]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - drivers/scsi/aacraid/linit.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-disco-kernel.git] / drivers / scsi / aacraid / linit.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 * Module Name:
27 * linit.c
28 *
29 * Abstract: Linux Driver entry module for Adaptec RAID Array Controller
30 */
31
32
33 #include <linux/compat.h>
34 #include <linux/blkdev.h>
35 #include <linux/completion.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/moduleparam.h>
41 #include <linux/pci.h>
42 #include <linux/aer.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/spinlock.h>
47 #include <linux/syscalls.h>
48 #include <linux/delay.h>
49 #include <linux/kthread.h>
50
51 #include <scsi/scsi.h>
52 #include <scsi/scsi_cmnd.h>
53 #include <scsi/scsi_device.h>
54 #include <scsi/scsi_host.h>
55 #include <scsi/scsi_tcq.h>
56 #include <scsi/scsicam.h>
57 #include <scsi/scsi_eh.h>
58
59 #include "aacraid.h"
60
61 #define AAC_DRIVER_VERSION "1.2.1"
62 #ifndef AAC_DRIVER_BRANCH
63 #define AAC_DRIVER_BRANCH ""
64 #endif
65 #define AAC_DRIVERNAME "aacraid"
66
67 #ifdef AAC_DRIVER_BUILD
68 #define _str(x) #x
69 #define str(x) _str(x)
70 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH
71 #else
72 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION AAC_DRIVER_BRANCH
73 #endif
74
75 MODULE_AUTHOR("Red Hat Inc and Adaptec");
76 MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, "
77 "Adaptec Advanced Raid Products, "
78 "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver");
79 MODULE_LICENSE("GPL");
80 MODULE_VERSION(AAC_DRIVER_FULL_VERSION);
81
82 static DEFINE_MUTEX(aac_mutex);
83 static LIST_HEAD(aac_devices);
84 static int aac_cfg_major = AAC_CHARDEV_UNREGISTERED;
85 char aac_driver_version[] = AAC_DRIVER_FULL_VERSION;
86
87 /*
88 * Because of the way Linux names scsi devices, the order in this table has
89 * become important. Check for on-board Raid first, add-in cards second.
90 *
91 * Note: The last field is used to index into aac_drivers below.
92 */
93 static const struct pci_device_id aac_pci_tbl[] = {
94 { 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */
95 { 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */
96 { 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */
97 { 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
98 { 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */
99 { 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */
100 { 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
101 { 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */
102 { 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */
103 { 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */
104 { 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */
105 { 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */
106 { 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */
107 { 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */
108 { 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */
109 { 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */
110
111 { 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */
112 { 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */
113 { 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
114 { 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
115 { 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
116 { 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */
117 { 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */
118 { 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */
119 { 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */
120 { 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */
121 { 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */
122 { 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */
123 { 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */
124 { 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */
125 { 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */
126 { 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */
127 { 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */
128 { 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */
129 { 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */
130 { 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */
131 { 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
132 { 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
133 { 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
134 { 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
135 { 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
136 { 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
137 { 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
138 { 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */
139 { 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */
140 { 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */
141 { 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */
142 { 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */
143 { 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */
144 { 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */
145 { 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */
146 { 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */
147 { 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */
148 { 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */
149
150 { 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/
151 { 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/
152 { 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/
153 { 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */
154 { 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */
155
156 { 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */
157 { 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */
158 { 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */
159 { 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */
160 { 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */
161 { 0x9005, 0x028b, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 62 }, /* Adaptec PMC Series 6 (Tupelo) */
162 { 0x9005, 0x028c, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 63 }, /* Adaptec PMC Series 7 (Denali) */
163 { 0x9005, 0x028d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 64 }, /* Adaptec PMC Series 8 */
164 { 0,}
165 };
166 MODULE_DEVICE_TABLE(pci, aac_pci_tbl);
167
168 /*
169 * dmb - For now we add the number of channels to this structure.
170 * In the future we should add a fib that reports the number of channels
171 * for the card. At that time we can remove the channels from here
172 */
173 static struct aac_driver_ident aac_drivers[] = {
174 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */
175 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */
176 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */
177 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
178 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */
179 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */
180 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
181 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */
182 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */
183 { aac_rx_init, "aacraid", "ADAPTEC ", "catapult ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */
184 { aac_rx_init, "aacraid", "ADAPTEC ", "tomcat ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */
185 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2120S ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2120S (Crusader) */
186 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2200S (Vulcan) */
187 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */
188 { aac_rx_init, "aacraid", "Legend ", "Legend S220 ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */
189 { aac_rx_init, "aacraid", "Legend ", "Legend S230 ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */
190
191 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3230S ", 2 }, /* Adaptec 3230S (Harrier) */
192 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3240S ", 2 }, /* Adaptec 3240S (Tornado) */
193 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020ZCR ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
194 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025ZCR ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
195 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
196 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */
197 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2820SA ", 1 }, /* AAR-2820SA (Intruder) */
198 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2620SA ", 1 }, /* AAR-2620SA (Intruder) */
199 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2420SA ", 1 }, /* AAR-2420SA (Intruder) */
200 { aac_rkt_init, "aacraid", "ICP ", "ICP9024RO ", 2 }, /* ICP9024RO (Lancer) */
201 { aac_rkt_init, "aacraid", "ICP ", "ICP9014RO ", 1 }, /* ICP9014RO (Lancer) */
202 { aac_rkt_init, "aacraid", "ICP ", "ICP9047MA ", 1 }, /* ICP9047MA (Lancer) */
203 { aac_rkt_init, "aacraid", "ICP ", "ICP9087MA ", 1 }, /* ICP9087MA (Lancer) */
204 { aac_rkt_init, "aacraid", "ICP ", "ICP5445AU ", 1 }, /* ICP5445AU (Hurricane44) */
205 { aac_rx_init, "aacraid", "ICP ", "ICP9085LI ", 1 }, /* ICP9085LI (Marauder-X) */
206 { aac_rx_init, "aacraid", "ICP ", "ICP5085BR ", 1 }, /* ICP5085BR (Marauder-E) */
207 { aac_rkt_init, "aacraid", "ICP ", "ICP9067MA ", 1 }, /* ICP9067MA (Intruder-6) */
208 { NULL , "aacraid", "ADAPTEC ", "Themisto ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */
209 { aac_rkt_init, "aacraid", "ADAPTEC ", "Callisto ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */
210 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020SA ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
211 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025SA ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
212 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
213 { aac_rx_init, "aacraid", "DELL ", "CERC SR2 ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
214 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
215 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
216 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2026ZCR ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
217 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2610SA ", 1 }, /* SATA 6Ch (Bearcat) */
218 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2240S ", 1 }, /* ASR-2240S (SabreExpress) */
219 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4005 ", 1 }, /* ASR-4005 */
220 { aac_rx_init, "ServeRAID","IBM ", "ServeRAID 8i ", 1 }, /* IBM 8i (AvonPark) */
221 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */
222 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */
223 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4000 ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */
224 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4800SAS ", 1 }, /* ASR-4800SAS (Marauder-X) */
225 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4805SAS ", 1 }, /* ASR-4805SAS (Marauder-E) */
226 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-3800 ", 1 }, /* ASR-3800 (Hurricane44) */
227
228 { aac_rx_init, "percraid", "DELL ", "PERC 320/DC ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/
229 { aac_sa_init, "aacraid", "ADAPTEC ", "Adaptec 5400S ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
230 { aac_sa_init, "aacraid", "ADAPTEC ", "AAC-364 ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
231 { aac_sa_init, "percraid", "DELL ", "PERCRAID ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */
232 { aac_sa_init, "hpnraid", "HP ", "NetRAID ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */
233
234 { aac_rx_init, "aacraid", "DELL ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */
235 { aac_rx_init, "aacraid", "Legend ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */
236 { aac_rx_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Catch All */
237 { aac_rkt_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Rocket Catch All */
238 { aac_nark_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec NEMER/ARK Catch All */
239 { aac_src_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 6 (Tupelo) */
240 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 7 (Denali) */
241 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 8 */
242 };
243
244 /**
245 * aac_queuecommand - queue a SCSI command
246 * @cmd: SCSI command to queue
247 * @done: Function to call on command completion
248 *
249 * Queues a command for execution by the associated Host Adapter.
250 *
251 * TODO: unify with aac_scsi_cmd().
252 */
253
254 static int aac_queuecommand(struct Scsi_Host *shost,
255 struct scsi_cmnd *cmd)
256 {
257 int r = 0;
258 cmd->SCp.phase = AAC_OWNER_LOWLEVEL;
259 r = (aac_scsi_cmd(cmd) ? FAILED : 0);
260 return r;
261 }
262
263 /**
264 * aac_info - Returns the host adapter name
265 * @shost: Scsi host to report on
266 *
267 * Returns a static string describing the device in question
268 */
269
270 static const char *aac_info(struct Scsi_Host *shost)
271 {
272 struct aac_dev *dev = (struct aac_dev *)shost->hostdata;
273 return aac_drivers[dev->cardtype].name;
274 }
275
276 /**
277 * aac_get_driver_ident
278 * @devtype: index into lookup table
279 *
280 * Returns a pointer to the entry in the driver lookup table.
