 /* We must first disable autowake before it can be enabled */
660 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
661 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
662
663 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
664 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
665 } else {
666 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
667 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
668 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
669 }
670
671 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
672 }
673
674 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
675 struct rt2x00lib_conf *libconf,
676 const unsigned int flags)
677 {
678 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
679 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
680 libconf->conf->power_level);
681 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
682 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
683 rt2500usb_config_txpower(rt2x00dev,
684 libconf->conf->power_level);
685 if (flags & IEEE80211_CONF_CHANGE_PS)
686 rt2500usb_config_ps(rt2x00dev, libconf);
687 }
688
689 /*
690 * Link tuning
691 */
692 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
693 struct link_qual *qual)
694 {
695 u16 reg;
696
697 /*
698 * Update FCS error count from register.
699 */
700 rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
701 qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
702
703 /*
704 * Update False CCA count from register.
705 */
706 rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
707 qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
708 }
709
710 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
711 struct link_qual *qual)
712 {
713 u16 eeprom;
714 u16 value;
715
716 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
717 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
718 rt2500usb_bbp_write(rt2x00dev, 24, value);
719
720 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
721 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
722 rt2500usb_bbp_write(rt2x00dev, 25, value);
723
724 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
725 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
726 rt2500usb_bbp_write(rt2x00dev, 61, value);
727
728 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
729 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
730 rt2500usb_bbp_write(rt2x00dev, 17, value);
731
732 qual->vgc_level = value;
733 }
734
735 /*
736 * Queue handlers.
737 */
738 static void rt2500usb_start_queue(struct data_queue *queue)
739 {
740 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
741 u16 reg;
742
743 switch (queue->qid) {
744 case QID_RX:
745 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
746 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
747 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
748 break;
749 case QID_BEACON:
750 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
751 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
752 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
753 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
754 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
755 break;
756 default:
757 break;
758 }
759 }
760
761 static void rt2500usb_stop_queue(struct data_queue *queue)
762 {
763 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
764 u16 reg;
765
766 switch (queue->qid) {
767 case QID_RX:
768 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
769 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
770 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
771 break;
772 case QID_BEACON:
773 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
774 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
775 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
776 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
777 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
778 break;
779 default:
780 break;
781 }
782 }
783
784 /*
785 * Initialization functions.
786 */
787 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
788 {
789 u16 reg;
790
791 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
792 USB_MODE_TEST, REGISTER_TIMEOUT);
793 rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
794 0x00f0, REGISTER_TIMEOUT);
795
796 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
797 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
798 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
799
800 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
801 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
802
803 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
804 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
805 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
806 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
807 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
808
809 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
810 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
811 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
812 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
813 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
814
815 rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
816 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
817 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
818 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
819 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
820 rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
821
822 rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
823 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
824 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
825 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
826 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
827 rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
828
829 rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
830 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
831 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
832 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
833 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
834 rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
835
836 rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
837 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
838 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
839 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
840 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
841 rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
842
843 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
844 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
845 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
846 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
847 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
848 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
849
850 rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
851 rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
852
853 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
854 return -EBUSY;
855
856 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
857 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
858 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
859 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
860 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
861
862 if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
863 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
864 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
865 } else {
866 reg = 0;
867 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
868 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
869 }
870 rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
871
872 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
873 rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
874 rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
875 rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
876
877 rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
878 rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
879 rt2x00dev->rx->data_size);
880 rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
881
882 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
883 rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
884 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
885 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
886 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
887
888 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
889 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
890 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
891
892 rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
893 rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
894 rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
895
896 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
897 rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
898 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
899
900 return 0;
901 }
902
903 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
904 {
905 unsigned int i;
906 u8 value;
907
908 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
909 rt2500usb_bbp_read(rt2x00dev, 0, &value);
910 if ((value != 0xff) && (value != 0x00))
911 return 0;
912 udelay(REGISTER_BUSY_DELAY);
913 }
914
915 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
916 return -EACCES;
917 }
918
919 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
920 {
921 unsigned int i;
922 u16 eeprom;
923 u8 value;
924 u8 reg_id;
925
926 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
927 return -EACCES;
928
929 rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
930 rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
931 rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
932 rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
933 rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
934 rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
935 rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
936 rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
937 rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
938 rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
939 rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
940 rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
941 rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
942 rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
943 rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
944 rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
945 rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
946 rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
947 rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
948 rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
949 rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
950 rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
951 rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
952 rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
953 rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
954 rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
955 rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
956 rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
957 rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
958 rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
959 rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
960
961 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
962 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
963
964 if (eeprom != 0xffff && eeprom != 0x0000) {
965 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
966 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
967 rt2500usb_bbp_write(rt2x00dev, reg_id, value);
968 }
969 }
970
971 return 0;
972 }
973
974 /*
975 * Device state switch handlers.
