]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/pci.c
nvme-pci: Introduce nvme_ring_cq_doorbell
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/pci.h>
28 #include <linux/poison.h>
29 #include <linux/t10-pi.h>
30 #include <linux/timer.h>
31 #include <linux/types.h>
32 #include <linux/io-64-nonatomic-lo-hi.h>
33 #include <asm/unaligned.h>
34 #include <linux/sed-opal.h>
35
36 #include "nvme.h"
37
38 #define NVME_Q_DEPTH 1024
39 #define NVME_AQ_DEPTH 256
40 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
41 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
42
43 /*
44 * We handle AEN commands ourselves and don't even let the
45 * block layer know about them.
46 */
47 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
48
49 static int use_threaded_interrupts;
50 module_param(use_threaded_interrupts, int, 0);
51
52 static bool use_cmb_sqes = true;
53 module_param(use_cmb_sqes, bool, 0644);
54 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
55
56 static unsigned int max_host_mem_size_mb = 128;
57 module_param(max_host_mem_size_mb, uint, 0444);
58 MODULE_PARM_DESC(max_host_mem_size_mb,
59 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
60
61 struct nvme_dev;
62 struct nvme_queue;
63
64 static void nvme_process_cq(struct nvme_queue *nvmeq);
65 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
66
67 /*
68 * Represents an NVM Express device. Each nvme_dev is a PCI function.
69 */
70 struct nvme_dev {
71 struct nvme_queue **queues;
72 struct blk_mq_tag_set tagset;
73 struct blk_mq_tag_set admin_tagset;
74 u32 __iomem *dbs;
75 struct device *dev;
76 struct dma_pool *prp_page_pool;
77 struct dma_pool *prp_small_pool;
78 unsigned queue_count;
79 unsigned online_queues;
80 unsigned max_qid;
81 int q_depth;
82 u32 db_stride;
83 void __iomem *bar;
84 unsigned long bar_mapped_size;
85 struct work_struct remove_work;
86 struct mutex shutdown_lock;
87 bool subsystem;
88 void __iomem *cmb;
89 dma_addr_t cmb_dma_addr;
90 u64 cmb_size;
91 u32 cmbsz;
92 u32 cmbloc;
93 struct nvme_ctrl ctrl;
94 struct completion ioq_wait;
95
96 /* shadow doorbell buffer support: */
97 u32 *dbbuf_dbs;
98 dma_addr_t dbbuf_dbs_dma_addr;
99 u32 *dbbuf_eis;
100 dma_addr_t dbbuf_eis_dma_addr;
101
102 /* host memory buffer support: */
103 u64 host_mem_size;
104 u32 nr_host_mem_descs;
105 struct nvme_host_mem_buf_desc *host_mem_descs;
106 void **host_mem_desc_bufs;
107 };
108
109 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
110 {
111 return qid * 2 * stride;
112 }
113
114 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
115 {
116 return (qid * 2 + 1) * stride;
117 }
118
119 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
120 {
121 return container_of(ctrl, struct nvme_dev, ctrl);
122 }
123
124 /*
125 * An NVM Express queue. Each device has at least two (one for admin
126 * commands and one for I/O commands).
127 */
128 struct nvme_queue {
129 struct device *q_dmadev;
130 struct nvme_dev *dev;
131 spinlock_t q_lock;
132 struct nvme_command *sq_cmds;
133 struct nvme_command __iomem *sq_cmds_io;
134 volatile struct nvme_completion *cqes;
135 struct blk_mq_tags **tags;
136 dma_addr_t sq_dma_addr;
137 dma_addr_t cq_dma_addr;
138 u32 __iomem *q_db;
139 u16 q_depth;
140 s16 cq_vector;
141 u16 sq_tail;
142 u16 cq_head;
143 u16 qid;
144 u8 cq_phase;
145 u8 cqe_seen;
146 u32 *dbbuf_sq_db;
147 u32 *dbbuf_cq_db;
148 u32 *dbbuf_sq_ei;
149 u32 *dbbuf_cq_ei;
150 };
151
152 /*
153 * The nvme_iod describes the data in an I/O, including the list of PRP
154 * entries. You can't see it in this data structure because C doesn't let
155 * me express that. Use nvme_init_iod to ensure there's enough space
156 * allocated to store the PRP list.
157 */
158 struct nvme_iod {
159 struct nvme_request req;
160 struct nvme_queue *nvmeq;
161 int aborted;
162 int npages; /* In the PRP list. 0 means small pool in use */
163 int nents; /* Used in scatterlist */
164 int length; /* Of data, in bytes */
165 dma_addr_t first_dma;
166 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
167 struct scatterlist *sg;
168 struct scatterlist inline_sg[0];
169 };
170
171 /*
172 * Check we didin't inadvertently grow the command struct
173 */
174 static inline void _nvme_check_size(void)
175 {
176 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
177 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
178 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
179 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
180 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
181 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
182 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
183 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
184 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
185 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
186 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
187 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
188 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
189 }
190
191 static inline unsigned int nvme_dbbuf_size(u32 stride)
192 {
193 return ((num_possible_cpus() + 1) * 8 * stride);
194 }
195
196 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
197 {
198 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
199
200 if (dev->dbbuf_dbs)
201 return 0;
202
203 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
204 &dev->dbbuf_dbs_dma_addr,
205 GFP_KERNEL);
206 if (!dev->dbbuf_dbs)
207 return -ENOMEM;
208 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
209 &dev->dbbuf_eis_dma_addr,
210 GFP_KERNEL);
211 if (!dev->dbbuf_eis) {
212 dma_free_coherent(dev->dev, mem_size,
213 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
214 dev->dbbuf_dbs = NULL;
215 return -ENOMEM;
216 }
217
218 return 0;
219 }
220
221 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
222 {
223 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
224
225 if (dev->dbbuf_dbs) {
226 dma_free_coherent(dev->dev, mem_size,
227 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
228 dev->dbbuf_dbs = NULL;
229 }
230 if (dev->dbbuf_eis) {
231 dma_free_coherent(dev->dev, mem_size,
232 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
233 dev->dbbuf_eis = NULL;
234 }
235 }
236
237 static void nvme_dbbuf_init(struct nvme_dev *dev,
238 struct nvme_queue *nvmeq, int qid)
239 {
240 if (!dev->dbbuf_dbs || !qid)
241 return;
242
243 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
244 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
245 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
246 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
247 }
248
249 static void nvme_dbbuf_set(struct nvme_dev *dev)
250 {
251 struct nvme_command c;
252
253 if (!dev->dbbuf_dbs)
254 return;
255
256 memset(&c, 0, sizeof(c));
257 c.dbbuf.opcode = nvme_admin_dbbuf;
258 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
259 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
260
261 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
262 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
263 /* Free memory and continue on */
264 nvme_dbbuf_dma_free(dev);
265 }
266 }
267
268 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
269 {
270 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
271 }
272
273 /* Update dbbuf and return true if an MMIO is required */
274 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
275 volatile u32 *dbbuf_ei)
276 {
277 if (dbbuf_db) {
278 u16 old_value;
279
280 /*
281 * Ensure that the queue is written before updating
282 * the doorbell in memory
283 */
284 wmb();
285
286 old_value = *dbbuf_db;
287 *dbbuf_db = value;
288
289 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
290 return false;
291 }
292
293 return true;
294 }
295
296 /*
297 * Max size of iod being embedded in the request payload
298 */
299 #define NVME_INT_PAGES 2
300 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
301
302 /*
303 * Will slightly overestimate the number of pages needed. This is OK
304 * as it only leads to a small amount of wasted memory for the lifetime of
305 * the I/O.