281 */
282
283 struct aac_driver_ident* aac_get_driver_ident(int devtype)
284 {
285 return &aac_drivers[devtype];
286 }
287
288 /**
289 * aac_biosparm - return BIOS parameters for disk
290 * @sdev: The scsi device corresponding to the disk
291 * @bdev: the block device corresponding to the disk
292 * @capacity: the sector capacity of the disk
293 * @geom: geometry block to fill in
294 *
295 * Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk.
296 * The default disk geometry is 64 heads, 32 sectors, and the appropriate
297 * number of cylinders so as not to exceed drive capacity. In order for
298 * disks equal to or larger than 1 GB to be addressable by the BIOS
299 * without exceeding the BIOS limitation of 1024 cylinders, Extended
300 * Translation should be enabled. With Extended Translation enabled,
301 * drives between 1 GB inclusive and 2 GB exclusive are given a disk
302 * geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive
303 * are given a disk geometry of 255 heads and 63 sectors. However, if
304 * the BIOS detects that the Extended Translation setting does not match
305 * the geometry in the partition table, then the translation inferred
306 * from the partition table will be used by the BIOS, and a warning may
307 * be displayed.
308 */
309
310 static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev,
311 sector_t capacity, int *geom)
312 {
313 struct diskparm *param = (struct diskparm *)geom;
314 unsigned char *buf;
315
316 dprintk((KERN_DEBUG "aac_biosparm.\n"));
317
318 /*
319 * Assuming extended translation is enabled - #REVISIT#
320 */
321 if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */
322 if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */
323 param->heads = 255;
324 param->sectors = 63;
325 } else {
326 param->heads = 128;
327 param->sectors = 32;
328 }
329 } else {
330 param->heads = 64;
331 param->sectors = 32;
332 }
333
334 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
335
336 /*
337 * Read the first 1024 bytes from the disk device, if the boot
338 * sector partition table is valid, search for a partition table
339 * entry whose end_head matches one of the standard geometry
340 * translations ( 64/32, 128/32, 255/63 ).
341 */
342 buf = scsi_bios_ptable(bdev);
343 if (!buf)
344 return 0;
345 if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) {
346 struct partition *first = (struct partition * )buf;
347 struct partition *entry = first;
348 int saved_cylinders = param->cylinders;
349 int num;
350 unsigned char end_head, end_sec;
351
352 for(num = 0; num < 4; num++) {
353 end_head = entry->end_head;
354 end_sec = entry->end_sector & 0x3f;
355
356 if(end_head == 63) {
357 param->heads = 64;
358 param->sectors = 32;
359 break;
360 } else if(end_head == 127) {
361 param->heads = 128;
362 param->sectors = 32;
363 break;
364 } else if(end_head == 254) {
365 param->heads = 255;
366 param->sectors = 63;
367 break;
368 }
369 entry++;
370 }
371
372 if (num == 4) {
373 end_head = first->end_head;
374 end_sec = first->end_sector & 0x3f;
375 }
376
377 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
378 if (num < 4 && end_sec == param->sectors) {
379 if (param->cylinders != saved_cylinders)
380 dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n",
381 param->heads, param->sectors, num));
382 } else if (end_head > 0 || end_sec > 0) {
383 dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n",
384 end_head + 1, end_sec, num));
385 dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n",
386 param->heads, param->sectors));
387 }
388 }
389 kfree(buf);
390 return 0;
391 }
392
393 /**
394 * aac_slave_configure - compute queue depths
395 * @sdev: SCSI device we are considering
396 *
397 * Selects queue depths for each target device based on the host adapter's
398 * total capacity and the queue depth supported by the target device.
399 * A queue depth of one automatically disables tagged queueing.
400 */
401
402 static int aac_slave_configure(struct scsi_device *sdev)
403 {
404 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
405 int chn, tid;
406 unsigned int depth = 0;
407 unsigned int set_timeout = 0;
408 bool set_qd_dev_type = false;
409 u8 devtype = 0;
410
411 chn = aac_logical_to_phys(sdev_channel(sdev));
412 tid = sdev_id(sdev);
413 if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && aac->sa_firmware) {
414 devtype = aac->hba_map[chn][tid].devtype;
415
416 if (devtype == AAC_DEVTYPE_NATIVE_RAW)
417 depth = aac->hba_map[chn][tid].qd_limit;
418 else if (devtype == AAC_DEVTYPE_ARC_RAW)
419 set_qd_dev_type = true;
420
421 set_timeout = 1;
422 goto common_config;
423 }
424
425 if (aac->jbod && (sdev->type == TYPE_DISK))
426 sdev->removable = 1;
427
428 if (sdev->type == TYPE_DISK
429 && sdev_channel(sdev) != CONTAINER_CHANNEL
430 && (!aac->jbod || sdev->inq_periph_qual)
431 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) {
432
433 if (expose_physicals == 0)
434 return -ENXIO;
435
436 if (expose_physicals < 0)
437 sdev->no_uld_attach = 1;
438 }
439
440 if (sdev->tagged_supported
441 && sdev->type == TYPE_DISK
442 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))
443 && !sdev->no_uld_attach) {
444
445 struct scsi_device * dev;
446 struct Scsi_Host *host = sdev->host;
447 unsigned num_lsu = 0;
448 unsigned num_one = 0;
449 unsigned cid;
450
451 set_timeout = 1;
452
453 for (cid = 0; cid < aac->maximum_num_containers; ++cid)
454 if (aac->fsa_dev[cid].valid)
455 ++num_lsu;
456
457 __shost_for_each_device(dev, host) {
458 if (dev->tagged_supported
459 && dev->type == TYPE_DISK
460 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))
461 && !dev->no_uld_attach) {
462 if ((sdev_channel(dev) != CONTAINER_CHANNEL)
463 || !aac->fsa_dev[sdev_id(dev)].valid) {
464 ++num_lsu;
465 }
466 } else {
467 ++num_one;
468 }
469 }
470
471 if (num_lsu == 0)
472 ++num_lsu;
473
474 depth = (host->can_queue - num_one) / num_lsu;
475
476 if (sdev_channel(sdev) != NATIVE_CHANNEL)
477 goto common_config;
478
479 set_qd_dev_type = true;
480
481 }
482
483 common_config:
484
485 /*
486 * Check if SATA drive
487 */
488 if (set_qd_dev_type) {
489 if (strncmp(sdev->vendor, "ATA", 3) == 0)
490 depth = 32;
491 else
492 depth = 64;
493 }
494
495 /*
496 * Firmware has an individual device recovery time typically
497 * of 35 seconds, give us a margin.
498 */
499 if (set_timeout && sdev->request_queue->rq_timeout < (45 * HZ))
500 blk_queue_rq_timeout(sdev->request_queue, 45*HZ);
501
502 if (depth > 256)
503 depth = 256;
504 else if (depth < 1)
505 depth = 1;
506
507 scsi_change_queue_depth(sdev, depth);
508
509 sdev->tagged_supported = 1;
510
511 return 0;
512 }
513
514 /**
515 * aac_change_queue_depth - alter queue depths
516 * @sdev: SCSI device we are considering
517 * @depth: desired queue depth
518 *
519 * Alters queue depths for target device based on the host adapter's
520 * total capacity and the queue depth supported by the target device.