976 */
977 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
978 {
979 /*
980 * Initialize all registers.
981 */
982 if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
983 rt2500usb_init_bbp(rt2x00dev)))
984 return -EIO;
985
986 return 0;
987 }
988
989 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
990 {
991 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
992 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
993
994 /*
995 * Disable synchronisation.
996 */
997 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
998
999 rt2x00usb_disable_radio(rt2x00dev);
1000 }
1001
1002 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1003 enum dev_state state)
1004 {
1005 u16 reg;
1006 u16 reg2;
1007 unsigned int i;
1008 char put_to_sleep;
1009 char bbp_state;
1010 char rf_state;
1011
1012 put_to_sleep = (state != STATE_AWAKE);
1013
1014 reg = 0;
1015 rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1016 rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1017 rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1018 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1019 rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1020 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1021
1022 /*
1023 * Device is not guaranteed to be in the requested state yet.
1024 * We must wait until the register indicates that the
1025 * device has entered the correct state.
1026 */
1027 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1028 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1029 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1030 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1031 if (bbp_state == state && rf_state == state)
1032 return 0;
1033 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1034 msleep(30);
1035 }
1036
1037 return -EBUSY;
1038 }
1039
1040 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1041 enum dev_state state)
1042 {
1043 int retval = 0;
1044
1045 switch (state) {
1046 case STATE_RADIO_ON:
1047 retval = rt2500usb_enable_radio(rt2x00dev);
1048 break;
1049 case STATE_RADIO_OFF:
1050 rt2500usb_disable_radio(rt2x00dev);
1051 break;
1052 case STATE_RADIO_IRQ_ON:
1053 case STATE_RADIO_IRQ_OFF:
1054 /* No support, but no error either */
1055 break;
1056 case STATE_DEEP_SLEEP:
1057 case STATE_SLEEP:
1058 case STATE_STANDBY:
1059 case STATE_AWAKE:
1060 retval = rt2500usb_set_state(rt2x00dev, state);
1061 break;
1062 default:
1063 retval = -ENOTSUPP;
1064 break;
1065 }
1066
1067 if (unlikely(retval))
1068 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1069 state, retval);
1070
1071 return retval;
1072 }
1073
1074 /*
1075 * TX descriptor initialization
1076 */
1077 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1078 struct txentry_desc *txdesc)
1079 {
1080 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1081 __le32 *txd = (__le32 *) entry->skb->data;
1082 u32 word;
1083
1084 /*
1085 * Start writing the descriptor words.
