]> git.proxmox.com Git - qemu.git/blob - exec-all.h
Update Sparc parts in documentation
[qemu.git] / exec-all.h
1 /*
2 * internal execution defines for qemu
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 /* allow to see translation results - the slowdown should be negligible, so we leave it */
22 #define DEBUG_DISAS
23
24 #ifndef glue
25 #define xglue(x, y) x ## y
26 #define glue(x, y) xglue(x, y)
27 #define stringify(s) tostring(s)
28 #define tostring(s) #s
29 #endif
30
31 #ifndef likely
32 #if __GNUC__ < 3
33 #define __builtin_expect(x, n) (x)
34 #endif
35
36 #define likely(x) __builtin_expect(!!(x), 1)
37 #define unlikely(x) __builtin_expect(!!(x), 0)
38 #endif
39
40 #ifndef always_inline
41 #if (__GNUC__ < 3) || defined(__APPLE__)
42 #define always_inline inline
43 #else
44 #define always_inline __attribute__ (( always_inline )) inline
45 #endif
46 #endif
47
48 #ifdef __i386__
49 #define REGPARM(n) __attribute((regparm(n)))
50 #else
51 #define REGPARM(n)
52 #endif
53
54 /* is_jmp field values */
55 #define DISAS_NEXT 0 /* next instruction can be analyzed */
56 #define DISAS_JUMP 1 /* only pc was modified dynamically */
57 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
58 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
59
60 struct TranslationBlock;
61
62 /* XXX: make safe guess about sizes */
63 #define MAX_OP_PER_INSTR 32
64 #define OPC_BUF_SIZE 512
65 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
66
67 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * 3)
68
69 extern uint16_t gen_opc_buf[OPC_BUF_SIZE];
70 extern uint32_t gen_opparam_buf[OPPARAM_BUF_SIZE];
71 extern long gen_labels[OPC_BUF_SIZE];
72 extern int nb_gen_labels;
73 extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
74 extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
75 extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
76 extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
77 extern target_ulong gen_opc_jump_pc[2];
78 extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
79
80 typedef void (GenOpFunc)(void);
81 typedef void (GenOpFunc1)(long);
82 typedef void (GenOpFunc2)(long, long);
83 typedef void (GenOpFunc3)(long, long, long);
84
85 #if defined(TARGET_I386)
86
87 void optimize_flags_init(void);
88
89 #endif
90
91 extern FILE *logfile;
92 extern int loglevel;
93
94 void muls64(int64_t *phigh, int64_t *plow, int64_t a, int64_t b);
95 void mulu64(uint64_t *phigh, uint64_t *plow, uint64_t a, uint64_t b);
96
97 int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
98 int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
99 void dump_ops(const uint16_t *opc_buf, const uint32_t *opparam_buf);
100 int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
101 int max_code_size, int *gen_code_size_ptr);
102 int cpu_restore_state(struct TranslationBlock *tb,
103 CPUState *env, unsigned long searched_pc,
104 void *puc);
105 int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
106 int max_code_size, int *gen_code_size_ptr);
107 int cpu_restore_state_copy(struct TranslationBlock *tb,
108 CPUState *env, unsigned long searched_pc,
109 void *puc);
110 void cpu_resume_from_signal(CPUState *env1, void *puc);
111 void cpu_exec_init(CPUState *env);
112 int page_unprotect(target_ulong address, unsigned long pc, void *puc);
113 void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
114 int is_cpu_write_access);
115 void tb_invalidate_page_range(target_ulong start, target_ulong end);
116 void tlb_flush_page(CPUState *env, target_ulong addr);
117 void tlb_flush(CPUState *env, int flush_global);
118 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
119 target_phys_addr_t paddr, int prot,
120 int mmu_idx, int is_softmmu);
121 static inline int tlb_set_page(CPUState *env, target_ulong vaddr,
122 target_phys_addr_t paddr, int prot,
123 int mmu_idx, int is_softmmu)
124 {
125 if (prot & PAGE_READ)
126 prot |= PAGE_EXEC;
127 return tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu);
128 }
129
130 #define CODE_GEN_MAX_SIZE 65536
131 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
132
133 #define CODE_GEN_PHYS_HASH_BITS 15
134 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
135
136 /* maximum total translate dcode allocated */
137
138 /* NOTE: the translated code area cannot be too big because on some
139 archs the range of "fast" function calls is limited. Here is a
140 summary of the ranges:
141
142 i386 : signed 32 bits
143 arm : signed 26 bits
144 ppc : signed 24 bits
145 sparc : signed 32 bits
146 alpha : signed 23 bits
147 */
148
149 #if defined(__alpha__)
150 #define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024)