521 */
522
523 static int aac_change_queue_depth(struct scsi_device *sdev, int depth)
524 {
525 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
526 int chn, tid, is_native_device = 0;
527
528 chn = aac_logical_to_phys(sdev_channel(sdev));
529 tid = sdev_id(sdev);
530 if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS &&
531 aac->hba_map[chn][tid].devtype == AAC_DEVTYPE_NATIVE_RAW)
532 is_native_device = 1;
533
534 if (sdev->tagged_supported && (sdev->type == TYPE_DISK) &&
535 (sdev_channel(sdev) == CONTAINER_CHANNEL)) {
536 struct scsi_device * dev;
537 struct Scsi_Host *host = sdev->host;
538 unsigned num = 0;
539
540 __shost_for_each_device(dev, host) {
541 if (dev->tagged_supported && (dev->type == TYPE_DISK) &&
542 (sdev_channel(dev) == CONTAINER_CHANNEL))
543 ++num;
544 ++num;
545 }
546 if (num >= host->can_queue)
547 num = host->can_queue - 1;
548 if (depth > (host->can_queue - num))
549 depth = host->can_queue - num;
550 if (depth > 256)
551 depth = 256;
552 else if (depth < 2)
553 depth = 2;
554 return scsi_change_queue_depth(sdev, depth);
555 } else if (is_native_device) {
556 scsi_change_queue_depth(sdev, aac->hba_map[chn][tid].qd_limit);
557 } else {
558 scsi_change_queue_depth(sdev, 1);
559 }
560 return sdev->queue_depth;
561 }
562
563 static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf)
564 {
565 struct scsi_device *sdev = to_scsi_device(dev);
566 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
567 if (sdev_channel(sdev) != CONTAINER_CHANNEL)
568 return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach
569 ? "Hidden\n" :
570 ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : ""));
571 return snprintf(buf, PAGE_SIZE, "%s\n",
572 get_container_type(aac->fsa_dev[sdev_id(sdev)].type));
573 }
574
575 static struct device_attribute aac_raid_level_attr = {
576 .attr = {
577 .name = "level",
578 .mode = S_IRUGO,
579 },
580 .show = aac_show_raid_level
581 };
582
583 static ssize_t aac_show_unique_id(struct device *dev,
584 struct device_attribute *attr, char *buf)
585 {
586 struct scsi_device *sdev = to_scsi_device(dev);
587 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
588 unsigned char sn[16];
589
590 memset(sn, 0, sizeof(sn));
591
592 if (sdev_channel(sdev) == CONTAINER_CHANNEL)
593 memcpy(sn, aac->fsa_dev[sdev_id(sdev)].identifier, sizeof(sn));
594
595 return snprintf(buf, 16 * 2 + 2,
596 "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n",
597 sn[0], sn[1], sn[2], sn[3],
598 sn[4], sn[5], sn[6], sn[7],
599 sn[8], sn[9], sn[10], sn[11],
600 sn[12], sn[13], sn[14], sn[15]);
601 }
602
603 static struct device_attribute aac_unique_id_attr = {
604 .attr = {
605 .name = "unique_id",
606 .mode = 0444,
607 },
608 .show = aac_show_unique_id
609 };
610
611
612
613 static struct device_attribute *aac_dev_attrs[] = {
614 &aac_raid_level_attr,
615 &aac_unique_id_attr,
616 NULL,
617 };
618
619 static int aac_ioctl(struct scsi_device *sdev, int cmd, void __user * arg)
620 {
621 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
622 if (!capable(CAP_SYS_RAWIO))
623 return -EPERM;
624 return aac_do_ioctl(dev, cmd, arg);
625 }
626
627 static int get_num_of_incomplete_fibs(struct aac_dev *aac)
628 {
629
630 unsigned long flags;
631 struct scsi_device *sdev = NULL;
632 struct Scsi_Host *shost = aac->scsi_host_ptr;
633 struct scsi_cmnd *scmnd = NULL;
634 struct device *ctrl_dev;
635
636 int mlcnt = 0;
637 int llcnt = 0;
638 int ehcnt = 0;
639 int fwcnt = 0;
640 int krlcnt = 0;
641
642 __shost_for_each_device(sdev, shost) {
643 spin_lock_irqsave(&sdev->list_lock, flags);
644 list_for_each_entry(scmnd, &sdev->cmd_list, list) {
645 switch (scmnd->SCp.phase) {
646 case AAC_OWNER_FIRMWARE:
647 fwcnt++;
648 break;
649 case AAC_OWNER_ERROR_HANDLER:
650 ehcnt++;
651 break;
652 case AAC_OWNER_LOWLEVEL:
653 llcnt++;
654 break;
655 case AAC_OWNER_MIDLEVEL:
656 mlcnt++;
657 break;
658 default:
659 krlcnt++;
660 break;
661 }
662 }
663 spin_unlock_irqrestore(&sdev->list_lock, flags);
664 }
665
666 ctrl_dev = &aac->pdev->dev;
667
668 dev_info(ctrl_dev, "outstanding cmd: midlevel-%d\n", mlcnt);
669 dev_info(ctrl_dev, "outstanding cmd: lowlevel-%d\n", llcnt);
670 dev_info(ctrl_dev, "outstanding cmd: error handler-%d\n", ehcnt);
671 dev_info(ctrl_dev, "outstanding cmd: firmware-%d\n", fwcnt);
672 dev_info(ctrl_dev, "outstanding cmd: kernel-%d\n", krlcnt);
673
674 return mlcnt + llcnt + ehcnt + fwcnt;
675 }
676
677 static int aac_eh_abort(struct scsi_cmnd* cmd)
678 {
679 struct scsi_device * dev = cmd->device;
680 struct Scsi_Host * host = dev->host;
681 struct aac_dev * aac = (struct aac_dev *)host->hostdata;
682 int count, found;
683 u32 bus, cid;
684 int ret = FAILED;
685
686 bus = aac_logical_to_phys(scmd_channel(cmd));
687 cid = scmd_id(cmd);
688 if (aac->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
689 struct fib *fib;
690 struct aac_hba_tm_req *tmf;
691 int status;
692 u64 address;
693 __le32 managed_request_id;
694
695 pr_err("%s: Host adapter abort request (%d,%d,%d,%d)\n",
696 AAC_DRIVERNAME,
697 host->host_no, sdev_channel(dev), sdev_id(dev), (int)dev->lun);
698
699 found = 0;
700 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
701 fib = &aac->fibs[count];
702 if (*(u8 *)fib->hw_fib_va != 0 &&
703 (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
704 (fib->callback_data == cmd)) {
705 found = 1;
706 managed_request_id = ((struct aac_hba_cmd_req *)
707 fib->hw_fib_va)->request_id;
708 break;
709 }
710 }
711 if (!found)
712 return ret;
713
714 /* start a HBA_TMF_ABORT_TASK TMF request */
715 fib = aac_fib_alloc(aac);
716 if (!fib)
717 return ret;
718
719 tmf = (struct aac_hba_tm_req *)fib->hw_fib_va;
720 memset(tmf, 0, sizeof(*tmf));
721 tmf->tmf = HBA_TMF_ABORT_TASK;
722 tmf->it_nexus = aac->hba_map[bus][cid].rmw_nexus;
723 tmf->lun[1] = cmd->device->lun;
724
725 address = (u64)fib->hw_error_pa;
726 tmf->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
727 tmf->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
728 tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
729
730 fib->hbacmd_size = sizeof(*tmf);
731 cmd->SCp.sent_command = 0;
732
733 status = aac_hba_send(HBA_IU_TYPE_SCSI_TM_REQ, fib,
734 (fib_callback) aac_hba_callback,
735 (void *) cmd);
736
737 /* Wait up to 15 secs for completion */
738 for (count = 0; count < 15; ++count) {
739 if (cmd->SCp.sent_command) {
740 ret = SUCCESS;
741 break;
742 }
743 msleep(1000);
744 }
745
746 if (ret != SUCCESS)
747 pr_err("%s: Host adapter abort request timed out\n",
748 AAC_DRIVERNAME);
749 } else {
750 pr_err(
751 "%s: Host adapter abort request.\n"
752 "%s: Outstanding commands on (%d,%d,%d,%d):\n",
753 AAC_DRIVERNAME, AAC_DRIVERNAME,
754 host->host_no, sdev_channel(dev), sdev_id(dev),
755 (int)dev->lun);
756 switch (cmd->cmnd[0]) {
757 case SERVICE_ACTION_IN_16:
758 if (!(aac->raw_io_interface) ||
759 !(aac->raw_io_64) ||
760 ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
761 break;
762 case INQUIRY:
763 case READ_CAPACITY:
764 /*
765 * Mark associated FIB to not complete,
766 * eh handler does this
767 */
768 for (count = 0;
769 count < (host->can_queue + AAC_NUM_MGT_FIB);
770 ++count) {
771 struct fib *fib = &aac->fibs[count];
772
773 if (fib->hw_fib_va->header.XferState &&
774 (fib->flags & FIB_CONTEXT_FLAG) &&
775 (fib->callback_data == cmd)) {
776 fib->flags |=
777 FIB_CONTEXT_FLAG_TIMED_OUT;
778 cmd->SCp.phase =
779 AAC_OWNER_ERROR_HANDLER;
780 ret = SUCCESS;
781 }
782 }
783 break;
784 case TEST_UNIT_READY:
785 /*
786 * Mark associated FIB to not complete,
787 * eh handler does this
788 */
789 for (count = 0;
790 count < (host->can_queue + AAC_NUM_MGT_FIB);
791 ++count) {
792 struct scsi_cmnd *command;
793 struct fib *fib = &aac->fibs[count];
794
795 command = fib->callback_data;
796
797 if ((fib->hw_fib_va->header.XferState &
798 cpu_to_le32