306 */
307 static int nvme_npages(unsigned size, struct nvme_dev *dev)
308 {
309 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
310 dev->ctrl.page_size);
311 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
312 }
313
314 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
315 unsigned int size, unsigned int nseg)
316 {
317 return sizeof(__le64 *) * nvme_npages(size, dev) +
318 sizeof(struct scatterlist) * nseg;
319 }
320
321 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
322 {
323 return sizeof(struct nvme_iod) +
324 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
325 }
326
327 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
328 unsigned int hctx_idx)
329 {
330 struct nvme_dev *dev = data;
331 struct nvme_queue *nvmeq = dev->queues[0];
332
333 WARN_ON(hctx_idx != 0);
334 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
335 WARN_ON(nvmeq->tags);
336
337 hctx->driver_data = nvmeq;
338 nvmeq->tags = &dev->admin_tagset.tags[0];
339 return 0;
340 }
341
342 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
343 {
344 struct nvme_queue *nvmeq = hctx->driver_data;
345
346 nvmeq->tags = NULL;
347 }
348
349 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
350 unsigned int hctx_idx)
351 {
352 struct nvme_dev *dev = data;
353 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
354
355 if (!nvmeq->tags)
356 nvmeq->tags = &dev->tagset.tags[hctx_idx];
357
358 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
359 hctx->driver_data = nvmeq;
360 return 0;
361 }
362
363 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
364 unsigned int hctx_idx, unsigned int numa_node)
365 {
366 struct nvme_dev *dev = set->driver_data;
367 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
368 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
369 struct nvme_queue *nvmeq = dev->queues[queue_idx];
370
371 BUG_ON(!nvmeq);
372 iod->nvmeq = nvmeq;
373 return 0;
374 }
375
376 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
377 {
378 struct nvme_dev *dev = set->driver_data;
379
380 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
381 }
382
383 /**
384 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
385 * @nvmeq: The queue to use
386 * @cmd: The command to send
387 *
388 * Safe to use from interrupt context
389 */
390 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
391 struct nvme_command *cmd)
392 {
393 u16 tail = nvmeq->sq_tail;
394
395 if (nvmeq->sq_cmds_io)
396 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
397 else
398 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
399
400 if (++tail == nvmeq->q_depth)
401 tail = 0;
402 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
403 nvmeq->dbbuf_sq_ei))
404 writel(tail, nvmeq->q_db);
405 nvmeq->sq_tail = tail;
406 }
407
408 static __le64 **iod_list(struct request *req)
409 {
410 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
411 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
412 }
413
414 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
415 {
416 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
417 int nseg = blk_rq_nr_phys_segments(rq);
418 unsigned int size = blk_rq_payload_bytes(rq);
419
420 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
421 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
422 if (!iod->sg)
423 return BLK_STS_RESOURCE;
424 } else {
425 iod->sg = iod->inline_sg;
426 }
427
428 iod->aborted = 0;
429 iod->npages = -1;
430 iod->nents = 0;
431 iod->length = size;
432
433 return BLK_STS_OK;
434 }
435
436 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
437 {
438 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
439 const int last_prp = dev->ctrl.page_size / 8 - 1;
440 int i;
441 __le64 **list = iod_list(req);
442 dma_addr_t prp_dma = iod->first_dma;
443
444 if (iod->npages == 0)
445 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
446 for (i = 0; i < iod->npages; i++) {
447 __le64 *prp_list = list[i];
448 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
449 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
450 prp_dma = next_prp_dma;
451 }
452
453 if (iod->sg != iod->inline_sg)
454 kfree(iod->sg);
455 }
456
457 #ifdef CONFIG_BLK_DEV_INTEGRITY
458 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
459 {
460 if (be32_to_cpu(pi->ref_tag) == v)
461 pi->ref_tag = cpu_to_be32(p);
462 }
463
464 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
465 {
466 if (be32_to_cpu(pi->ref_tag) == p)
467 pi->ref_tag = cpu_to_be32(v);
468 }
469
470 /**
471 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
472 *
473 * The virtual start sector is the one that was originally submitted by the
474 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
475 * start sector may be different. Remap protection information to match the
476 * physical LBA on writes, and back to the original seed on reads.
477 *
478 * Type 0 and 3 do not have a ref tag, so no remapping required.
479 */
480 static void nvme_dif_remap(struct request *req,
481 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
482 {
483 struct nvme_ns *ns = req->rq_disk->private_data;
484 struct bio_integrity_payload *bip;
485 struct t10_pi_tuple *pi;
486 void *p, *pmap;
487 u32 i, nlb, ts, phys, virt;
488
489 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
490 return;
491
492 bip = bio_integrity(req->bio);
493 if (!bip)
494 return;
495
496 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
497
498 p = pmap;
499 virt = bip_get_seed(bip);
500 phys = nvme_block_nr(ns, blk_rq_pos(req));
501 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
502 ts = ns->disk->queue->integrity.tuple_size;
503
504 for (i = 0; i < nlb; i++, virt++, phys++) {
505 pi = (struct t10_pi_tuple *)p;
506 dif_swap(phys, virt, pi);
507 p += ts;
508 }
509 kunmap_atomic(pmap);
510 }
511 #else /* CONFIG_BLK_DEV_INTEGRITY */
512 static void nvme_dif_remap(struct request *req,
513 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
514 {
515 }
516 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
517 {
518 }
519 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
520 {
521 }
522 #endif
523
524 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
525 {
526 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
527 struct dma_pool *pool;
528 int length = blk_rq_payload_bytes(req);
529 struct scatterlist *sg = iod->sg;
530 int dma_len = sg_dma_len(sg);
531 u64 dma_addr = sg_dma_address(sg);
532 u32 page_size = dev->ctrl.page_size;
533 int offset = dma_addr & (page_size - 1);
534 __le64 *prp_list;
535 __le64 **list = iod_list(req);
536 dma_addr_t prp_dma;
537 int nprps, i;
538
539 length -= (page_size - offset);
540 if (length <= 0)
541 return true;
542
543 dma_len -= (page_size - offset);
544 if (dma_len) {
545 dma_addr += (page_size - offset);
546 } else {
547 sg = sg_next(sg);
548 dma_addr = sg_dma_address(sg);
549 dma_len = sg_dma_len(sg);
550 }
551
552 if (length <= page_size) {
553 iod->first_dma = dma_addr;
554 return true;
555 }
556
557 nprps = DIV_ROUND_UP(length, page_size);
558 if (nprps <= (256 / 8)) {
559 pool = dev->prp_small_pool;
560 iod->npages = 0;
561 } else {
562 pool = dev->prp_page_pool;
563 iod->npages = 1;
564 }
565
566 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
567 if (!prp_list) {
568 iod->first_dma = dma_addr;
569 iod->npages = -1;
570 return false;
571 }
572 list[0] = prp_list;
573 iod->first_dma = prp_dma;
574 i = 0;
575 for (;;) {
576 if (i == page_size >> 3) {
577 __le64 *old_prp_list = prp_list;
578 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
579 if (!prp_list)
580 return false;
581 list[iod->npages++] = prp_list;
582 prp_list[0] = old_prp_list[i - 1];
583 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
584 i = 1;
585 }
586 prp_list[i++] = cpu_to_le64(dma_addr);
587 dma_len -= page_size;
588 dma_addr += page_size;
589 length -= page_size;
590 if (length <= 0)
591 break;
592 if (dma_len > 0)
593 continue;
594 BUG_ON(dma_len < 0);
595 sg = sg_next(sg);
596 dma_addr = sg_dma_address(sg);
597 dma_len = sg_dma_len(sg);
598 }
599
600 return true;
601 }
602
603 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
604 struct nvme_command *cmnd)
605 {
606 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
607 struct request_queue *q = req->q;
608 enum dma_data_direction dma_dir = rq_data_dir(req) ?
609 DMA_TO_DEVICE : DMA_FROM_DEVICE;
610 blk_status_t ret = BLK_STS_IOERR;
611
612 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
613 iod->nents = blk_rq_map_sg(q, req, iod->sg);
614 if (!iod->nents)
615 goto out;
616
617 ret = BLK_STS_RESOURCE;
618 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
619 DMA_ATTR_NO_WARN))
620 goto out;
621
622 if (!nvme_setup_prps(dev, req))
623 goto out_unmap;
624
625 ret = BLK_STS_IOERR;
626 if (blk_integrity_rq(req)) {
627 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
628 goto out_unmap;
629
630 sg_init_table(&iod->meta_sg, 1);
631 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
632 goto out_unmap;
633
634 if (rq_data_dir(req))
635 nvme_dif_remap(req, nvme_dif_prep);
636
637 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
638 goto out_unmap;
639 }
640
641 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
642 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
643 if (blk_integrity_rq(req))
644 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
645 return BLK_STS_OK;
646
647 out_unmap:
648 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
649 out:
650 return ret;
651 }
652
653 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
654 {
655 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
656 enum dma_data_direction dma_dir = rq_data_dir(req) ?
657 DMA_TO_DEVICE : DMA_FROM_DEVICE;
658
659 if (iod->nents) {
660 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
661 if (blk_integrity_rq(req)) {
662 if (!rq_data_dir(req))
663 nvme_dif_remap(req, nvme_dif_complete);
664 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
665 }
666 }
667
668 nvme_cleanup_cmd(req);
669 nvme_free_iod(dev, req);
670 }
671
672 /*
673 * NOTE: ns is NULL when called on the admin queue.