151 #elif defined(__ia64)
152 #define CODE_GEN_BUFFER_SIZE (4 * 1024 * 1024) /* range of addl */
153 #elif defined(__powerpc__)
154 #define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024)
155 #else
156 #define CODE_GEN_BUFFER_SIZE (16 * 1024 * 1024)
157 #endif
158
159 //#define CODE_GEN_BUFFER_SIZE (128 * 1024)
160
161 /* estimated block size for TB allocation */
162 /* XXX: use a per code average code fragment size and modulate it
163 according to the host CPU */
164 #if defined(CONFIG_SOFTMMU)
165 #define CODE_GEN_AVG_BLOCK_SIZE 128
166 #else
167 #define CODE_GEN_AVG_BLOCK_SIZE 64
168 #endif
169
170 #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
171
172 #if defined(__powerpc__)
173 #define USE_DIRECT_JUMP
174 #endif
175 #if defined(__i386__) && !defined(_WIN32)
176 #define USE_DIRECT_JUMP
177 #endif
178
179 typedef struct TranslationBlock {
180 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
181 target_ulong cs_base; /* CS base for this block */
182 uint64_t flags; /* flags defining in which context the code was generated */
183 uint16_t size; /* size of target code for this block (1 <=
184 size <= TARGET_PAGE_SIZE) */
185 uint16_t cflags; /* compile flags */
186 #define CF_CODE_COPY 0x0001 /* block was generated in code copy mode */
187 #define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */
188 #define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */
189 #define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
190
191 uint8_t *tc_ptr; /* pointer to the translated code */
192 /* next matching tb for physical address. */
193 struct TranslationBlock *phys_hash_next;
194 /* first and second physical page containing code. The lower bit
195 of the pointer tells the index in page_next[] */
196 struct TranslationBlock *page_next[2];
197 target_ulong page_addr[2];
198
199 /* the following data are used to directly call another TB from
200 the code of this one. */
201 uint16_t tb_next_offset[2]; /* offset of original jump target */
202 #ifdef USE_DIRECT_JUMP
203 uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
204 #else
205 uint32_t tb_next[2]; /* address of jump generated code */
206 #endif
207 /* list of TBs jumping to this one. This is a circular list using
208 the two least significant bits of the pointers to tell what is
209 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
210 jmp_first */
211 struct TranslationBlock *jmp_next[2];
212 struct TranslationBlock *jmp_first;
213 } TranslationBlock;
214
215 static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
216 {
217 target_ulong tmp;
218 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
219 return (tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK;
220 }
221
222 static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
223 {
224 target_ulong tmp;
225 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
226 return (((tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK) |
227 (tmp & TB_JMP_ADDR_MASK));
228 }
229
230 static inline unsigned int tb_phys_hash_func(unsigned long pc)
231 {
232 return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
233 }
234
235 TranslationBlock *tb_alloc(target_ulong pc);
236 void tb_flush(CPUState *env);
237 void tb_link_phys(TranslationBlock *tb,
238 target_ulong phys_pc, target_ulong phys_page2);
239
240 extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
241
242 extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
243 extern uint8_t *code_gen_ptr;
244
245 #if defined(USE_DIRECT_JUMP)
246
247 #if defined(__powerpc__)
248 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
249 {
250 uint32_t val, *ptr;
251
252 /* patch the branch destination */
253 ptr = (uint32_t *)jmp_addr;
254 val = *ptr;
255 val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
256 *ptr = val;
257 /* flush icache */
258 asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
259 asm volatile ("sync" : : : "memory");
260 asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
261 asm volatile ("sync" : : : "memory");
262 asm volatile ("isync" : : : "memory");
263 }
264 #elif defined(__i386__)
265 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
266 {
267 /* patch the branch destination */
268 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
269 /* no need to flush icache explicitely */
270 }
271 #endif
272
273 static inline void tb_set_jmp_target(TranslationBlock *tb,
274 int n, unsigned long addr)
275 {
276 unsigned long offset;
277
278 offset = tb->tb_jmp_offset[n];
279 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
280 offset = tb->tb_jmp_offset[n + 2];
281 if (offset != 0xffff)