799 (Async | NoResponseExpected)) &&
800 (fib->flags & FIB_CONTEXT_FLAG) &&
801 ((command)) &&
802 (command->device == cmd->device)) {
803 fib->flags |=
804 FIB_CONTEXT_FLAG_TIMED_OUT;
805 command->SCp.phase =
806 AAC_OWNER_ERROR_HANDLER;
807 if (command == cmd)
808 ret = SUCCESS;
809 }
810 }
811 break;
812 }
813 }
814 return ret;
815 }
816
817 static u8 aac_eh_tmf_lun_reset_fib(struct aac_hba_map_info *info,
818 struct fib *fib, u64 tmf_lun)
819 {
820 struct aac_hba_tm_req *tmf;
821 u64 address;
822
823 /* start a HBA_TMF_LUN_RESET TMF request */
824 tmf = (struct aac_hba_tm_req *)fib->hw_fib_va;
825 memset(tmf, 0, sizeof(*tmf));
826 tmf->tmf = HBA_TMF_LUN_RESET;
827 tmf->it_nexus = info->rmw_nexus;
828 int_to_scsilun(tmf_lun, (struct scsi_lun *)tmf->lun);
829
830 address = (u64)fib->hw_error_pa;
831 tmf->error_ptr_hi = cpu_to_le32
832 ((u32)(address >> 32));
833 tmf->error_ptr_lo = cpu_to_le32
834 ((u32)(address & 0xffffffff));
835 tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
836 fib->hbacmd_size = sizeof(*tmf);
837
838 return HBA_IU_TYPE_SCSI_TM_REQ;
839 }
840
841 static u8 aac_eh_tmf_hard_reset_fib(struct aac_hba_map_info *info,
842 struct fib *fib)
843 {
844 struct aac_hba_reset_req *rst;
845 u64 address;
846
847 /* already tried, start a hard reset now */
848 rst = (struct aac_hba_reset_req *)fib->hw_fib_va;
849 memset(rst, 0, sizeof(*rst));
850 rst->it_nexus = info->rmw_nexus;
851
852 address = (u64)fib->hw_error_pa;
853 rst->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
854 rst->error_ptr_lo = cpu_to_le32
855 ((u32)(address & 0xffffffff));
856 rst->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
857 fib->hbacmd_size = sizeof(*rst);
858
859 return HBA_IU_TYPE_SATA_REQ;
860 }
861
862 void aac_tmf_callback(void *context, struct fib *fibptr)
863 {
864 struct aac_hba_resp *err =
865 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
866 struct aac_hba_map_info *info = context;
867 int res;
868
869 switch (err->service_response) {
870 case HBA_RESP_SVCRES_TMF_REJECTED:
871 res = -1;
872 break;
873 case HBA_RESP_SVCRES_TMF_LUN_INVALID:
874 res = 0;
875 break;
876 case HBA_RESP_SVCRES_TMF_COMPLETE:
877 case HBA_RESP_SVCRES_TMF_SUCCEEDED:
878 res = 0;
879 break;
880 default:
881 res = -2;
882 break;
883 }
884 aac_fib_complete(fibptr);
885
886 info->reset_state = res;
887 }
888
889 /*
890 * aac_eh_dev_reset - Device reset command handling
891 * @scsi_cmd: SCSI command block causing the reset
892 *
893 */
894 static int aac_eh_dev_reset(struct scsi_cmnd *cmd)
895 {
896 struct scsi_device * dev = cmd->device;
897 struct Scsi_Host * host = dev->host;
898 struct aac_dev * aac = (struct aac_dev *)host->hostdata;
899 struct aac_hba_map_info *info;
900 int count;
901 u32 bus, cid;
902 struct fib *fib;
903 int ret = FAILED;
904 int status;
905 u8 command;
906
907 bus = aac_logical_to_phys(scmd_channel(cmd));
908 cid = scmd_id(cmd);
909
910 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS)
911 return FAILED;
912
913 info = &aac->hba_map[bus][cid];
914
915 if (info->devtype != AAC_DEVTYPE_NATIVE_RAW &&
916 info->reset_state > 0)
917 return FAILED;
918
919 pr_err("%s: Host adapter reset request. SCSI hang ?\n",
920 AAC_DRIVERNAME);
921
922 fib = aac_fib_alloc(aac);
923 if (!fib)
924 return ret;
925
926 /* start a HBA_TMF_LUN_RESET TMF request */
927 command = aac_eh_tmf_lun_reset_fib(info, fib, dev->lun);
928
929 info->reset_state = 1;
930
931 status = aac_hba_send(command, fib,
932 (fib_callback) aac_tmf_callback,
933 (void *) info);
934
935 /* Wait up to 15 seconds for completion */
936 for (count = 0; count < 15; ++count) {
937 if (info->reset_state == 0) {
938 ret = info->reset_state == 0 ? SUCCESS : FAILED;
939 break;
940 }
941 msleep(1000);
942 }
943
944 return ret;
945 }
946
947 /*
948 * aac_eh_target_reset - Target reset command handling
949 * @scsi_cmd: SCSI command block causing the reset
950 *
951 */
952 static int aac_eh_target_reset(struct scsi_cmnd *cmd)
953 {
954 struct scsi_device * dev = cmd->device;
955 struct Scsi_Host * host = dev->host;
956 struct aac_dev * aac = (struct aac_dev *)host->hostdata;
957 struct aac_hba_map_info *info;
958 int count;
959 u32 bus, cid;
960 int ret = FAILED;
961 struct fib *fib;
962 int status;
963 u8 command;
964
965 bus = aac_logical_to_phys(scmd_channel(cmd));
966 cid = scmd_id(cmd);
967
968 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS)
969 return FAILED;
970
971 info = &aac->hba_map[bus][cid];
972
973 if (info->devtype != AAC_DEVTYPE_NATIVE_RAW &&
974 info->reset_state > 0)
975 return FAILED;
976
977 pr_err("%s: Host adapter reset request. SCSI hang ?\n",
978 AAC_DRIVERNAME);
979
980 fib = aac_fib_alloc(aac);
981 if (!fib)
982 return ret;
983
984
985 /* already tried, start a hard reset now */
986 command = aac_eh_tmf_hard_reset_fib(info, fib);
987
988 info->reset_state = 2;
989
990 status = aac_hba_send(command, fib,
991 (fib_callback) aac_tmf_callback,
992 (void *) info);
993
994 /* Wait up to 15 seconds for completion */
995 for (count = 0; count < 15; ++count) {
996 if (info->reset_state <= 0) {
997 ret = info->reset_state == 0 ? SUCCESS : FAILED;
998 break;
999 }
1000 msleep(1000);
1001 }
1002
1003 return ret;
1004 }
1005
1006 /*
1007 * aac_eh_bus_reset - Bus reset command handling
1008 * @scsi_cmd: SCSI command block causing the reset
1009 *
1010 */
1011 static int aac_eh_bus_reset(struct scsi_cmnd* cmd)
1012 {
1013 struct scsi_device * dev = cmd->device;
1014 struct Scsi_Host * host = dev->host;
1015 struct aac_dev * aac = (struct aac_dev *)host->hostdata;
1016 int count;
1017 u32 cmd_bus;
1018 int status = 0;
1019
1020
1021 cmd_bus = aac_logical_to_phys(scmd_channel(cmd));
1022 /* Mark the assoc. FIB to not complete, eh handler does this */
1023 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
1024 struct fib *fib = &aac->fibs[count];
1025
1026 if (fib->hw_fib_va->header.XferState &&
1027 (fib->flags & FIB_CONTEXT_FLAG) &&
1028 (fib->flags & FIB_CONTEXT_FLAG_SCSI_CMD)) {
1029 struct aac_hba_map_info *info;
1030 u32 bus, cid;
1031
1032 cmd = (struct scsi_cmnd *)fib->callback_data;
1033 bus = aac_logical_to_phys(scmd_channel(cmd));
1034 if (bus != cmd_bus)
1035 continue;
1036 cid = scmd_id(cmd);
1037 info = &aac->hba_map[bus][cid];
1038 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS ||
1039 info->devtype != AAC_DEVTYPE_NATIVE_RAW) {
1040 fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT;
1041 cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1042 }
1043 }
1044 }
1045
1046 pr_err("%s: Host adapter reset request. SCSI hang ?\n", AAC_DRIVERNAME);
1047
1048 /*
1049 * Check the health of the controller
1050 */
1051 status = aac_adapter_check_health(aac);
1052 if (status)
1053 dev_err(&aac->pdev->dev, "Adapter health - %d\n", status);
1054
1055 count = get_num_of_incomplete_fibs(aac);
1056 return (count == 0) ? SUCCESS : FAILED;
1057 }
1058
1059 /*
1060 * aac_eh_host_reset - Host reset command handling
1061 * @scsi_cmd: SCSI command block causing the reset
1062 *
1063 */
1064 int aac_eh_host_reset(struct scsi_cmnd *cmd)
1065 {
1066 struct scsi_device * dev = cmd->device;
1067 struct Scsi_Host * host = dev->host;
1068 struct aac_dev * aac = (struct aac_dev *)host->hostdata;
1069 int ret = FAILED;
1070 __le32 supported_options2 = 0;
1071 bool is_mu_reset;
1072 bool is_ignore_reset;
1073 bool is_doorbell_reset;
1074
1075 /*
1076 * Check if reset is supported by the firmware
1077 */
1078 supported_options2 = aac->supplement_adapter_info.supported_options2;
1079 is_mu_reset = supported_options2 & AAC_OPTION_MU_RESET;
1080 is_doorbell_reset = supported_options2 & AAC_OPTION_DOORBELL_RESET;
1081 is_ignore_reset = supported_options2 & AAC_OPTION_IGNORE_RESET;
1082 /*
1083 * This adapter needs a blind reset, only do so for
1084 * Adapters that support a register, instead of a commanded,
1085 * reset.