1086 */
1087 rt2x00_desc_read(txd, 0, &word);
1088 rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1089 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1090 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1091 rt2x00_set_field32(&word, TXD_W0_ACK,
1092 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1093 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1094 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1095 rt2x00_set_field32(&word, TXD_W0_OFDM,
1096 (txdesc->rate_mode == RATE_MODE_OFDM));
1097 rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1098 test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1099 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1100 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1101 rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1102 rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1103 rt2x00_desc_write(txd, 0, word);
1104
1105 rt2x00_desc_read(txd, 1, &word);
1106 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1107 rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1108 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1109 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1110 rt2x00_desc_write(txd, 1, word);
1111
1112 rt2x00_desc_read(txd, 2, &word);
1113 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1114 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1115 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1116 txdesc->u.plcp.length_low);
1117 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1118 txdesc->u.plcp.length_high);
1119 rt2x00_desc_write(txd, 2, word);
1120
1121 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1122 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1123 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1124 }
1125
1126 /*
1127 * Register descriptor details in skb frame descriptor.
1128 */
1129 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1130 skbdesc->desc = txd;
1131 skbdesc->desc_len = TXD_DESC_SIZE;
1132 }
1133
1134 /*
1135 * TX data initialization
1136 */
1137 static void rt2500usb_beacondone(struct urb *urb);
1138
1139 static void rt2500usb_write_beacon(struct queue_entry *entry,
1140 struct txentry_desc *txdesc)
1141 {
1142 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1143 struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1144 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1145 int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1146 int length;
1147 u16 reg, reg0;
1148
1149 /*
1150 * Disable beaconing while we are reloading the beacon data,
1151 * otherwise we might be sending out invalid data.
1152 */
1153 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1154 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1155 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1156
1157 /*
1158 * Add space for the descriptor in front of the skb.
1159 */
1160 skb_push(entry->skb, TXD_DESC_SIZE);
1161 memset(entry->skb->data, 0, TXD_DESC_SIZE);
1162
1163 /*
1164 * Write the TX descriptor for the beacon.
1165 */
1166 rt2500usb_write_tx_desc(entry, txdesc);
1167
1168 /*
1169 * Dump beacon to userspace through debugfs.
1170 */
1171 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1172
1173 /*
1174 * USB devices cannot blindly pass the skb->len as the
1175 * length of the data to usb_fill_bulk_urb. Pass the skb
1176 * to the driver to determine what the length should be.
1177 */
1178 length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1179
1180 usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1181 entry->skb->data, length, rt2500usb_beacondone,
1182 entry);
1183
1184 /*
1185 * Second we need to create the guardian byte.
1186 * We only need a single byte, so lets recycle
1187 * the 'flags' field we are not using for beacons.
1188 */
1189 bcn_priv->guardian_data = 0;
1190 usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1191 &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1192 entry);
1193
1194 /*
1195 * Send out the guardian byte.
1196 */
1197 usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1198
1199 /*
1200 * Enable beaconing again.
1201 */
1202 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1203 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1204 reg0 = reg;
1205 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1206 /*
1207 * Beacon generation will fail initially.
1208 * To prevent this we need to change the TXRX_CSR19
1209 * register several times (reg0 is the same as reg
1210 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1211 * and 1 in reg).
1212 */
1213 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1214 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1215 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1216 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1217 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1218 }
1219
1220 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1221 {
1222 int length;
1223
1224 /*
1225 * The length _must_ be a multiple of 2,
1226 * but it must _not_ be a multiple of the USB packet size.
1227 */
1228 length = roundup(entry->skb->len, 2);
1229 length += (2 * !(length % entry->queue->usb_maxpacket));
1230
1231 return length;
1232 }
1233
1234 /*
1235 * RX control handlers
1236 */
1237 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1238 struct rxdone_entry_desc *rxdesc)
1239 {
1240 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1241 struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1242 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1243 __le32 *rxd =
1244 (__le32 *)(entry->skb->data +
1245 (entry_priv->urb->actual_length -
1246 entry->queue->desc_size));
1247 u32 word0;
1248 u32 word1;
1249
1250 /*
1251 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1252 * frame data in rt2x00usb.
1253 */
1254 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1255 rxd = (__le32 *)skbdesc->desc;
1256
1257 /*
1258 * It is now safe to read the descriptor on all architectures.