674 */
675 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
676 const struct blk_mq_queue_data *bd)
677 {
678 struct nvme_ns *ns = hctx->queue->queuedata;
679 struct nvme_queue *nvmeq = hctx->driver_data;
680 struct nvme_dev *dev = nvmeq->dev;
681 struct request *req = bd->rq;
682 struct nvme_command cmnd;
683 blk_status_t ret;
684
685 ret = nvme_setup_cmd(ns, req, &cmnd);
686 if (ret)
687 return ret;
688
689 ret = nvme_init_iod(req, dev);
690 if (ret)
691 goto out_free_cmd;
692
693 if (blk_rq_nr_phys_segments(req)) {
694 ret = nvme_map_data(dev, req, &cmnd);
695 if (ret)
696 goto out_cleanup_iod;
697 }
698
699 blk_mq_start_request(req);
700
701 spin_lock_irq(&nvmeq->q_lock);
702 if (unlikely(nvmeq->cq_vector < 0)) {
703 ret = BLK_STS_IOERR;
704 spin_unlock_irq(&nvmeq->q_lock);
705 goto out_cleanup_iod;
706 }
707 __nvme_submit_cmd(nvmeq, &cmnd);
708 nvme_process_cq(nvmeq);
709 spin_unlock_irq(&nvmeq->q_lock);
710 return BLK_STS_OK;
711 out_cleanup_iod:
712 nvme_free_iod(dev, req);
713 out_free_cmd:
714 nvme_cleanup_cmd(req);
715 return ret;
716 }
717
718 static void nvme_pci_complete_rq(struct request *req)
719 {
720 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
721
722 nvme_unmap_data(iod->nvmeq->dev, req);
723 nvme_complete_rq(req);
724 }
725
726 /* We read the CQE phase first to check if the rest of the entry is valid */
727 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
728 u16 phase)
729 {
730 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
731 }
732
733 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
734 {
735 u16 head = nvmeq->cq_head;
736
737 if (likely(nvmeq->cq_vector >= 0)) {
738 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
739 nvmeq->dbbuf_cq_ei))
740 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
741 }
742 }
743
744 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
745 {
746 u16 head, phase;
747
748 head = nvmeq->cq_head;
749 phase = nvmeq->cq_phase;
750
751 while (nvme_cqe_valid(nvmeq, head, phase)) {
752 struct nvme_completion cqe = nvmeq->cqes[head];
753 struct request *req;
754
755 if (++head == nvmeq->q_depth) {
756 head = 0;
757 phase = !phase;
758 }
759
760 if (tag && *tag == cqe.command_id)
761 *tag = -1;
762
763 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
764 dev_warn(nvmeq->dev->ctrl.device,
765 "invalid id %d completed on queue %d\n",
766 cqe.command_id, le16_to_cpu(cqe.sq_id));
767 continue;
768 }
769
770 /*
771 * AEN requests are special as they don't time out and can
772 * survive any kind of queue freeze and often don't respond to
773 * aborts. We don't even bother to allocate a struct request
774 * for them but rather special case them here.
775 */
776 if (unlikely(nvmeq->qid == 0 &&
777 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
778 nvme_complete_async_event(&nvmeq->dev->ctrl,
779 cqe.status, &cqe.result);
780 continue;
781 }
782
783 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
784 nvme_end_request(req, cqe.status, cqe.result);
785 }
786
787 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
788 return;
789
790 nvmeq->cq_head = head;
791 nvmeq->cq_phase = phase;
792
793 nvme_ring_cq_doorbell(nvmeq);
794
795 nvmeq->cqe_seen = 1;
796 }
797
798 static void nvme_process_cq(struct nvme_queue *nvmeq)
799 {
800 __nvme_process_cq(nvmeq, NULL);
801 }
802
803 static irqreturn_t nvme_irq(int irq, void *data)
804 {
805 irqreturn_t result;
806 struct nvme_queue *nvmeq = data;
807 spin_lock(&nvmeq->q_lock);
808 nvme_process_cq(nvmeq);
809 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
810 nvmeq->cqe_seen = 0;
811 spin_unlock(&nvmeq->q_lock);
812 return result;
813 }
814
815 static irqreturn_t nvme_irq_check(int irq, void *data)
816 {
817 struct nvme_queue *nvmeq = data;
818 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
819 return IRQ_WAKE_THREAD;
820 return IRQ_NONE;
821 }
822
823 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
824 {
825 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
826 spin_lock_irq(&nvmeq->q_lock);
827 __nvme_process_cq(nvmeq, &tag);
828 spin_unlock_irq(&nvmeq->q_lock);
829
830 if (tag == -1)
831 return 1;
832 }
833
834 return 0;
835 }
836
837 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
838 {
839 struct nvme_queue *nvmeq = hctx->driver_data;
840
841 return __nvme_poll(nvmeq, tag);
842 }
843
844 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
845 {
846 struct nvme_dev *dev = to_nvme_dev(ctrl);
847 struct nvme_queue *nvmeq = dev->queues[0];
848 struct nvme_command c;
849
850 memset(&c, 0, sizeof(c));
851 c.common.opcode = nvme_admin_async_event;
852 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
853
854 spin_lock_irq(&nvmeq->q_lock);
855 __nvme_submit_cmd(nvmeq, &c);
856 spin_unlock_irq(&nvmeq->q_lock);
857 }
858
859 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
860 {
861 struct nvme_command c;
862
863 memset(&c, 0, sizeof(c));
864 c.delete_queue.opcode = opcode;
865 c.delete_queue.qid = cpu_to_le16(id);
866
867 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
868 }
869
870 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
871 struct nvme_queue *nvmeq)
872 {
873 struct nvme_command c;
874 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
875
876 /*
877 * Note: we (ab)use the fact the the prp fields survive if no data
878 * is attached to the request.
879 */
880 memset(&c, 0, sizeof(c));
881 c.create_cq.opcode = nvme_admin_create_cq;
882 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
883 c.create_cq.cqid = cpu_to_le16(qid);
884 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
885 c.create_cq.cq_flags = cpu_to_le16(flags);
886 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
887
888 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
889 }
890
891 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
892 struct nvme_queue *nvmeq)
893 {
894 struct nvme_command c;
895 int flags = NVME_QUEUE_PHYS_CONTIG;
896
897 /*
898 * Note: we (ab)use the fact the the prp fields survive if no data
899 * is attached to the request.
900 */
901 memset(&c, 0, sizeof(c));
902 c.create_sq.opcode = nvme_admin_create_sq;
903 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
904 c.create_sq.sqid = cpu_to_le16(qid);
905 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
906 c.create_sq.sq_flags = cpu_to_le16(flags);
907 c.create_sq.cqid = cpu_to_le16(qid);
908
909 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
910 }
911
912 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
913 {
914 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
915 }
916
917 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
918 {
919 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
920 }
921
922 static void abort_endio(struct request *req, blk_status_t error)
923 {
924 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
925 struct nvme_queue *nvmeq = iod->nvmeq;
926
927 dev_warn(nvmeq->dev->ctrl.device,
928 "Abort status: 0x%x", nvme_req(req)->status);
929 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
930 blk_mq_free_request(req);
931 }
932
933 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
934 {
935
936 /* If true, indicates loss of adapter communication, possibly by a
937 * NVMe Subsystem reset.
938 */
939 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
940
941 /* If there is a reset ongoing, we shouldn't reset again. */
942 if (dev->ctrl.state == NVME_CTRL_RESETTING)
943 return false;
944
945 /* We shouldn't reset unless the controller is on fatal error state
946 * _or_ if we lost the communication with it.
947 */
948 if (!(csts & NVME_CSTS_CFS) && !nssro)
949 return false;
950
951 /* If PCI error recovery process is happening, we cannot reset or
952 * the recovery mechanism will surely fail.
953 */
954 if (pci_channel_offline(to_pci_dev(dev->dev)))
955 return false;
956
957 return true;
958 }
959
960 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
961 {
962 /* Read a config register to help see what died. */
963 u16 pci_status;
964 int result;
965
966 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
967 &pci_status);
968 if (result == PCIBIOS_SUCCESSFUL)
969 dev_warn(dev->ctrl.device,
970 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
971 csts, pci_status);
972 else
973 dev_warn(dev->ctrl.device,
974 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
975 csts, result);
976 }
977
978 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
979 {
980 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
981 struct nvme_queue *nvmeq = iod->nvmeq;
982 struct nvme_dev *dev = nvmeq->dev;
983 struct request *abort_req;
984 struct nvme_command cmd;
985 u32 csts = readl(dev->bar + NVME_REG_CSTS);
986
987 /*
988 * Reset immediately if the controller is failed
989 */
990 if (nvme_should_reset(dev, csts)) {
991 nvme_warn_reset(dev, csts);
992 nvme_dev_disable(dev, false);
993 nvme_reset_ctrl(&dev->ctrl);
994 return BLK_EH_HANDLED;
995 }
996
997 /*
998 * Did we miss an interrupt?