1086 */
1087 if ((is_mu_reset || is_doorbell_reset)
1088 && aac_check_reset
1089 && (aac_check_reset != -1 || !is_ignore_reset)) {
1090 /* Bypass wait for command quiesce */
1091 if (aac_reset_adapter(aac, 2, IOP_HWSOFT_RESET) == 0)
1092 ret = SUCCESS;
1093 }
1094 /*
1095 * Reset EH state
1096 */
1097 if (ret == SUCCESS) {
1098 int bus, cid;
1099 struct aac_hba_map_info *info;
1100
1101 for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
1102 for (cid = 0; cid < AAC_MAX_TARGETS; cid++) {
1103 info = &aac->hba_map[bus][cid];
1104 if (info->devtype == AAC_DEVTYPE_NATIVE_RAW)
1105 info->reset_state = 0;
1106 }
1107 }
1108 }
1109 return ret;
1110 }
1111
1112 /**
1113 * aac_cfg_open - open a configuration file
1114 * @inode: inode being opened
1115 * @file: file handle attached
1116 *
1117 * Called when the configuration device is opened. Does the needed
1118 * set up on the handle and then returns
1119 *
1120 * Bugs: This needs extending to check a given adapter is present
1121 * so we can support hot plugging, and to ref count adapters.
1122 */
1123
1124 static int aac_cfg_open(struct inode *inode, struct file *file)
1125 {
1126 struct aac_dev *aac;
1127 unsigned minor_number = iminor(inode);
1128 int err = -ENODEV;
1129
1130 mutex_lock(&aac_mutex); /* BKL pushdown: nothing else protects this list */
1131 list_for_each_entry(aac, &aac_devices, entry) {
1132 if (aac->id == minor_number) {
1133 file->private_data = aac;
1134 err = 0;
1135 break;
1136 }
1137 }
1138 mutex_unlock(&aac_mutex);
1139
1140 return err;
1141 }
1142
1143 /**
1144 * aac_cfg_ioctl - AAC configuration request
1145 * @inode: inode of device
1146 * @file: file handle
1147 * @cmd: ioctl command code
1148 * @arg: argument
1149 *
1150 * Handles a configuration ioctl. Currently this involves wrapping it
1151 * up and feeding it into the nasty windowsalike glue layer.
1152 *
1153 * Bugs: Needs locking against parallel ioctls lower down
1154 * Bugs: Needs to handle hot plugging
1155 */
1156
1157 static long aac_cfg_ioctl(struct file *file,
1158 unsigned int cmd, unsigned long arg)
1159 {
1160 struct aac_dev *aac = (struct aac_dev *)file->private_data;
1161
1162 if (!capable(CAP_SYS_RAWIO))
1163 return -EPERM;
1164
1165 return aac_do_ioctl(aac, cmd, (void __user *)arg);
1166 }
1167
1168 #ifdef CONFIG_COMPAT
1169 static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg)
1170 {
1171 long ret;
1172 switch (cmd) {
1173 case FSACTL_MINIPORT_REV_CHECK:
1174 case FSACTL_SENDFIB:
1175 case FSACTL_OPEN_GET_ADAPTER_FIB:
1176 case FSACTL_CLOSE_GET_ADAPTER_FIB:
1177 case FSACTL_SEND_RAW_SRB:
1178 case FSACTL_GET_PCI_INFO:
1179 case FSACTL_QUERY_DISK:
1180 case FSACTL_DELETE_DISK:
1181 case FSACTL_FORCE_DELETE_DISK:
1182 case FSACTL_GET_CONTAINERS:
1183 case FSACTL_SEND_LARGE_FIB:
1184 ret = aac_do_ioctl(dev, cmd, (void __user *)arg);
1185 break;
1186
1187 case FSACTL_GET_NEXT_ADAPTER_FIB: {
1188 struct fib_ioctl __user *f;
1189
1190 f = compat_alloc_user_space(sizeof(*f));
1191 ret = 0;
1192 if (clear_user(f, sizeof(*f)))
1193 ret = -EFAULT;
1194 if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32)))
1195 ret = -EFAULT;
1196 if (!ret)
1197 ret = aac_do_ioctl(dev, cmd, f);
1198 break;
1199 }
1200
1201 default:
1202 ret = -ENOIOCTLCMD;
1203 break;
1204 }
1205 return ret;
1206 }
1207
1208 static int aac_compat_ioctl(struct scsi_device *sdev, int cmd, void __user *arg)
1209 {
1210 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
1211 if (!capable(CAP_SYS_RAWIO))
1212 return -EPERM;
1213 return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg);
1214 }
1215
1216 static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1217 {
1218 if (!capable(CAP_SYS_RAWIO))
1219 return -EPERM;
1220 return aac_compat_do_ioctl(file->private_data, cmd, arg);
1221 }
1222 #endif
1223
1224 static ssize_t aac_show_model(struct device *device,
1225 struct device_attribute *attr, char *buf)
1226 {
1227 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1228 int len;
1229
1230 if (dev->supplement_adapter_info.adapter_type_text[0]) {
1231 char *cp = dev->supplement_adapter_info.adapter_type_text;
1232 while (*cp && *cp != ' ')
1233 ++cp;
1234 while (*cp == ' ')
1235 ++cp;
1236 len = snprintf(buf, PAGE_SIZE, "%s\n", cp);
1237 } else
1238 len = snprintf(buf, PAGE_SIZE, "%s\n",
1239 aac_drivers[dev->cardtype].model);
1240 return len;
1241 }
1242
1243 static ssize_t aac_show_vendor(struct device *device,
1244 struct device_attribute *attr, char *buf)
1245 {
1246 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1247 struct aac_supplement_adapter_info *sup_adap_info;
1248 int len;
1249
1250 sup_adap_info = &dev->supplement_adapter_info;
1251 if (sup_adap_info->adapter_type_text[0]) {
1252 char *cp = sup_adap_info->adapter_type_text;
1253 while (*cp && *cp != ' ')
1254 ++cp;
1255 len = snprintf(buf, PAGE_SIZE, "%.*s\n",
1256 (int)(cp - (char *)sup_adap_info->adapter_type_text),
1257 sup_adap_info->adapter_type_text);
1258 } else
1259 len = snprintf(buf, PAGE_SIZE, "%s\n",
1260 aac_drivers[dev->cardtype].vname);
1261 return len;
1262 }
1263
1264 static ssize_t aac_show_flags(struct device *cdev,
1265 struct device_attribute *attr, char *buf)
1266 {
1267 int len = 0;
1268 struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata;
1269
1270 if (nblank(dprintk(x)))
1271 len = snprintf(buf, PAGE_SIZE, "dprintk\n");
1272 #ifdef AAC_DETAILED_STATUS_INFO
1273 len += snprintf(buf + len, PAGE_SIZE - len,
1274 "AAC_DETAILED_STATUS_INFO\n");
1275 #endif
1276 if (dev->raw_io_interface && dev->raw_io_64)
1277 len += snprintf(buf + len, PAGE_SIZE - len,
1278 "SAI_READ_CAPACITY_16\n");
1279 if (dev->jbod)
1280 len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_JBOD\n");
1281 if (dev->supplement_adapter_info.supported_options2 &
1282 AAC_OPTION_POWER_MANAGEMENT)
1283 len += snprintf(buf + len, PAGE_SIZE - len,
1284 "SUPPORTED_POWER_MANAGEMENT\n");
1285 if (dev->msi)
1286 len += snprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n");
1287 return len;
1288 }
1289
1290 static ssize_t aac_show_kernel_version(struct device *device,
1291 struct device_attribute *attr,
1292 char *buf)
1293 {
1294 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1295 int len, tmp;
1296
1297 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1298 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
1299 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
1300 le32_to_cpu(dev->adapter_info.kernelbuild));
1301 return len;
1302 }
1303
1304 static ssize_t aac_show_monitor_version(struct device *device,
1305 struct device_attribute *attr,
1306 char *buf)
1307 {
1308 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1309 int len, tmp;
1310
1311 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1312 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
1313 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
1314 le32_to_cpu(dev->adapter_info.monitorbuild));
1315 return len;
1316 }
1317
1318 static ssize_t aac_show_bios_version(struct device *device,
1319 struct device_attribute *attr,
1320 char *buf)
1321 {
1322 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1323 int len, tmp;
1324
1325 tmp = le32_to_cpu(dev->adapter_info.biosrev);
1326 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
1327 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
1328 le32_to_cpu(dev->adapter_info.biosbuild));
1329 return len;
1330 }
1331
1332 static ssize_t aac_show_driver_version(struct device *device,
1333 struct device_attribute *attr,
1334 char *buf)
1335 {
1336 return snprintf(buf, PAGE_SIZE, "%s\n", aac_driver_version);