1259 */
1260 rt2x00_desc_read(rxd, 0, &word0);
1261 rt2x00_desc_read(rxd, 1, &word1);
1262
1263 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1264 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1265 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1266 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1267
1268 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1269 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1270 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1271
1272 if (rxdesc->cipher != CIPHER_NONE) {
1273 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1274 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1275 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1276
1277 /* ICV is located at the end of frame */
1278
1279 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1280 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1281 rxdesc->flags |= RX_FLAG_DECRYPTED;
1282 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1283 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1284 }
1285
1286 /*
1287 * Obtain the status about this packet.
1288 * When frame was received with an OFDM bitrate,
1289 * the signal is the PLCP value. If it was received with
1290 * a CCK bitrate the signal is the rate in 100kbit/s.
1291 */
1292 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1293 rxdesc->rssi =
1294 rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1295 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1296
1297 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1298 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1299 else
1300 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1301 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1302 rxdesc->dev_flags |= RXDONE_MY_BSS;
1303
1304 /*
1305 * Adjust the skb memory window to the frame boundaries.
1306 */
1307 skb_trim(entry->skb, rxdesc->size);
1308 }
1309
1310 /*
1311 * Interrupt functions.
1312 */
1313 static void rt2500usb_beacondone(struct urb *urb)
1314 {
1315 struct queue_entry *entry = (struct queue_entry *)urb->context;
1316 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1317
1318 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1319 return;
1320
1321 /*
1322 * Check if this was the guardian beacon,
1323 * if that was the case we need to send the real beacon now.
1324 * Otherwise we should free the sk_buffer, the device
1325 * should be doing the rest of the work now.
1326 */
1327 if (bcn_priv->guardian_urb == urb) {
1328 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1329 } else if (bcn_priv->urb == urb) {
1330 dev_kfree_skb(entry->skb);
1331 entry->skb = NULL;
1332 }
1333 }
1334
1335 /*
1336 * Device probe functions.
1337 */
1338 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1339 {
1340 u16 word;
1341 u8 *mac;
1342 u8 bbp;
1343
1344 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1345
1346 /*
1347 * Start validation of the data that has been read.
1348 */
1349 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1350 if (!is_valid_ether_addr(mac)) {
1351 eth_random_addr(mac);
1352 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1353 }
1354
1355 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1356 if (word == 0xffff) {
1357 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1358 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1359 ANTENNA_SW_DIVERSITY);
1360 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1361 ANTENNA_SW_DIVERSITY);
1362 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1363 LED_MODE_DEFAULT);
1364 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1365 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1366 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1367 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1368 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1369 }
1370
1371 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1372 if (word == 0xffff) {
1373 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1374 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1375 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1376 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1377 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1378 }
1379
1380 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1381 if (word == 0xffff) {
1382 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1383 DEFAULT_RSSI_OFFSET);
1384 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1385 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1386 word);
1387 }
1388
1389 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1390 if (word == 0xffff) {
1391 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1392 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1393 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1394 }
1395
1396 /*
1397 * Switch lower vgc bound to current BBP R17 value,
1398 * lower the value a bit for better quality.
1399 */
1400 rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1401 bbp -= 6;
1402
1403 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1404 if (word == 0xffff) {
1405 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1406 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1407 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1408 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1409 } else {
1410 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1411 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1412 }
1413
1414 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1415 if (word == 0xffff) {
1416 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1417 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1418 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1419 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1420 }
1421
1422 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1423 if (word == 0xffff) {
1424 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1425 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1426 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1427 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1428 }
1429
1430 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1431 if (word == 0xffff) {
1432 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1433 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1434 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1435 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1436 }
1437
1438 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1439 if (word == 0xffff) {
1440 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1441 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1442 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1443 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1444 }
1445
1446 return 0;
1447 }
1448
1449 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1450 {
1451 u16 reg;
1452 u16 value;
1453 u16 eeprom;
1454
1455 /*
1456 * Read EEPROM word for configuration.
1457 */
1458 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1459
1460 /*
1461 * Identify RF chipset.