999 */
1000 if (__nvme_poll(nvmeq, req->tag)) {
1001 dev_warn(dev->ctrl.device,
1002 "I/O %d QID %d timeout, completion polled\n",
1003 req->tag, nvmeq->qid);
1004 return BLK_EH_HANDLED;
1005 }
1006
1007 /*
1008 * Shutdown immediately if controller times out while starting. The
1009 * reset work will see the pci device disabled when it gets the forced
1010 * cancellation error. All outstanding requests are completed on
1011 * shutdown, so we return BLK_EH_HANDLED.
1012 */
1013 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1014 dev_warn(dev->ctrl.device,
1015 "I/O %d QID %d timeout, disable controller\n",
1016 req->tag, nvmeq->qid);
1017 nvme_dev_disable(dev, false);
1018 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1019 return BLK_EH_HANDLED;
1020 }
1021
1022 /*
1023 * Shutdown the controller immediately and schedule a reset if the
1024 * command was already aborted once before and still hasn't been
1025 * returned to the driver, or if this is the admin queue.
1026 */
1027 if (!nvmeq->qid || iod->aborted) {
1028 dev_warn(dev->ctrl.device,
1029 "I/O %d QID %d timeout, reset controller\n",
1030 req->tag, nvmeq->qid);
1031 nvme_dev_disable(dev, false);
1032 nvme_reset_ctrl(&dev->ctrl);
1033
1034 /*
1035 * Mark the request as handled, since the inline shutdown
1036 * forces all outstanding requests to complete.
1037 */
1038 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1039 return BLK_EH_HANDLED;
1040 }
1041
1042 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1043 atomic_inc(&dev->ctrl.abort_limit);
1044 return BLK_EH_RESET_TIMER;
1045 }
1046 iod->aborted = 1;
1047
1048 memset(&cmd, 0, sizeof(cmd));
1049 cmd.abort.opcode = nvme_admin_abort_cmd;
1050 cmd.abort.cid = req->tag;
1051 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1052
1053 dev_warn(nvmeq->dev->ctrl.device,
1054 "I/O %d QID %d timeout, aborting\n",
1055 req->tag, nvmeq->qid);
1056
1057 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1058 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1059 if (IS_ERR(abort_req)) {
1060 atomic_inc(&dev->ctrl.abort_limit);
1061 return BLK_EH_RESET_TIMER;
1062 }
1063
1064 abort_req->timeout = ADMIN_TIMEOUT;
1065 abort_req->end_io_data = NULL;
1066 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1067
1068 /*
1069 * The aborted req will be completed on receiving the abort req.
1070 * We enable the timer again. If hit twice, it'll cause a device reset,
1071 * as the device then is in a faulty state.
1072 */
1073 return BLK_EH_RESET_TIMER;
1074 }
1075
1076 static void nvme_free_queue(struct nvme_queue *nvmeq)
1077 {
1078 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1079 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1080 if (nvmeq->sq_cmds)
1081 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1082 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1083 kfree(nvmeq);
1084 }
1085
1086 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1087 {
1088 int i;
1089
1090 for (i = dev->queue_count - 1; i >= lowest; i--) {
1091 struct nvme_queue *nvmeq = dev->queues[i];
1092 dev->queue_count--;
1093 dev->queues[i] = NULL;
1094 nvme_free_queue(nvmeq);
1095 }
1096 }
1097
1098 /**
1099 * nvme_suspend_queue - put queue into suspended state
1100 * @nvmeq - queue to suspend
1101 */
1102 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1103 {
1104 int vector;
1105
1106 spin_lock_irq(&nvmeq->q_lock);
1107 if (nvmeq->cq_vector == -1) {
1108 spin_unlock_irq(&nvmeq->q_lock);
1109 return 1;
1110 }
1111 vector = nvmeq->cq_vector;
1112 nvmeq->dev->online_queues--;
1113 nvmeq->cq_vector = -1;
1114 spin_unlock_irq(&nvmeq->q_lock);
1115
1116 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1117 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1118
1119 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1120
1121 return 0;
1122 }
1123
1124 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1125 {
1126 struct nvme_queue *nvmeq = dev->queues[0];
1127
1128 if (!nvmeq)
1129 return;
1130 if (nvme_suspend_queue(nvmeq))
1131 return;
1132
1133 if (shutdown)
1134 nvme_shutdown_ctrl(&dev->ctrl);
1135 else
1136 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1137 dev->bar + NVME_REG_CAP));
1138
1139 spin_lock_irq(&nvmeq->q_lock);
1140 nvme_process_cq(nvmeq);
1141 spin_unlock_irq(&nvmeq->q_lock);
1142 }
1143
1144 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1145 int entry_size)
1146 {
1147 int q_depth = dev->q_depth;
1148 unsigned q_size_aligned = roundup(q_depth * entry_size,
1149 dev->ctrl.page_size);
1150
1151 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1152 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1153 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1154 q_depth = div_u64(mem_per_q, entry_size);
1155
1156 /*
1157 * Ensure the reduced q_depth is above some threshold where it
1158 * would be better to map queues in system memory with the
1159 * original depth
1160 */
1161 if (q_depth < 64)
1162 return -ENOMEM;
1163 }
1164
1165 return q_depth;
1166 }
1167
1168 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1169 int qid, int depth)
1170 {
1171 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1172 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1173 dev->ctrl.page_size);
1174 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1175 nvmeq->sq_cmds_io = dev->cmb + offset;
1176 } else {
1177 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1178 &nvmeq->sq_dma_addr, GFP_KERNEL);
1179 if (!nvmeq->sq_cmds)
1180 return -ENOMEM;
1181 }
1182
1183 return 0;
1184 }
1185
1186 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1187 int depth, int node)
1188 {
1189 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1190 node);
1191 if (!nvmeq)
1192 return NULL;
1193
1194 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1195 &nvmeq->cq_dma_addr, GFP_KERNEL);
1196 if (!nvmeq->cqes)
1197 goto free_nvmeq;
1198
1199 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1200 goto free_cqdma;
1201
1202 nvmeq->q_dmadev = dev->dev;
1203 nvmeq->dev = dev;
1204 spin_lock_init(&nvmeq->q_lock);
1205 nvmeq->cq_head = 0;
1206 nvmeq->cq_phase = 1;
1207 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1208 nvmeq->q_depth = depth;
1209 nvmeq->qid = qid;
1210 nvmeq->cq_vector = -1;
1211 dev->queues[qid] = nvmeq;
1212 dev->queue_count++;
1213
1214 return nvmeq;
1215
1216 free_cqdma:
1217 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1218 nvmeq->cq_dma_addr);
1219 free_nvmeq:
1220 kfree(nvmeq);
1221 return NULL;
1222 }
1223
1224 static int queue_request_irq(struct nvme_queue *nvmeq)
1225 {
1226 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1227 int nr = nvmeq->dev->ctrl.instance;
1228
1229 if (use_threaded_interrupts) {
1230 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1231 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1232 } else {
1233 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1234 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1235 }
1236 }
1237
1238 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1239 {
1240 struct nvme_dev *dev = nvmeq->dev;
1241
1242 spin_lock_irq(&nvmeq->q_lock);
1243 nvmeq->sq_tail = 0;
1244 nvmeq->cq_head = 0;
1245 nvmeq->cq_phase = 1;
1246 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1247 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1248 nvme_dbbuf_init(dev, nvmeq, qid);
1249 dev->online_queues++;
1250 spin_unlock_irq(&nvmeq->q_lock);
1251 }
1252
1253 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1254 {
1255 struct nvme_dev *dev = nvmeq->dev;
1256 int result;
1257
1258 nvmeq->cq_vector = qid - 1;
1259 result = adapter_alloc_cq(dev, qid, nvmeq);
1260 if (result < 0)
1261 return result;
1262
1263 result = adapter_alloc_sq(dev, qid, nvmeq);
1264 if (result < 0)
1265 goto release_cq;
1266
1267 result = queue_request_irq(nvmeq);
1268 if (result < 0)
1269 goto release_sq;
1270
1271 nvme_init_queue(nvmeq, qid);
1272 return result;
1273
1274 release_sq:
1275 adapter_delete_sq(dev, qid);
1276 release_cq:
1277 adapter_delete_cq(dev, qid);
1278 return result;
1279 }
1280
1281 static const struct blk_mq_ops nvme_mq_admin_ops = {
1282 .queue_rq = nvme_queue_rq,
1283 .complete = nvme_pci_complete_rq,
1284 .init_hctx = nvme_admin_init_hctx,
1285 .exit_hctx = nvme_admin_exit_hctx,
1286 .init_request = nvme_init_request,
1287 .timeout = nvme_timeout,
1288 };
1289
1290 static const struct blk_mq_ops nvme_mq_ops = {
1291 .queue_rq = nvme_queue_rq,
1292 .complete = nvme_pci_complete_rq,
1293 .init_hctx = nvme_init_hctx,
1294 .init_request = nvme_init_request,
1295 .map_queues = nvme_pci_map_queues,
1296 .timeout = nvme_timeout,
1297 .poll = nvme_poll,
1298 };
1299
1300 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1301 {
1302 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1303 /*
1304 * If the controller was reset during removal, it's possible
1305 * user requests may be waiting on a stopped queue. Start the
1306 * queue to flush these to completion.