1337 }
1338
1339 static ssize_t aac_show_serial_number(struct device *device,
1340 struct device_attribute *attr, char *buf)
1341 {
1342 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1343 int len = 0;
1344
1345 if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
1346 len = snprintf(buf, 16, "%06X\n",
1347 le32_to_cpu(dev->adapter_info.serial[0]));
1348 if (len &&
1349 !memcmp(&dev->supplement_adapter_info.mfg_pcba_serial_no[
1350 sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no)-len],
1351 buf, len-1))
1352 len = snprintf(buf, 16, "%.*s\n",
1353 (int)sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no),
1354 dev->supplement_adapter_info.mfg_pcba_serial_no);
1355
1356 return min(len, 16);
1357 }
1358
1359 static ssize_t aac_show_max_channel(struct device *device,
1360 struct device_attribute *attr, char *buf)
1361 {
1362 return snprintf(buf, PAGE_SIZE, "%d\n",
1363 class_to_shost(device)->max_channel);
1364 }
1365
1366 static ssize_t aac_show_max_id(struct device *device,
1367 struct device_attribute *attr, char *buf)
1368 {
1369 return snprintf(buf, PAGE_SIZE, "%d\n",
1370 class_to_shost(device)->max_id);
1371 }
1372
1373 static ssize_t aac_store_reset_adapter(struct device *device,
1374 struct device_attribute *attr,
1375 const char *buf, size_t count)
1376 {
1377 int retval = -EACCES;
1378 int bled = 0;
1379 struct aac_dev *aac;
1380
1381
1382 if (!capable(CAP_SYS_ADMIN))
1383 return retval;
1384
1385 aac = (struct aac_dev *)class_to_shost(device)->hostdata;
1386 bled = buf[0] == '!' ? 1:0;
1387 retval = aac_reset_adapter(aac, bled, IOP_HWSOFT_RESET);
1388 if (retval >= 0)
1389 retval = count;
1390 return retval;
1391 }
1392
1393 static ssize_t aac_show_reset_adapter(struct device *device,
1394 struct device_attribute *attr,
1395 char *buf)
1396 {
1397 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1398 int len, tmp;
1399
1400 tmp = aac_adapter_check_health(dev);
1401 if ((tmp == 0) && dev->in_reset)
1402 tmp = -EBUSY;
1403 len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp);
1404 return len;
1405 }
1406
1407 static struct device_attribute aac_model = {
1408 .attr = {
1409 .name = "model",
1410 .mode = S_IRUGO,
1411 },
1412 .show = aac_show_model,
1413 };
1414 static struct device_attribute aac_vendor = {
1415 .attr = {
1416 .name = "vendor",
1417 .mode = S_IRUGO,
1418 },
1419 .show = aac_show_vendor,
1420 };
1421 static struct device_attribute aac_flags = {
1422 .attr = {
1423 .name = "flags",
1424 .mode = S_IRUGO,
1425 },
1426 .show = aac_show_flags,
1427 };
1428 static struct device_attribute aac_kernel_version = {
1429 .attr = {
1430 .name = "hba_kernel_version",
1431 .mode = S_IRUGO,
1432 },
1433 .show = aac_show_kernel_version,
1434 };
1435 static struct device_attribute aac_monitor_version = {
1436 .attr = {
1437 .name = "hba_monitor_version",
1438 .mode = S_IRUGO,
1439 },
1440 .show = aac_show_monitor_version,
1441 };
1442 static struct device_attribute aac_bios_version = {
1443 .attr = {
1444 .name = "hba_bios_version",
1445 .mode = S_IRUGO,
1446 },
1447 .show = aac_show_bios_version,
1448 };
1449 static struct device_attribute aac_lld_version = {
1450 .attr = {
1451 .name = "driver_version",
1452 .mode = 0444,
1453 },
1454 .show = aac_show_driver_version,
1455 };
1456 static struct device_attribute aac_serial_number = {
1457 .attr = {
1458 .name = "serial_number",
1459 .mode = S_IRUGO,
1460 },
1461 .show = aac_show_serial_number,
1462 };
1463 static struct device_attribute aac_max_channel = {
1464 .attr = {
1465 .name = "max_channel",
1466 .mode = S_IRUGO,
1467 },
1468 .show = aac_show_max_channel,
1469 };
1470 static struct device_attribute aac_max_id = {
1471 .attr = {
1472 .name = "max_id",
1473 .mode = S_IRUGO,
1474 },
1475 .show = aac_show_max_id,
1476 };
1477 static struct device_attribute aac_reset = {
1478 .attr = {
1479 .name = "reset_host",
1480 .mode = S_IWUSR|S_IRUGO,
1481 },
1482 .store = aac_store_reset_adapter,
1483 .show = aac_show_reset_adapter,
1484 };
1485
1486 static struct device_attribute *aac_attrs[] = {
1487 &aac_model,
1488 &aac_vendor,
1489 &aac_flags,
1490 &aac_kernel_version,
1491 &aac_monitor_version,
1492 &aac_bios_version,
1493 &aac_lld_version,
1494 &aac_serial_number,
1495 &aac_max_channel,
1496 &aac_max_id,
1497 &aac_reset,
1498 NULL
1499 };
1500
1501 ssize_t aac_get_serial_number(struct device *device, char *buf)
1502 {
1503 return aac_show_serial_number(device, &aac_serial_number, buf);
1504 }
1505
1506 static const struct file_operations aac_cfg_fops = {
1507 .owner = THIS_MODULE,
1508 .unlocked_ioctl = aac_cfg_ioctl,
1509 #ifdef CONFIG_COMPAT
1510 .compat_ioctl = aac_compat_cfg_ioctl,
1511 #endif
1512 .open = aac_cfg_open,
1513 .llseek = noop_llseek,
1514 };
1515
1516 static struct scsi_host_template aac_driver_template = {
1517 .module = THIS_MODULE,
1518 .name = "AAC",
1519 .proc_name = AAC_DRIVERNAME,
1520 .info = aac_info,
1521 .ioctl = aac_ioctl,
1522 #ifdef CONFIG_COMPAT
1523 .compat_ioctl = aac_compat_ioctl,
1524 #endif
1525 .queuecommand = aac_queuecommand,
1526 .bios_param = aac_biosparm,
1527 .shost_attrs = aac_attrs,
1528 .slave_configure = aac_slave_configure,
1529 .change_queue_depth = aac_change_queue_depth,
1530 .sdev_attrs = aac_dev_attrs,
1531 .eh_abort_handler = aac_eh_abort,
1532 .eh_device_reset_handler = aac_eh_dev_reset,
1533 .eh_target_reset_handler = aac_eh_target_reset,
1534 .eh_bus_reset_handler = aac_eh_bus_reset,
1535 .eh_host_reset_handler = aac_eh_host_reset,
1536 .can_queue = AAC_NUM_IO_FIB,
1537 .this_id = MAXIMUM_NUM_CONTAINERS,
1538 .sg_tablesize = 16,
1539 .max_sectors = 128,
1540 #if (AAC_NUM_IO_FIB > 256)
1541 .cmd_per_lun = 256,
1542 #else
1543 .cmd_per_lun = AAC_NUM_IO_FIB,
1544 #endif
1545 .use_clustering = ENABLE_CLUSTERING,
1546 .emulated = 1,
1547 .no_write_same = 1,
1548 };
1549
1550 static void __aac_shutdown(struct aac_dev * aac)
1551 {
1552 int i;
1553
1554 mutex_lock(&aac->ioctl_mutex);
1555 aac->adapter_shutdown = 1;
1556 mutex_unlock(&aac->ioctl_mutex);
1557
1558 if (aac->aif_thread) {
1559 int i;
1560 /* Clear out events first */
1561 for (i = 0; i < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++) {
1562 struct fib *fib = &aac->fibs[i];
1563 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1564 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected)))
1565 up(&fib->event_wait);
1566 }
1567 kthread_stop(aac->thread);
1568 }
1569
1570 aac_send_shutdown(aac);
1571
1572 aac_adapter_disable_int(aac);
1573
1574 if (aac_is_src(aac)) {
1575 if (aac->max_msix > 1) {
1576 for (i = 0; i < aac->max_msix; i++) {
1577 free_irq(pci_irq_vector(aac->pdev, i),
1578 &(aac->aac_msix[i]));
1579 }
1580 } else {
1581 free_irq(aac->pdev->irq,
1582 &(aac->aac_msix[0]));
1583 }
1584 } else {
1585 free_irq(aac->pdev->irq, aac);
1586 }
1587 if (aac->msi)
1588 pci_disable_msi(aac->pdev);
1589 else if (aac->max_msix > 1)
1590 pci_disable_msix(aac->pdev);
1591 }
1592 static void aac_init_char(void)
1593 {
1594 aac_cfg_major = register_chrdev(0, "aac", &aac_cfg_fops);
1595 if (aac_cfg_major < 0) {
1596 pr_err("aacraid: unable to register \"aac\" device.\n");
1597 }
1598 }
1599
1600 static int aac_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
1601 {
1602 unsigned index = id->driver_data;
1603 struct Scsi_Host *shost;
1604 struct aac_dev *aac;
1605 struct list_head *insert = &aac_devices;
1606 int error = -ENODEV;
1607 int unique_id = 0;
1608 u64 dmamask;
1609 int mask_bits = 0;
1610 extern int aac_sync_mode;
1611
1612 /*
1613 * Only series 7 needs freset.