1462 */
1463 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1464 rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1465 rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1466
1467 if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1468 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1469 return -ENODEV;
1470 }
1471
1472 if (!rt2x00_rf(rt2x00dev, RF2522) &&
1473 !rt2x00_rf(rt2x00dev, RF2523) &&
1474 !rt2x00_rf(rt2x00dev, RF2524) &&
1475 !rt2x00_rf(rt2x00dev, RF2525) &&
1476 !rt2x00_rf(rt2x00dev, RF2525E) &&
1477 !rt2x00_rf(rt2x00dev, RF5222)) {
1478 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1479 return -ENODEV;
1480 }
1481
1482 /*
1483 * Identify default antenna configuration.
1484 */
1485 rt2x00dev->default_ant.tx =
1486 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1487 rt2x00dev->default_ant.rx =
1488 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1489
1490 /*
1491 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1492 * I am not 100% sure about this, but the legacy drivers do not
1493 * indicate antenna swapping in software is required when
1494 * diversity is enabled.
1495 */
1496 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1497 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1498 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1499 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1500
1501 /*
1502 * Store led mode, for correct led behaviour.
1503 */
1504 #ifdef CONFIG_RT2X00_LIB_LEDS
1505 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1506
1507 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1508 if (value == LED_MODE_TXRX_ACTIVITY ||
1509 value == LED_MODE_DEFAULT ||
1510 value == LED_MODE_ASUS)
1511 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1512 LED_TYPE_ACTIVITY);
1513 #endif /* CONFIG_RT2X00_LIB_LEDS */
1514
1515 /*
1516 * Detect if this device has an hardware controlled radio.
1517 */
1518 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1519 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1520
1521 /*
1522 * Read the RSSI <-> dBm offset information.
1523 */
1524 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1525 rt2x00dev->rssi_offset =
1526 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1527
1528 return 0;
1529 }
1530
1531 /*
1532 * RF value list for RF2522
1533 * Supports: 2.4 GHz
1534 */
1535 static const struct rf_channel rf_vals_bg_2522[] = {
1536 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1537 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1538 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1539 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1540 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1541 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1542 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1543 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1544 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1545 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1546 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1547 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1548 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1549 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1550 };
1551
1552 /*
1553 * RF value list for RF2523
1554 * Supports: 2.4 GHz
1555 */
1556 static const struct rf_channel rf_vals_bg_2523[] = {
1557 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1558 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1559 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1560 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1561 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1562 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1563 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1564 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1565 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1566 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1567 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1568 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1569 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1570 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1571 };
1572
1573 /*
1574 * RF value list for RF2524
1575 * Supports: 2.4 GHz
1576 */
1577 static const struct rf_channel rf_vals_bg_2524[] = {
1578 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1579 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1580 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1581 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1582 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1583 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1584 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1585 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1586 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1587 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1588 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1589 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1590 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1591 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1592 };
1593
1594 /*
1595 * RF value list for RF2525
1596 * Supports: 2.4 GHz
1597 */
1598 static const struct rf_channel rf_vals_bg_2525[] = {
1599 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1600 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1601 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1602 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1603 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1604 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1605 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1606 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1607 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1608 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1609 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1610 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1611 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1612 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1613 };
1614
1615 /*
1616 * RF value list for RF2525e
1617 * Supports: 2.4 GHz
1618 */
1619 static const struct rf_channel rf_vals_bg_2525e[] = {
1620 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1621 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1622 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1623 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1624 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1625 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1626 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1627 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1628 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1629 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1630 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1631 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1632 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1633 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1634 };
1635
1636 /*
1637 * RF value list for RF5222
1638 * Supports: 2.4 GHz & 5.2 GHz
1639 */
1640 static const struct rf_channel rf_vals_5222[] = {
1641 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1642 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1643 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1644 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1645 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1646 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1647 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1648 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1649 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1650 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1651 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1652 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1653 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1654 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1655
1656 /* 802.11 UNI / HyperLan 2 */
1657 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1658 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1659 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1660 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1661 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1662 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1663 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1664 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1665
1666 /* 802.11 HyperLan 2 */
1667 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1668 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1669 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1670 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1671 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1672 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1673 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1674 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1675 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1676 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1677
1678 /* 802.11 UNII */
1679 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1680 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1681 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1682 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1683 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1684 };
1685
1686 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1687 {
1688 struct hw_mode_spec *spec = &rt2x00dev->spec;
1689 struct channel_info *info;
1690 char *tx_power;
1691 unsigned int i;
1692
1693 /*
1694 * Initialize all hw fields.