1307 */
1308 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1309 blk_cleanup_queue(dev->ctrl.admin_q);
1310 blk_mq_free_tag_set(&dev->admin_tagset);
1311 }
1312 }
1313
1314 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1315 {
1316 if (!dev->ctrl.admin_q) {
1317 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1318 dev->admin_tagset.nr_hw_queues = 1;
1319
1320 /*
1321 * Subtract one to leave an empty queue entry for 'Full Queue'
1322 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1323 */
1324 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1325 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1326 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1327 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1328 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1329 dev->admin_tagset.driver_data = dev;
1330
1331 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1332 return -ENOMEM;
1333
1334 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1335 if (IS_ERR(dev->ctrl.admin_q)) {
1336 blk_mq_free_tag_set(&dev->admin_tagset);
1337 return -ENOMEM;
1338 }
1339 if (!blk_get_queue(dev->ctrl.admin_q)) {
1340 nvme_dev_remove_admin(dev);
1341 dev->ctrl.admin_q = NULL;
1342 return -ENODEV;
1343 }
1344 } else
1345 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1346
1347 return 0;
1348 }
1349
1350 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1351 {
1352 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1353 }
1354
1355 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1356 {
1357 struct pci_dev *pdev = to_pci_dev(dev->dev);
1358
1359 if (size <= dev->bar_mapped_size)
1360 return 0;
1361 if (size > pci_resource_len(pdev, 0))
1362 return -ENOMEM;
1363 if (dev->bar)
1364 iounmap(dev->bar);
1365 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1366 if (!dev->bar) {
1367 dev->bar_mapped_size = 0;
1368 return -ENOMEM;
1369 }
1370 dev->bar_mapped_size = size;
1371 dev->dbs = dev->bar + NVME_REG_DBS;
1372
1373 return 0;
1374 }
1375
1376 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1377 {
1378 int result;
1379 u32 aqa;
1380 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1381 struct nvme_queue *nvmeq;
1382
1383 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1384 if (result < 0)
1385 return result;
1386
1387 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1388 NVME_CAP_NSSRC(cap) : 0;
1389
1390 if (dev->subsystem &&
1391 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1392 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1393
1394 result = nvme_disable_ctrl(&dev->ctrl, cap);
1395 if (result < 0)
1396 return result;
1397
1398 nvmeq = dev->queues[0];
1399 if (!nvmeq) {
1400 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1401 dev_to_node(dev->dev));
1402 if (!nvmeq)
1403 return -ENOMEM;
1404 }
1405
1406 aqa = nvmeq->q_depth - 1;
1407 aqa |= aqa << 16;
1408
1409 writel(aqa, dev->bar + NVME_REG_AQA);
1410 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1411 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1412
1413 result = nvme_enable_ctrl(&dev->ctrl, cap);
1414 if (result)
1415 return result;
1416
1417 nvmeq->cq_vector = 0;
1418 result = queue_request_irq(nvmeq);
1419 if (result) {
1420 nvmeq->cq_vector = -1;
1421 return result;
1422 }
1423
1424 return result;
1425 }
1426
1427 static int nvme_create_io_queues(struct nvme_dev *dev)
1428 {
1429 unsigned i, max;
1430 int ret = 0;
1431
1432 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1433 /* vector == qid - 1, match nvme_create_queue */
1434 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1435 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1436 ret = -ENOMEM;
1437 break;
1438 }
1439 }
1440
1441 max = min(dev->max_qid, dev->queue_count - 1);
1442 for (i = dev->online_queues; i <= max; i++) {
1443 ret = nvme_create_queue(dev->queues[i], i);
1444 if (ret)
1445 break;
1446 }
1447
1448 /*
1449 * Ignore failing Create SQ/CQ commands, we can continue with less
1450 * than the desired aount of queues, and even a controller without
1451 * I/O queues an still be used to issue admin commands. This might
1452 * be useful to upgrade a buggy firmware for example.
1453 */
1454 return ret >= 0 ? 0 : ret;
1455 }
1456
1457 static ssize_t nvme_cmb_show(struct device *dev,
1458 struct device_attribute *attr,
1459 char *buf)
1460 {
1461 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1462
1463 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1464 ndev->cmbloc, ndev->cmbsz);
1465 }
1466 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1467
1468 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1469 {
1470 u64 szu, size, offset;
1471 resource_size_t bar_size;
1472 struct pci_dev *pdev = to_pci_dev(dev->dev);
1473 void __iomem *cmb;
1474 dma_addr_t dma_addr;
1475
1476 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1477 if (!(NVME_CMB_SZ(dev->cmbsz)))
1478 return NULL;
1479 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1480
1481 if (!use_cmb_sqes)
1482 return NULL;
1483
1484 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1485 size = szu * NVME_CMB_SZ(dev->cmbsz);
1486 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1487 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1488
1489 if (offset > bar_size)
1490 return NULL;
1491
1492 /*
1493 * Controllers may support a CMB size larger than their BAR,
1494 * for example, due to being behind a bridge. Reduce the CMB to
1495 * the reported size of the BAR
1496 */
1497 if (size > bar_size - offset)
1498 size = bar_size - offset;
1499
1500 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1501 cmb = ioremap_wc(dma_addr, size);
1502 if (!cmb)
1503 return NULL;
1504
1505 dev->cmb_dma_addr = dma_addr;
1506 dev->cmb_size = size;
1507 return cmb;
1508 }
1509
1510 static inline void nvme_release_cmb(struct nvme_dev *dev)
1511 {
1512 if (dev->cmb) {
1513 iounmap(dev->cmb);
1514 dev->cmb = NULL;
1515 if (dev->cmbsz) {
1516 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1517 &dev_attr_cmb.attr, NULL);
1518 dev->cmbsz = 0;
1519 }
1520 }
1521 }
1522
1523 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1524 {
1525 size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
1526 struct nvme_command c;
1527 u64 dma_addr;
1528 int ret;
1529
1530 dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
1531 DMA_TO_DEVICE);
1532 if (dma_mapping_error(dev->dev, dma_addr))
1533 return -ENOMEM;
1534
1535 memset(&c, 0, sizeof(c));
1536 c.features.opcode = nvme_admin_set_features;
1537 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1538 c.features.dword11 = cpu_to_le32(bits);
1539 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1540 ilog2(dev->ctrl.page_size));
1541 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1542 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1543 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1544
1545 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1546 if (ret) {
1547 dev_warn(dev->ctrl.device,
1548 "failed to set host mem (err %d, flags %#x).\n",
1549 ret, bits);
1550 }
1551 dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
1552 return ret;
1553 }
1554
1555 static void nvme_free_host_mem(struct nvme_dev *dev)
1556 {
1557 int i;
1558
1559 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1560 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1561 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1562
1563 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1564 le64_to_cpu(desc->addr));
1565 }
1566
1567 kfree(dev->host_mem_desc_bufs);
1568 dev->host_mem_desc_bufs = NULL;
1569 kfree(dev->host_mem_descs);
1570 dev->host_mem_descs = NULL;
1571 }
1572
1573 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1574 {
1575 struct nvme_host_mem_buf_desc *descs;
1576 u32 chunk_size, max_entries, i = 0;
1577 void **bufs;
1578 u64 size, tmp;
1579
1580 /* start big and work our way down */
1581 chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1582 retry:
1583 tmp = (preferred + chunk_size - 1);
1584 do_div(tmp, chunk_size);
1585 max_entries = tmp;
1586 descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
1587 if (!descs)
1588 goto out;
1589
1590 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1591 if (!bufs)
1592 goto out_free_descs;
1593
1594 for (size = 0; size < preferred; size += chunk_size) {
1595 u32 len = min_t(u64, chunk_size, preferred - size);
1596 dma_addr_t dma_addr;
1597
1598 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1599 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1600 if (!bufs[i])
1601 break;
1602
1603 descs[i].addr = cpu_to_le64(dma_addr);
1604 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1605 i++;
1606 }
1607
1608 if (!size || (min && size < min)) {
1609 dev_warn(dev->ctrl.device,
1610 "failed to allocate host memory buffer.\n");
1611 goto out_free_bufs;
1612 }
1613
1614 dev_info(dev->ctrl.device,
1615 "allocated %lld MiB host memory buffer.\n",
1616 size >> ilog2(SZ_1M));
1617 dev->nr_host_mem_descs = i;
1618 dev->host_mem_size = size;
1619 dev->host_mem_descs = descs;
1620 dev->host_mem_desc_bufs = bufs;
1621 return 0;
1622
1623 out_free_bufs:
1624 while (--i >= 0) {
1625 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1626
1627 dma_free_coherent(dev->dev, size, bufs[i],
1628 le64_to_cpu(descs[i].addr));
1629 }
1630
1631 kfree(bufs);
1632 out_free_descs:
1633 kfree(descs);
1634 out:
1635 /* try a smaller chunk size if we failed early */
1636 if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1637 chunk_size /= 2;
1638 goto retry;
1639 }
1640 dev->host_mem_descs = NULL;
1641 return -ENOMEM;
1642 }
1643
1644 static void nvme_setup_host_mem(struct nvme_dev *dev)
1645 {
1646 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1647 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1648 u64 min = (u64)dev->ctrl.hmmin * 4096;
1649 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1650
1651 preferred = min(preferred, max);
1652 if (min > max) {
1653 dev_warn(dev->ctrl.device,
1654 "min host memory (%lld MiB) above limit (%d MiB).\n",
1655 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1656 nvme_free_host_mem(dev);
1657 return;
1658 }
1659
1660 /*
1661 * If we already have a buffer allocated check if we can reuse it.