1614 */
1615 if (pdev->device == PMC_DEVICE_S7)
1616 pdev->needs_freset = 1;
1617
1618 list_for_each_entry(aac, &aac_devices, entry) {
1619 if (aac->id > unique_id)
1620 break;
1621 insert = &aac->entry;
1622 unique_id++;
1623 }
1624
1625 pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 |
1626 PCIE_LINK_STATE_CLKPM);
1627
1628 error = pci_enable_device(pdev);
1629 if (error)
1630 goto out;
1631 error = -ENODEV;
1632
1633 if (!(aac_drivers[index].quirks & AAC_QUIRK_SRC)) {
1634 error = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1635 if (error) {
1636 dev_err(&pdev->dev, "PCI 32 BIT dma mask set failed");
1637 goto out_disable_pdev;
1638 }
1639 }
1640
1641 /*
1642 * If the quirk31 bit is set, the adapter needs adapter
1643 * to driver communication memory to be allocated below 2gig
1644 */
1645 if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) {
1646 dmamask = DMA_BIT_MASK(31);
1647 mask_bits = 31;
1648 } else {
1649 dmamask = DMA_BIT_MASK(32);
1650 mask_bits = 32;
1651 }
1652
1653 error = pci_set_consistent_dma_mask(pdev, dmamask);
1654 if (error) {
1655 dev_err(&pdev->dev, "PCI %d B consistent dma mask set failed\n"
1656 , mask_bits);
1657 goto out_disable_pdev;
1658 }
1659
1660 pci_set_master(pdev);
1661
1662 shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev));
1663 if (!shost)
1664 goto out_disable_pdev;
1665
1666 shost->irq = pdev->irq;
1667 shost->unique_id = unique_id;
1668 shost->max_cmd_len = 16;
1669 shost->use_cmd_list = 1;
1670
1671 if (aac_cfg_major == AAC_CHARDEV_NEEDS_REINIT)
1672 aac_init_char();
1673
1674 aac = (struct aac_dev *)shost->hostdata;
1675 aac->base_start = pci_resource_start(pdev, 0);
1676 aac->scsi_host_ptr = shost;
1677 aac->pdev = pdev;
1678 aac->name = aac_driver_template.name;
1679 aac->id = shost->unique_id;
1680 aac->cardtype = index;
1681 INIT_LIST_HEAD(&aac->entry);
1682
1683 if (aac_reset_devices || reset_devices)
1684 aac->init_reset = true;
1685
1686 aac->fibs = kzalloc(sizeof(struct fib) * (shost->can_queue + AAC_NUM_MGT_FIB), GFP_KERNEL);
1687 if (!aac->fibs)
1688 goto out_free_host;
1689 spin_lock_init(&aac->fib_lock);
1690
1691 mutex_init(&aac->ioctl_mutex);
1692 /*
1693 * Map in the registers from the adapter.
1694 */
1695 aac->base_size = AAC_MIN_FOOTPRINT_SIZE;
1696 if ((*aac_drivers[index].init)(aac))
1697 goto out_unmap;
1698
1699 if (aac->sync_mode) {
1700 if (aac_sync_mode)
1701 printk(KERN_INFO "%s%d: Sync. mode enforced "
1702 "by driver parameter. This will cause "
1703 "a significant performance decrease!\n",
1704 aac->name,
1705 aac->id);
1706 else
1707 printk(KERN_INFO "%s%d: Async. mode not supported "
1708 "by current driver, sync. mode enforced."
1709 "\nPlease update driver to get full performance.\n",
1710 aac->name,
1711 aac->id);
1712 }
1713
1714 /*
1715 * Start any kernel threads needed
1716 */
1717 aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME);
1718 if (IS_ERR(aac->thread)) {
1719 printk(KERN_ERR "aacraid: Unable to create command thread.\n");
1720 error = PTR_ERR(aac->thread);
1721 aac->thread = NULL;
1722 goto out_deinit;
1723 }
1724
1725 aac->maximum_num_channels = aac_drivers[index].channels;
1726 error = aac_get_adapter_info(aac);
1727 if (error < 0)
1728 goto out_deinit;
1729
1730 /*
1731 * Lets override negotiations and drop the maximum SG limit to 34
1732 */
1733 if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) &&
1734 (shost->sg_tablesize > 34)) {
1735 shost->sg_tablesize = 34;
1736 shost->max_sectors = (shost->sg_tablesize * 8) + 112;
1737 }
1738
1739 if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) &&
1740 (shost->sg_tablesize > 17)) {
1741 shost->sg_tablesize = 17;
1742 shost->max_sectors = (shost->sg_tablesize * 8) + 112;
1743 }
1744
1745 error = pci_set_dma_max_seg_size(pdev,
1746 (aac->adapter_info.options & AAC_OPT_NEW_COMM) ?
1747 (shost->max_sectors << 9) : 65536);
1748 if (error)
1749 goto out_deinit;
1750
1751 /*
1752 * Firmware printf works only with older firmware.
1753 */
1754 if (aac_drivers[index].quirks & AAC_QUIRK_34SG)
1755 aac->printf_enabled = 1;
1756 else
1757 aac->printf_enabled = 0;
1758
1759 /*
1760 * max channel will be the physical channels plus 1 virtual channel
1761 * all containers are on the virtual channel 0 (CONTAINER_CHANNEL)
1762 * physical channels are address by their actual physical number+1
1763 */
1764 if (aac->nondasd_support || expose_physicals || aac->jbod)
1765 shost->max_channel = aac->maximum_num_channels;
1766 else
1767 shost->max_channel = 0;
1768
1769 aac_get_config_status(aac, 0);
1770 aac_get_containers(aac);
1771 list_add(&aac->entry, insert);
1772
1773 shost->max_id = aac->maximum_num_containers;
1774 if (shost->max_id < aac->maximum_num_physicals)
1775 shost->max_id = aac->maximum_num_physicals;
1776 if (shost->max_id < MAXIMUM_NUM_CONTAINERS)
1777 shost->max_id = MAXIMUM_NUM_CONTAINERS;
1778 else
1779 shost->this_id = shost->max_id;
1780
1781 if (!aac->sa_firmware && aac_drivers[index].quirks & AAC_QUIRK_SRC)
1782 aac_intr_normal(aac, 0, 2, 0, NULL);
1783
1784 /*
1785 * dmb - we may need to move the setting of these parms somewhere else once
1786 * we get a fib that can report the actual numbers
1787 */
1788 shost->max_lun = AAC_MAX_LUN;
1789
1790 pci_set_drvdata(pdev, shost);
1791
1792 error = scsi_add_host(shost, &pdev->dev);
1793 if (error)
1794 goto out_deinit;
1795 scsi_scan_host(shost);
1796
1797 pci_enable_pcie_error_reporting(pdev);
1798 pci_save_state(pdev);
1799
1800 return 0;
1801
1802 out_deinit:
1803 __aac_shutdown(aac);
1804 out_unmap:
1805 aac_fib_map_free(aac);
1806 if (aac->comm_addr)
1807 dma_free_coherent(&aac->pdev->dev, aac->comm_size,
1808 aac->comm_addr, aac->comm_phys);
1809 kfree(aac->queues);
1810 aac_adapter_ioremap(aac, 0);
1811 kfree(aac->fibs);
1812 kfree(aac->fsa_dev);
1813 out_free_host:
1814 scsi_host_put(shost);
1815 out_disable_pdev:
1816 pci_disable_device(pdev);
1817 out:
1818 return error;
1819 }
1820
1821 static void aac_release_resources(struct aac_dev *aac)
1822 {
1823 aac_adapter_disable_int(aac);
1824 aac_free_irq(aac);
1825 }
1826
1827 static int aac_acquire_resources(struct aac_dev *dev)
1828 {
1829 unsigned long status;
1830 /*
1831 * First clear out all interrupts. Then enable the one's that we
1832 * can handle.
1833 */
1834 while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING)
1835 || status == 0xffffffff)
1836 msleep(20);
1837
1838 aac_adapter_disable_int(dev);
1839 aac_adapter_enable_int(dev);
1840
1841
1842 if (aac_is_src(dev))
1843 aac_define_int_mode(dev);
1844
1845 if (dev->msi_enabled)
1846 aac_src_access_devreg(dev, AAC_ENABLE_MSIX);
1847
1848 if (aac_acquire_irq(dev))
1849 goto error_iounmap;
1850
1851 aac_adapter_enable_int(dev);
1852
1853 /*max msix may change after EEH
1854 * Re-assign vectors to fibs
1855 */
1856 aac_fib_vector_assign(dev);
1857
1858 if (!dev->sync_mode) {
1859 /* After EEH recovery or suspend resume, max_msix count
1860 * may change, therefore updating in init as well.