1695 *
1696 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1697 * capable of sending the buffered frames out after the DTIM
1698 * transmission using rt2x00lib_beacondone. This will send out
1699 * multicast and broadcast traffic immediately instead of buffering it
1700 * infinitly and thus dropping it after some time.
1701 */
1702 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1703 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1704 ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1705 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1706
1707 /*
1708 * Disable powersaving as default.
1709 */
1710 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1711
1712 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1713 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1714 rt2x00_eeprom_addr(rt2x00dev,
1715 EEPROM_MAC_ADDR_0));
1716
1717 /*
1718 * Initialize hw_mode information.
1719 */
1720 spec->supported_bands = SUPPORT_BAND_2GHZ;
1721 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1722
1723 if (rt2x00_rf(rt2x00dev, RF2522)) {
1724 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1725 spec->channels = rf_vals_bg_2522;
1726 } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1727 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1728 spec->channels = rf_vals_bg_2523;
1729 } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1730 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1731 spec->channels = rf_vals_bg_2524;
1732 } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1733 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1734 spec->channels = rf_vals_bg_2525;
1735 } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1736 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1737 spec->channels = rf_vals_bg_2525e;
1738 } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1739 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1740 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1741 spec->channels = rf_vals_5222;
1742 }
1743
1744 /*
1745 * Create channel information array
1746 */
1747 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1748 if (!info)
1749 return -ENOMEM;
1750
1751 spec->channels_info = info;
1752
1753 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1754 for (i = 0; i < 14; i++) {
1755 info[i].max_power = MAX_TXPOWER;
1756 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1757 }
1758
1759 if (spec->num_channels > 14) {
1760 for (i = 14; i < spec->num_channels; i++) {
1761 info[i].max_power = MAX_TXPOWER;
1762 info[i].default_power1 = DEFAULT_TXPOWER;
1763 }
1764 }
1765
1766 return 0;
1767 }
1768
1769 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1770 {
1771 int retval;
1772 u16 reg;
1773
1774 /*
1775 * Allocate eeprom data.
1776 */
1777 retval = rt2500usb_validate_eeprom(rt2x00dev);
1778 if (retval)
1779 return retval;
1780
1781 retval = rt2500usb_init_eeprom(rt2x00dev);
1782 if (retval)
1783 return retval;
1784
1785 /*
1786 * Enable rfkill polling by setting GPIO direction of the
1787 * rfkill switch GPIO pin correctly.
1788 */
1789 rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
1790 rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1791 rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1792
1793 /*
1794 * Initialize hw specifications.
1795 */
1796 retval = rt2500usb_probe_hw_mode(rt2x00dev);
1797 if (retval)
1798 return retval;
1799
1800 /*
1801 * This device requires the atim queue
1802 */
1803 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1804 __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1805 if (!modparam_nohwcrypt) {
1806 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1807 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1808 }
1809 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1810 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1811
1812 /*
1813 * Set the rssi offset.