1662 */
1663 if (dev->host_mem_descs) {
1664 if (dev->host_mem_size >= min)
1665 enable_bits |= NVME_HOST_MEM_RETURN;
1666 else
1667 nvme_free_host_mem(dev);
1668 }
1669
1670 if (!dev->host_mem_descs) {
1671 if (nvme_alloc_host_mem(dev, min, preferred))
1672 return;
1673 }
1674
1675 if (nvme_set_host_mem(dev, enable_bits))
1676 nvme_free_host_mem(dev);
1677 }
1678
1679 static int nvme_setup_io_queues(struct nvme_dev *dev)
1680 {
1681 struct nvme_queue *adminq = dev->queues[0];
1682 struct pci_dev *pdev = to_pci_dev(dev->dev);
1683 int result, nr_io_queues;
1684 unsigned long size;
1685
1686 nr_io_queues = num_online_cpus();
1687 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1688 if (result < 0)
1689 return result;
1690
1691 if (nr_io_queues == 0)
1692 return 0;
1693
1694 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1695 result = nvme_cmb_qdepth(dev, nr_io_queues,
1696 sizeof(struct nvme_command));
1697 if (result > 0)
1698 dev->q_depth = result;
1699 else
1700 nvme_release_cmb(dev);
1701 }
1702
1703 do {
1704 size = db_bar_size(dev, nr_io_queues);
1705 result = nvme_remap_bar(dev, size);
1706 if (!result)
1707 break;
1708 if (!--nr_io_queues)
1709 return -ENOMEM;
1710 } while (1);
1711 adminq->q_db = dev->dbs;
1712
1713 /* Deregister the admin queue's interrupt */
1714 pci_free_irq(pdev, 0, adminq);
1715
1716 /*
1717 * If we enable msix early due to not intx, disable it again before
1718 * setting up the full range we need.
1719 */
1720 pci_free_irq_vectors(pdev);
1721 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1722 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1723 if (nr_io_queues <= 0)
1724 return -EIO;
1725 dev->max_qid = nr_io_queues;
1726
1727 /*
1728 * Should investigate if there's a performance win from allocating
1729 * more queues than interrupt vectors; it might allow the submission
1730 * path to scale better, even if the receive path is limited by the
1731 * number of interrupts.
1732 */
1733
1734 result = queue_request_irq(adminq);
1735 if (result) {
1736 adminq->cq_vector = -1;
1737 return result;
1738 }
1739 return nvme_create_io_queues(dev);
1740 }
1741
1742 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1743 {
1744 struct nvme_queue *nvmeq = req->end_io_data;
1745
1746 blk_mq_free_request(req);
1747 complete(&nvmeq->dev->ioq_wait);
1748 }
1749
1750 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1751 {
1752 struct nvme_queue *nvmeq = req->end_io_data;
1753
1754 if (!error) {
1755 unsigned long flags;
1756
1757 /*
1758 * We might be called with the AQ q_lock held
1759 * and the I/O queue q_lock should always
1760 * nest inside the AQ one.
1761 */
1762 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1763 SINGLE_DEPTH_NESTING);
1764 nvme_process_cq(nvmeq);
1765 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1766 }
1767
1768 nvme_del_queue_end(req, error);
1769 }
1770
1771 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1772 {
1773 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1774 struct request *req;
1775 struct nvme_command cmd;
1776
1777 memset(&cmd, 0, sizeof(cmd));
1778 cmd.delete_queue.opcode = opcode;
1779 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1780
1781 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1782 if (IS_ERR(req))
1783 return PTR_ERR(req);
1784
1785 req->timeout = ADMIN_TIMEOUT;
1786 req->end_io_data = nvmeq;
1787
1788 blk_execute_rq_nowait(q, NULL, req, false,
1789 opcode == nvme_admin_delete_cq ?
1790 nvme_del_cq_end : nvme_del_queue_end);
1791 return 0;
1792 }
1793
1794 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1795 {
1796 int pass;
1797 unsigned long timeout;
1798 u8 opcode = nvme_admin_delete_sq;
1799
1800 for (pass = 0; pass < 2; pass++) {
1801 int sent = 0, i = queues;
1802
1803 reinit_completion(&dev->ioq_wait);
1804 retry:
1805 timeout = ADMIN_TIMEOUT;
1806 for (; i > 0; i--, sent++)
1807 if (nvme_delete_queue(dev->queues[i], opcode))
1808 break;
1809
1810 while (sent--) {
1811 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1812 if (timeout == 0)
1813 return;
1814 if (i)
1815 goto retry;
1816 }
1817 opcode = nvme_admin_delete_cq;
1818 }
1819 }
1820
1821 /*
1822 * Return: error value if an error occurred setting up the queues or calling
1823 * Identify Device. 0 if these succeeded, even if adding some of the
1824 * namespaces failed. At the moment, these failures are silent. TBD which
1825 * failures should be reported.
1826 */
1827 static int nvme_dev_add(struct nvme_dev *dev)
1828 {
1829 if (!dev->ctrl.tagset) {
1830 dev->tagset.ops = &nvme_mq_ops;
1831 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1832 dev->tagset.timeout = NVME_IO_TIMEOUT;
1833 dev->tagset.numa_node = dev_to_node(dev->dev);
1834 dev->tagset.queue_depth =
1835 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1836 dev->tagset.cmd_size = nvme_cmd_size(dev);
1837 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1838 dev->tagset.driver_data = dev;
1839
1840 if (blk_mq_alloc_tag_set(&dev->tagset))
1841 return 0;
1842 dev->ctrl.tagset = &dev->tagset;
1843
1844 nvme_dbbuf_set(dev);
1845 } else {
1846 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1847
1848 /* Free previously allocated queues that are no longer usable */
1849 nvme_free_queues(dev, dev->online_queues);
1850 }
1851
1852 return 0;
1853 }
1854
1855 static int nvme_pci_enable(struct nvme_dev *dev)
1856 {
1857 u64 cap;
1858 int result = -ENOMEM;
1859 struct pci_dev *pdev = to_pci_dev(dev->dev);
1860
1861 if (pci_enable_device_mem(pdev))
1862 return result;
1863
1864 pci_set_master(pdev);
1865
1866 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1867 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1868 goto disable;
1869
1870 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1871 result = -ENODEV;
1872 goto disable;
1873 }
1874
1875 /*
1876 * Some devices and/or platforms don't advertise or work with INTx
1877 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1878 * adjust this later.
1879 */
1880 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1881 if (result < 0)
1882 return result;
1883
1884 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1885
1886 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1887 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1888 dev->dbs = dev->bar + 4096;
1889
1890 /*
1891 * Temporary fix for the Apple controller found in the MacBook8,1 and
1892 * some MacBook7,1 to avoid controller resets and data loss.
1893 */
1894 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1895 dev->q_depth = 2;
1896 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1897 "set queue depth=%u to work around controller resets\n",
1898 dev->q_depth);
1899 }
1900
1901 /*
1902 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1903 * populate sysfs if a CMB is implemented. Note that we add the
1904 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1905 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1906 * NULL as final argument to sysfs_add_file_to_group.