1861 */
1862 dev->init->r7.no_of_msix_vectors = cpu_to_le32(dev->max_msix);
1863 aac_adapter_start(dev);
1864 }
1865 return 0;
1866
1867 error_iounmap:
1868 return -1;
1869
1870 }
1871
1872 #if (defined(CONFIG_PM))
1873 static int aac_suspend(struct pci_dev *pdev, pm_message_t state)
1874 {
1875
1876 struct Scsi_Host *shost = pci_get_drvdata(pdev);
1877 struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1878
1879 scsi_block_requests(shost);
1880 aac_send_shutdown(aac);
1881
1882 aac_release_resources(aac);
1883
1884 pci_set_drvdata(pdev, shost);
1885 pci_save_state(pdev);
1886 pci_disable_device(pdev);
1887 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1888
1889 return 0;
1890 }
1891
1892 static int aac_resume(struct pci_dev *pdev)
1893 {
1894 struct Scsi_Host *shost = pci_get_drvdata(pdev);
1895 struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1896 int r;
1897
1898 pci_set_power_state(pdev, PCI_D0);
1899 pci_enable_wake(pdev, PCI_D0, 0);
1900 pci_restore_state(pdev);
1901 r = pci_enable_device(pdev);
1902
1903 if (r)
1904 goto fail_device;
1905
1906 pci_set_master(pdev);
1907 if (aac_acquire_resources(aac))
1908 goto fail_device;
1909 /*
1910 * reset this flag to unblock ioctl() as it was set at
1911 * aac_send_shutdown() to block ioctls from upperlayer
1912 */
1913 aac->adapter_shutdown = 0;
1914 scsi_unblock_requests(shost);
1915
1916 return 0;
1917
1918 fail_device:
1919 printk(KERN_INFO "%s%d: resume failed.\n", aac->name, aac->id);
1920 scsi_host_put(shost);
1921 pci_disable_device(pdev);
1922 return -ENODEV;
1923 }
1924 #endif
1925
1926 static void aac_shutdown(struct pci_dev *dev)
1927 {
1928 struct Scsi_Host *shost = pci_get_drvdata(dev);
1929 scsi_block_requests(shost);
1930 __aac_shutdown((struct aac_dev *)shost->hostdata);
1931 }
1932
1933 static void aac_remove_one(struct pci_dev *pdev)
1934 {
1935 struct Scsi_Host *shost = pci_get_drvdata(pdev);
1936 struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1937
1938 scsi_remove_host(shost);
1939
1940 __aac_shutdown(aac);
1941 aac_fib_map_free(aac);
1942 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1943 aac->comm_phys);
1944 kfree(aac->queues);
1945
1946 aac_adapter_ioremap(aac, 0);
1947
1948 kfree(aac->fibs);
1949 kfree(aac->fsa_dev);
1950
1951 list_del(&aac->entry);
1952 scsi_host_put(shost);
1953 pci_disable_device(pdev);
1954 if (list_empty(&aac_devices)) {
1955 unregister_chrdev(aac_cfg_major, "aac");
1956 aac_cfg_major = AAC_CHARDEV_NEEDS_REINIT;
1957 }
1958 }
1959
1960 static void aac_flush_ios(struct aac_dev *aac)
1961 {
1962 int i;
1963 struct scsi_cmnd *cmd;
1964
1965 for (i = 0; i < aac->scsi_host_ptr->can_queue; i++) {
1966 cmd = (struct scsi_cmnd *)aac->fibs[i].callback_data;
1967 if (cmd && (cmd->SCp.phase == AAC_OWNER_FIRMWARE)) {
1968 scsi_dma_unmap(cmd);
1969
1970 if (aac->handle_pci_error)
1971 cmd->result = DID_NO_CONNECT << 16;
1972 else
1973 cmd->result = DID_RESET << 16;
1974
1975 cmd->scsi_done(cmd);
1976 }
1977 }
1978 }
1979
1980 static pci_ers_result_t aac_pci_error_detected(struct pci_dev *pdev,
1981 enum pci_channel_state error)
1982 {
1983 struct Scsi_Host *shost = pci_get_drvdata(pdev);
1984 struct aac_dev *aac = shost_priv(shost);
1985
1986 dev_err(&pdev->dev, "aacraid: PCI error detected %x\n", error);
1987
1988 switch (error) {
1989 case pci_channel_io_normal:
1990 return PCI_ERS_RESULT_CAN_RECOVER;
1991 case pci_channel_io_frozen:
1992 aac->handle_pci_error = 1;
1993
1994 scsi_block_requests(aac->scsi_host_ptr);
1995 aac_flush_ios(aac);
1996 aac_release_resources(aac);
1997
1998 pci_disable_pcie_error_reporting(pdev);
1999 aac_adapter_ioremap(aac, 0);
2000
2001 return PCI_ERS_RESULT_NEED_RESET;
2002 case pci_channel_io_perm_failure:
2003 aac->handle_pci_error = 1;
2004
2005 aac_flush_ios(aac);
2006 return PCI_ERS_RESULT_DISCONNECT;
2007 }
2008
2009 return PCI_ERS_RESULT_NEED_RESET;
2010 }
2011
2012 static pci_ers_result_t aac_pci_mmio_enabled(struct pci_dev *pdev)
2013 {
2014 dev_err(&pdev->dev, "aacraid: PCI error - mmio enabled\n");
2015 return PCI_ERS_RESULT_NEED_RESET;
2016 }
2017
2018 static pci_ers_result_t aac_pci_slot_reset(struct pci_dev *pdev)
2019 {
2020 dev_err(&pdev->dev, "aacraid: PCI error - slot reset\n");
2021 pci_restore_state(pdev);
2022 if (pci_enable_device(pdev)) {
2023 dev_warn(&pdev->dev,
2024 "aacraid: failed to enable slave\n");
2025 goto fail_device;
2026 }
2027
2028 pci_set_master(pdev);
2029
2030 if (pci_enable_device_mem(pdev)) {
2031 dev_err(&pdev->dev, "pci_enable_device_mem failed\n");
2032 goto fail_device;
2033 }
2034
2035 return PCI_ERS_RESULT_RECOVERED;
2036
2037 fail_device:
2038 dev_err(&pdev->dev, "aacraid: PCI error - slot reset failed\n");
2039 return PCI_ERS_RESULT_DISCONNECT;
2040 }
2041
2042
2043 static void aac_pci_resume(struct pci_dev *pdev)
2044 {
2045 struct Scsi_Host *shost = pci_get_drvdata(pdev);
2046 struct scsi_device *sdev = NULL;
2047 struct aac_dev *aac = (struct aac_dev *)shost_priv(shost);
2048
2049 pci_cleanup_aer_uncorrect_error_status(pdev);
2050
2051 if (aac_adapter_ioremap(aac, aac->base_size)) {
2052
2053 dev_err(&pdev->dev, "aacraid: ioremap failed\n");
2054 /* remap failed, go back ... */
2055 aac->comm_interface = AAC_COMM_PRODUCER;
2056 if (aac_adapter_ioremap(aac, AAC_MIN_FOOTPRINT_SIZE)) {
2057 dev_warn(&pdev->dev,
2058 "aacraid: unable to map adapter.\n");
2059
2060 return;
2061 }
2062 }
2063
2064 msleep(10000);
2065
2066 aac_acquire_resources(aac);
2067
2068 /*
2069 * reset this flag to unblock ioctl() as it was set
2070 * at aac_send_shutdown() to block ioctls from upperlayer
2071 */
2072 aac->adapter_shutdown = 0;
2073 aac->handle_pci_error = 0;
2074
2075 shost_for_each_device(sdev, shost)
2076 if (sdev->sdev_state == SDEV_OFFLINE)
2077 sdev->sdev_state = SDEV_RUNNING;
2078 scsi_unblock_requests(aac->scsi_host_ptr);
2079 scsi_scan_host(aac->scsi_host_ptr);
2080 pci_save_state(pdev);
2081
2082 dev_err(&pdev->dev, "aacraid: PCI error - resume\n");
2083 }
2084
2085 static struct pci_error_handlers aac_pci_err_handler = {
2086 .error_detected = aac_pci_error_detected,
2087 .mmio_enabled = aac_pci_mmio_enabled,
2088 .slot_reset = aac_pci_slot_reset,
2089 .resume = aac_pci_resume,
2090 };
2091
2092 static struct pci_driver aac_pci_driver = {
2093 .name = AAC_DRIVERNAME,
2094 .id_table = aac_pci_tbl,
2095 .probe = aac_probe_one,
2096 .remove = aac_remove_one,
2097 #if (defined(CONFIG_PM))
2098 .suspend = aac_suspend,
2099 .resume = aac_resume,
2100 #endif
2101 .shutdown = aac_shutdown,
2102 .err_handler = &aac_pci_err_handler,
2103 };
2104
2105 static int __init aac_init(void)
2106 {
2107 int error;
2108
2109 printk(KERN_INFO "Adaptec %s driver %s\n",
2110 AAC_DRIVERNAME, aac_driver_version);
2111
2112 error = pci_register_driver(&aac_pci_driver);
2113 if (error < 0)
2114 return error;
2115
2116 aac_init_char();
2117
2118
2119 return 0;
2120 }
2121
2122 static void __exit aac_exit(void)
2123 {
2124 if (aac_cfg_major > -1)
2125 unregister_chrdev(aac_cfg_major, "aac");
2126 pci_unregister_driver(&aac_pci_driver);
2127 }
2128
2129 module_init(aac_init);
2130 module_exit(aac_exit);