1814 */
1815 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1816
1817 return 0;
1818 }
1819
1820 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1821 .tx = rt2x00mac_tx,
1822 .start = rt2x00mac_start,
1823 .stop = rt2x00mac_stop,
1824 .add_interface = rt2x00mac_add_interface,
1825 .remove_interface = rt2x00mac_remove_interface,
1826 .config = rt2x00mac_config,
1827 .configure_filter = rt2x00mac_configure_filter,
1828 .set_tim = rt2x00mac_set_tim,
1829 .set_key = rt2x00mac_set_key,
1830 .sw_scan_start = rt2x00mac_sw_scan_start,
1831 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1832 .get_stats = rt2x00mac_get_stats,
1833 .bss_info_changed = rt2x00mac_bss_info_changed,
1834 .conf_tx = rt2x00mac_conf_tx,
1835 .rfkill_poll = rt2x00mac_rfkill_poll,
1836 .flush = rt2x00mac_flush,
1837 .set_antenna = rt2x00mac_set_antenna,
1838 .get_antenna = rt2x00mac_get_antenna,
1839 .get_ringparam = rt2x00mac_get_ringparam,
1840 .tx_frames_pending = rt2x00mac_tx_frames_pending,
1841 };
1842
1843 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1844 .probe_hw = rt2500usb_probe_hw,
1845 .initialize = rt2x00usb_initialize,
1846 .uninitialize = rt2x00usb_uninitialize,
1847 .clear_entry = rt2x00usb_clear_entry,
1848 .set_device_state = rt2500usb_set_device_state,
1849 .rfkill_poll = rt2500usb_rfkill_poll,
1850 .link_stats = rt2500usb_link_stats,
1851 .reset_tuner = rt2500usb_reset_tuner,
1852 .watchdog = rt2x00usb_watchdog,
1853 .start_queue = rt2500usb_start_queue,
1854 .kick_queue = rt2x00usb_kick_queue,
1855 .stop_queue = rt2500usb_stop_queue,
1856 .flush_queue = rt2x00usb_flush_queue,
1857 .write_tx_desc = rt2500usb_write_tx_desc,
1858 .write_beacon = rt2500usb_write_beacon,
1859 .get_tx_data_len = rt2500usb_get_tx_data_len,
1860 .fill_rxdone = rt2500usb_fill_rxdone,
1861 .config_shared_key = rt2500usb_config_key,
1862 .config_pairwise_key = rt2500usb_config_key,
1863 .config_filter = rt2500usb_config_filter,
1864 .config_intf = rt2500usb_config_intf,
1865 .config_erp = rt2500usb_config_erp,
1866 .config_ant = rt2500usb_config_ant,
1867 .config = rt2500usb_config,
1868 };
1869
1870 static void rt2500usb_queue_init(struct data_queue *queue)
1871 {
1872 switch (queue->qid) {
1873 case QID_RX:
1874 queue->limit = 32;
1875 queue->data_size = DATA_FRAME_SIZE;
1876 queue->desc_size = RXD_DESC_SIZE;
1877 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1878 break;
1879
1880 case QID_AC_VO:
1881 case QID_AC_VI:
1882 case QID_AC_BE:
1883 case QID_AC_BK:
1884 queue->limit = 32;
1885 queue->data_size = DATA_FRAME_SIZE;
1886 queue->desc_size = TXD_DESC_SIZE;
1887 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1888 break;
1889
1890 case QID_BEACON:
1891 queue->limit = 1;
1892 queue->data_size = MGMT_FRAME_SIZE;
1893 queue->desc_size = TXD_DESC_SIZE;
1894 queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1895 break;
1896
1897 case QID_ATIM:
1898 queue->limit = 8;
1899 queue->data_size = DATA_FRAME_SIZE;
1900 queue->desc_size = TXD_DESC_SIZE;
1901 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1902 break;
1903
1904 default:
1905 BUG();
1906 break;
1907 }
1908 }
1909
1910 static const struct rt2x00_ops rt2500usb_ops = {
1911 .name = KBUILD_MODNAME,
1912 .max_ap_intf = 1,
1913 .eeprom_size = EEPROM_SIZE,
1914 .rf_size = RF_SIZE,
1915 .tx_queues = NUM_TX_QUEUES,
1916 .queue_init = rt2500usb_queue_init,
1917 .lib = &rt2500usb_rt2x00_ops,
1918 .hw = &rt2500usb_mac80211_ops,
1919 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1920 .debugfs = &rt2500usb_rt2x00debug,
1921 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1922 };
1923
1924 /*
1925 * rt2500usb module information.