1907 */
1908
1909 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1910 dev->cmb = nvme_map_cmb(dev);
1911
1912 if (dev->cmbsz) {
1913 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1914 &dev_attr_cmb.attr, NULL))
1915 dev_warn(dev->ctrl.device,
1916 "failed to add sysfs attribute for CMB\n");
1917 }
1918 }
1919
1920 pci_enable_pcie_error_reporting(pdev);
1921 pci_save_state(pdev);
1922 return 0;
1923
1924 disable:
1925 pci_disable_device(pdev);
1926 return result;
1927 }
1928
1929 static void nvme_dev_unmap(struct nvme_dev *dev)
1930 {
1931 if (dev->bar)
1932 iounmap(dev->bar);
1933 pci_release_mem_regions(to_pci_dev(dev->dev));
1934 }
1935
1936 static void nvme_pci_disable(struct nvme_dev *dev)
1937 {
1938 struct pci_dev *pdev = to_pci_dev(dev->dev);
1939
1940 nvme_release_cmb(dev);
1941 pci_free_irq_vectors(pdev);
1942
1943 if (pci_is_enabled(pdev)) {
1944 pci_disable_pcie_error_reporting(pdev);
1945 pci_disable_device(pdev);
1946 }
1947 }
1948
1949 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1950 {
1951 int i, queues;
1952 bool dead = true;
1953 struct pci_dev *pdev = to_pci_dev(dev->dev);
1954
1955 mutex_lock(&dev->shutdown_lock);
1956 if (pci_is_enabled(pdev)) {
1957 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1958
1959 if (dev->ctrl.state == NVME_CTRL_LIVE)
1960 nvme_start_freeze(&dev->ctrl);
1961 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1962 pdev->error_state != pci_channel_io_normal);
1963 }
1964
1965 /*
1966 * Give the controller a chance to complete all entered requests if
1967 * doing a safe shutdown.
1968 */
1969 if (!dead) {
1970 if (shutdown)
1971 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1972
1973 /*
1974 * If the controller is still alive tell it to stop using the
1975 * host memory buffer. In theory the shutdown / reset should
1976 * make sure that it doesn't access the host memoery anymore,
1977 * but I'd rather be safe than sorry..
1978 */
1979 if (dev->host_mem_descs)
1980 nvme_set_host_mem(dev, 0);
1981
1982 }
1983 nvme_stop_queues(&dev->ctrl);
1984
1985 queues = dev->online_queues - 1;
1986 for (i = dev->queue_count - 1; i > 0; i--)
1987 nvme_suspend_queue(dev->queues[i]);
1988
1989 if (dead) {
1990 /* A device might become IO incapable very soon during
1991 * probe, before the admin queue is configured. Thus,
1992 * queue_count can be 0 here.
1993 */
1994 if (dev->queue_count)
1995 nvme_suspend_queue(dev->queues[0]);
1996 } else {
1997 nvme_disable_io_queues(dev, queues);
1998 nvme_disable_admin_queue(dev, shutdown);
1999 }
2000 nvme_pci_disable(dev);
2001
2002 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2003 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2004
2005 /*
2006 * The driver will not be starting up queues again if shutting down so
2007 * must flush all entered requests to their failed completion to avoid
2008 * deadlocking blk-mq hot-cpu notifier.
2009 */
2010 if (shutdown)
2011 nvme_start_queues(&dev->ctrl);
2012 mutex_unlock(&dev->shutdown_lock);
2013 }
2014
2015 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2016 {
2017 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2018 PAGE_SIZE, PAGE_SIZE, 0);
2019 if (!dev->prp_page_pool)
2020 return -ENOMEM;
2021
2022 /* Optimisation for I/Os between 4k and 128k */
2023 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2024 256, 256, 0);
2025 if (!dev->prp_small_pool) {
2026 dma_pool_destroy(dev->prp_page_pool);
2027 return -ENOMEM;
2028 }
2029 return 0;
2030 }
2031
2032 static void nvme_release_prp_pools(struct nvme_dev *dev)
2033 {
2034 dma_pool_destroy(dev->prp_page_pool);
2035 dma_pool_destroy(dev->prp_small_pool);
2036 }
2037
2038 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2039 {
2040 struct nvme_dev *dev = to_nvme_dev(ctrl);
2041
2042 nvme_dbbuf_dma_free(dev);
2043 put_device(dev->dev);
2044 if (dev->tagset.tags)
2045 blk_mq_free_tag_set(&dev->tagset);
2046 if (dev->ctrl.admin_q)
2047 blk_put_queue(dev->ctrl.admin_q);
2048 kfree(dev->queues);
2049 free_opal_dev(dev->ctrl.opal_dev);
2050 kfree(dev);
2051 }
2052
2053 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2054 {
2055 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2056
2057 kref_get(&dev->ctrl.kref);
2058 nvme_dev_disable(dev, false);
2059 if (!schedule_work(&dev->remove_work))
2060 nvme_put_ctrl(&dev->ctrl);
2061 }
2062
2063 static void nvme_reset_work(struct work_struct *work)
2064 {
2065 struct nvme_dev *dev =
2066 container_of(work, struct nvme_dev, ctrl.reset_work);
2067 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2068 int result = -ENODEV;
2069
2070 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2071 goto out;
2072
2073 /*
2074 * If we're called to reset a live controller first shut it down before
2075 * moving on.
2076 */
2077 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2078 nvme_dev_disable(dev, false);
2079
2080 result = nvme_pci_enable(dev);
2081 if (result)
2082 goto out;
2083
2084 result = nvme_configure_admin_queue(dev);
2085 if (result)
2086 goto out;
2087
2088 nvme_init_queue(dev->queues[0], 0);
2089 result = nvme_alloc_admin_tags(dev);
2090 if (result)
2091 goto out;
2092
2093 result = nvme_init_identify(&dev->ctrl);
2094 if (result)
2095 goto out;
2096
2097 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2098 if (!dev->ctrl.opal_dev)
2099 dev->ctrl.opal_dev =
2100 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2101 else if (was_suspend)
2102 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2103 } else {
2104 free_opal_dev(dev->ctrl.opal_dev);
2105 dev->ctrl.opal_dev = NULL;
2106 }
2107
2108 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2109 result = nvme_dbbuf_dma_alloc(dev);
2110 if (result)
2111 dev_warn(dev->dev,
2112 "unable to allocate dma for dbbuf\n");
2113 }
2114
2115 if (dev->ctrl.hmpre)
2116 nvme_setup_host_mem(dev);
2117
2118 result = nvme_setup_io_queues(dev);
2119 if (result)
2120 goto out;
2121
2122 /*
2123 * A controller that can not execute IO typically requires user
2124 * intervention to correct. For such degraded controllers, the driver
2125 * should not submit commands the user did not request, so skip
2126 * registering for asynchronous event notification on this condition.
2127 */
2128 if (dev->online_queues > 1)
2129 nvme_queue_async_events(&dev->ctrl);
2130
2131 /*
2132 * Keep the controller around but remove all namespaces if we don't have
2133 * any working I/O queue.
2134 */
2135 if (dev->online_queues < 2) {
2136 dev_warn(dev->ctrl.device, "IO queues not created\n");
2137 nvme_kill_queues(&dev->ctrl);
2138 nvme_remove_namespaces(&dev->ctrl);
2139 } else {
2140 nvme_start_queues(&dev->ctrl);
2141 nvme_wait_freeze(&dev->ctrl);
2142 nvme_dev_add(dev);
2143 nvme_unfreeze(&dev->ctrl);
2144 }
2145
2146 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2147 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2148 goto out;
2149 }
2150
2151 if (dev->online_queues > 1)
2152 nvme_queue_scan(&dev->ctrl);
2153 return;
2154
2155 out:
2156 nvme_remove_dead_ctrl(dev, result);
2157 }
2158
2159 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2160 {
2161 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2162 struct pci_dev *pdev = to_pci_dev(dev->dev);
2163
2164 nvme_kill_queues(&dev->ctrl);
2165 if (pci_get_drvdata(pdev))
2166 device_release_driver(&pdev->dev);
2167 nvme_put_ctrl(&dev->ctrl);
2168 }
2169
2170 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2171 {
2172 *val = readl(to_nvme_dev(ctrl)->bar + off);
2173 return 0;
2174 }
2175
2176 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2177 {
2178 writel(val, to_nvme_dev(ctrl)->bar + off);
2179 return 0;
2180 }
2181
2182 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2183 {
2184 *val = readq(to_nvme_dev(ctrl)->bar + off);
2185 return 0;
2186 }
2187
2188 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2189 .name = "pcie",
2190 .module = THIS_MODULE,
2191 .flags = NVME_F_METADATA_SUPPORTED,
2192 .reg_read32 = nvme_pci_reg_read32,
2193 .reg_write32 = nvme_pci_reg_write32,
2194 .reg_read64 = nvme_pci_reg_read64,
2195 .free_ctrl = nvme_pci_free_ctrl,
2196 .submit_async_event = nvme_pci_submit_async_event,
2197 };
2198
2199 static int nvme_dev_map(struct nvme_dev *dev)
2200 {
2201 struct pci_dev *pdev = to_pci_dev(dev->dev);
2202
2203 if (pci_request_mem_regions(pdev, "nvme"))
2204 return -ENODEV;
2205
2206 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2207 goto release;
2208
2209 return 0;
2210 release:
2211 pci_release_mem_regions(pdev);
2212 return -ENODEV;
2213 }
2214
2215 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2216 {
2217 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2218 /*
2219 * Several Samsung devices seem to drop off the PCIe bus
2220 * randomly when APST is on and uses the deepest sleep state.
2221 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2222 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2223 * 950 PRO 256GB", but it seems to be restricted to two Dell
2224 * laptops.
2225 */
2226 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2227 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2228 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2229 return NVME_QUIRK_NO_DEEPEST_PS;
2230 }
2231
2232 return 0;
2233 }
2234
2235 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2236 {
2237 int node, result = -ENOMEM;
2238 struct nvme_dev *dev;
2239 unsigned long quirks = id->driver_data;
2240
2241 node = dev_to_node(&pdev->dev);
2242 if (node == NUMA_NO_NODE)
2243 set_dev_node(&pdev->dev, first_memory_node);
2244
2245 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2246 if (!dev)
2247 return -ENOMEM;
2248 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2249 GFP_KERNEL, node);
2250 if (!dev->queues)
2251 goto free;
2252
2253 dev->dev = get_device(&pdev->dev);
2254 pci_set_drvdata(pdev, dev);
2255
2256 result = nvme_dev_map(dev);
2257 if (result)
2258 goto free;
2259
2260 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2261 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2262 mutex_init(&dev->shutdown_lock);
2263 init_completion(&dev->ioq_wait);
2264
2265 result = nvme_setup_prp_pools(dev);
2266 if (result)
2267 goto put_pci;
2268
2269 quirks |= check_dell_samsung_bug(pdev);
2270
2271 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2272 quirks);
2273 if (result)
2274 goto release_pools;
2275
2276 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2277 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2278
2279 queue_work(nvme_wq, &dev->ctrl.reset_work);
2280 return 0;
2281
2282 release_pools:
2283 nvme_release_prp_pools(dev);
2284 put_pci:
2285 put_device(dev->dev);
2286 nvme_dev_unmap(dev);
2287 free:
2288 kfree(dev->queues);
2289 kfree(dev);
2290 return result;
2291 }
2292
2293 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2294 {
2295 struct nvme_dev *dev = pci_get_drvdata(pdev);
2296
2297 if (prepare)
2298 nvme_dev_disable(dev, false);
2299 else
2300 nvme_reset_ctrl(&dev->ctrl);
2301 }
2302
2303 static void nvme_shutdown(struct pci_dev *pdev)
2304 {
2305 struct nvme_dev *dev = pci_get_drvdata(pdev);
2306 nvme_dev_disable(dev, true);
2307 }
2308
2309 /*
2310 * The driver's remove may be called on a device in a partially initialized
2311 * state. This function must not have any dependencies on the device state in
2312 * order to proceed.
2313 */
2314 static void nvme_remove(struct pci_dev *pdev)
2315 {
2316 struct nvme_dev *dev = pci_get_drvdata(pdev);
2317
2318 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2319
2320 cancel_work_sync(&dev->ctrl.reset_work);
2321 pci_set_drvdata(pdev, NULL);
2322
2323 if (!pci_device_is_present(pdev)) {
2324 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2325 nvme_dev_disable(dev, false);
2326 }
2327
2328 flush_work(&dev->ctrl.reset_work);
2329 nvme_uninit_ctrl(&dev->ctrl);
2330 nvme_dev_disable(dev, true);
2331 nvme_free_host_mem(dev);
2332 nvme_dev_remove_admin(dev);
2333 nvme_free_queues(dev, 0);
2334 nvme_release_prp_pools(dev);
2335 nvme_dev_unmap(dev);
2336 nvme_put_ctrl(&dev->ctrl);
2337 }
2338
2339 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2340 {
2341 int ret = 0;
2342
2343 if (numvfs == 0) {
2344 if (pci_vfs_assigned(pdev)) {
2345 dev_warn(&pdev->dev,
2346 "Cannot disable SR-IOV VFs while assigned\n");
2347 return -EPERM;
2348 }
2349 pci_disable_sriov(pdev);
2350 return 0;
2351 }
2352
2353 ret = pci_enable_sriov(pdev, numvfs);
2354 return ret ? ret : numvfs;
2355 }
2356
2357 #ifdef CONFIG_PM_SLEEP
2358 static int nvme_suspend(struct device *dev)
2359 {
2360 struct pci_dev *pdev = to_pci_dev(dev);
2361 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2362
2363 nvme_dev_disable(ndev, true);
2364 return 0;
2365 }
2366
2367 static int nvme_resume(struct device *dev)
2368 {
2369 struct pci_dev *pdev = to_pci_dev(dev);
2370 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2371
2372 nvme_reset_ctrl(&ndev->ctrl);
2373 return 0;
2374 }
2375 #endif
2376
2377 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2378
2379 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2380 pci_channel_state_t state)
2381 {
2382 struct nvme_dev *dev = pci_get_drvdata(pdev);
2383
2384 /*
2385 * A frozen channel requires a reset. When detected, this method will
2386 * shutdown the controller to quiesce. The controller will be restarted
2387 * after the slot reset through driver's slot_reset callback.
2388 */
2389 switch (state) {
2390 case pci_channel_io_normal:
2391 return PCI_ERS_RESULT_CAN_RECOVER;
2392 case pci_channel_io_frozen:
2393 dev_warn(dev->ctrl.device,
2394 "frozen state error detected, reset controller\n");
2395 nvme_dev_disable(dev, false);
2396 return PCI_ERS_RESULT_NEED_RESET;
2397 case pci_channel_io_perm_failure:
2398 dev_warn(dev->ctrl.device,
2399 "failure state error detected, request disconnect\n");
2400 return PCI_ERS_RESULT_DISCONNECT;
2401 }
2402 return PCI_ERS_RESULT_NEED_RESET;
2403 }
2404
2405 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2406 {
2407 struct nvme_dev *dev = pci_get_drvdata(pdev);
2408
2409 dev_info(dev->ctrl.device, "restart after slot reset\n");
2410 pci_restore_state(pdev);
2411 nvme_reset_ctrl(&dev->ctrl);
2412 return PCI_ERS_RESULT_RECOVERED;
2413 }
2414
2415 static void nvme_error_resume(struct pci_dev *pdev)
2416 {
2417 pci_cleanup_aer_uncorrect_error_status(pdev);
2418 }
2419
2420 static const struct pci_error_handlers nvme_err_handler = {
2421 .error_detected = nvme_error_detected,
2422 .slot_reset = nvme_slot_reset,
2423 .resume = nvme_error_resume,
2424 .reset_notify = nvme_reset_notify,
2425 };
2426
2427 static const struct pci_device_id nvme_id_table[] = {
2428 { PCI_VDEVICE(INTEL, 0x0953),
2429 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2430 NVME_QUIRK_DEALLOCATE_ZEROES, },
2431 { PCI_VDEVICE(INTEL, 0x0a53),
2432 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2433 NVME_QUIRK_DEALLOCATE_ZEROES, },
2434 { PCI_VDEVICE(INTEL, 0x0a54),
2435 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2436 NVME_QUIRK_DEALLOCATE_ZEROES, },
2437 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2438 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2439 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2440 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2441 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2442 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2443 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2444 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2445 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2446 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2447 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2448 { 0, }
2449 };
2450 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2451
2452 static struct pci_driver nvme_driver = {
2453 .name = "nvme",
2454 .id_table = nvme_id_table,
2455 .probe = nvme_probe,
2456 .remove = nvme_remove,
2457 .shutdown = nvme_shutdown,
2458 .driver = {
2459 .pm = &nvme_dev_pm_ops,
2460 },
2461 .sriov_configure = nvme_pci_sriov_configure,
2462 .err_handler = &nvme_err_handler,
2463 };
2464
2465 static int __init nvme_init(void)
2466 {
2467 return pci_register_driver(&nvme_driver);
2468 }
2469
2470 static void __exit nvme_exit(void)
2471 {
2472 pci_unregister_driver(&nvme_driver);
2473 _nvme_check_size();
2474 }
2475
2476 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2477 MODULE_LICENSE("GPL");
2478 MODULE_VERSION("1.0");
2479 module_init(nvme_init);
2480 module_exit(nvme_exit);