1926 */
1927 static struct usb_device_id rt2500usb_device_table[] = {
1928 /* ASUS */
1929 { USB_DEVICE(0x0b05, 0x1706) },
1930 { USB_DEVICE(0x0b05, 0x1707) },
1931 /* Belkin */
1932 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1933 { USB_DEVICE(0x050d, 0x7051) },
1934 /* Cisco Systems */
1935 { USB_DEVICE(0x13b1, 0x000d) },
1936 { USB_DEVICE(0x13b1, 0x0011) },
1937 { USB_DEVICE(0x13b1, 0x001a) },
1938 /* Conceptronic */
1939 { USB_DEVICE(0x14b2, 0x3c02) },
1940 /* D-LINK */
1941 { USB_DEVICE(0x2001, 0x3c00) },
1942 /* Gigabyte */
1943 { USB_DEVICE(0x1044, 0x8001) },
1944 { USB_DEVICE(0x1044, 0x8007) },
1945 /* Hercules */
1946 { USB_DEVICE(0x06f8, 0xe000) },
1947 /* Melco */
1948 { USB_DEVICE(0x0411, 0x005e) },
1949 { USB_DEVICE(0x0411, 0x0066) },
1950 { USB_DEVICE(0x0411, 0x0067) },
1951 { USB_DEVICE(0x0411, 0x008b) },
1952 { USB_DEVICE(0x0411, 0x0097) },
1953 /* MSI */
1954 { USB_DEVICE(0x0db0, 0x6861) },
1955 { USB_DEVICE(0x0db0, 0x6865) },
1956 { USB_DEVICE(0x0db0, 0x6869) },
1957 /* Ralink */
1958 { USB_DEVICE(0x148f, 0x1706) },
1959 { USB_DEVICE(0x148f, 0x2570) },
1960 { USB_DEVICE(0x148f, 0x9020) },
1961 /* Sagem */
1962 { USB_DEVICE(0x079b, 0x004b) },
1963 /* Siemens */
1964 { USB_DEVICE(0x0681, 0x3c06) },
1965 /* SMC */
1966 { USB_DEVICE(0x0707, 0xee13) },
1967 /* Spairon */
1968 { USB_DEVICE(0x114b, 0x0110) },
1969 /* SURECOM */
1970 { USB_DEVICE(0x0769, 0x11f3) },
1971 /* Trust */
1972 { USB_DEVICE(0x0eb0, 0x9020) },
1973 /* VTech */
1974 { USB_DEVICE(0x0f88, 0x3012) },
1975 /* Zinwell */
1976 { USB_DEVICE(0x5a57, 0x0260) },
1977 { 0, }
1978 };
1979
1980 MODULE_AUTHOR(DRV_PROJECT);
1981 MODULE_VERSION(DRV_VERSION);
1982 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1983 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1984 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1985 MODULE_LICENSE("GPL");
1986
1987 static int rt2500usb_probe(struct usb_interface *usb_intf,
1988 const struct usb_device_id *id)
1989 {
1990 return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1991 }
1992
1993 static struct usb_driver rt2500usb_driver = {
1994 .name = KBUILD_MODNAME,
1995 .id_table = rt2500usb_device_table,
1996 .probe = rt2500usb_probe,
1997 .disconnect = rt2x00usb_disconnect,
1998 .suspend = rt2x00usb_suspend,
1999 .resume = rt2x00usb_resume,
2000 .reset_resume = rt2x00usb_resume,
2001 .disable_hub_initiated_lpm = 1,
2002 };
2003
2004 module_usb_driver(rt2500usb_driver);