282 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
283 }
284
285 #else
286
287 /* set the jump target */
288 static inline void tb_set_jmp_target(TranslationBlock *tb,
289 int n, unsigned long addr)
290 {
291 tb->tb_next[n] = addr;
292 }
293
294 #endif
295
296 static inline void tb_add_jump(TranslationBlock *tb, int n,
297 TranslationBlock *tb_next)
298 {
299 /* NOTE: this test is only needed for thread safety */
300 if (!tb->jmp_next[n]) {
301 /* patch the native jump address */
302 tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
303
304 /* add in TB jmp circular list */
305 tb->jmp_next[n] = tb_next->jmp_first;
306 tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
307 }
308 }
309
310 TranslationBlock *tb_find_pc(unsigned long pc_ptr);
311
312 #ifndef offsetof
313 #define offsetof(type, field) ((size_t) &((type *)0)->field)
314 #endif
315
316 #if defined(_WIN32)
317 #define ASM_DATA_SECTION ".section \".data\"\n"
318 #define ASM_PREVIOUS_SECTION ".section .text\n"
319 #elif defined(__APPLE__)
320 #define ASM_DATA_SECTION ".data\n"
321 #define ASM_PREVIOUS_SECTION ".text\n"
322 #else
323 #define ASM_DATA_SECTION ".section \".data\"\n"
324 #define ASM_PREVIOUS_SECTION ".previous\n"
325 #endif
326
327 #define ASM_OP_LABEL_NAME(n, opname) \
328 ASM_NAME(__op_label) #n "." ASM_NAME(opname)
329
330 #if defined(__powerpc__)
331
332 /* we patch the jump instruction directly */
333 #define GOTO_TB(opname, tbparam, n)\
334 do {\
335 asm volatile (ASM_DATA_SECTION\
336 ASM_OP_LABEL_NAME(n, opname) ":\n"\
337 ".long 1f\n"\
338 ASM_PREVIOUS_SECTION \
339 "b " ASM_NAME(__op_jmp) #n "\n"\
340 "1:\n");\
341 } while (0)
342
343 #elif defined(__i386__) && defined(USE_DIRECT_JUMP)
344
345 /* we patch the jump instruction directly */
346 #define GOTO_TB(opname, tbparam, n)\
347 do {\
348 asm volatile (".section .data\n"\
349 ASM_OP_LABEL_NAME(n, opname) ":\n"\
350 ".long 1f\n"\
351 ASM_PREVIOUS_SECTION \
352 "jmp " ASM_NAME(__op_jmp) #n "\n"\
353 "1:\n");\
354 } while (0)
355
356 #elif defined(__s390__)
357 /* GCC spills R13, so we have to restore it before branching away */
358
359 #define GOTO_TB(opname, tbparam, n)\
360 do {\
361 static void __attribute__((used)) *dummy ## n = &&dummy_label ## n;\
362 static void __attribute__((used)) *__op_label ## n \
363 __asm__(ASM_OP_LABEL_NAME(n, opname)) = &&label ## n;\
364 __asm__ __volatile__ ( \
365 "l %%r13,52(%%r15)\n" \
366 "br %0\n" \
367 : : "r" (((TranslationBlock*)tbparam)->tb_next[n]));\
368 \
369 for(;*((int*)0);); /* just to keep GCC busy */ \
370 label ## n: ;\
371 dummy_label ## n: ;\
372 } while(0)
373
374 #else
375
376 /* jump to next block operations (more portable code, does not need
377 cache flushing, but slower because of indirect jump) */
378 #define GOTO_TB(opname, tbparam, n)\
379 do {\
380 static void __attribute__((used)) *dummy ## n = &&dummy_label ## n;\
381 static void __attribute__((used)) *__op_label ## n \
382 __asm__(ASM_OP_LABEL_NAME(n, opname)) = &&label ## n;\
383 goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\
384 label ## n: ;\
385 dummy_label ## n: ;\
386 } while (0)
387
388 #endif
389
390 extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
391 extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
392 extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
393
394 #if defined(__powerpc__)
395 static inline int testandset (int *p)
396 {
397 int ret;
398 __asm__ __volatile__ (
399 "0: lwarx %0,0,%1\n"
400 " xor. %0,%3,%0\n"
401 " bne 1f\n"
402 " stwcx. %2,0,%1\n"
403 " bne- 0b\n"
404 "1: "
405 : "=&r" (ret)
406 : "r" (p), "r" (1), "r" (0)
407 : "cr0", "memory");
408 return ret;
409 }
410 #elif defined(__i386__)
411 static inline int testandset (int *p)
412 {
413 long int readval = 0;
414
415 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
416 : "+m" (*p), "+a" (readval)
417 : "r" (1)
418 : "cc");
419 return readval;
420 }
421 #elif defined(__x86_64__)
422 static inline int testandset (int *p)
423 {
424 long int readval = 0;
425
426 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
427 : "+m" (*p), "+a" (readval)
428 : "r" (1)
429 : "cc");
430 return readval;
431 }
432 #elif defined(__s390__)
433 static inline int testandset (int *p)
434 {
435 int ret;
436
437 __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
438 " jl 0b"
439 : "=&d" (ret)
440 : "r" (1), "a" (p), "0" (*p)
441 : "cc", "memory" );
442 return ret;
443 }
444 #elif defined(__alpha__)
445 static inline int testandset (int *p)
446 {
447 int ret;
448 unsigned long one;
449
450 __asm__ __volatile__ ("0: mov 1,%2\n"
451 " ldl_l %0,%1\n"
452 " stl_c %2,%1\n"
453 " beq %2,1f\n"
454 ".subsection 2\n"
455 "1: br 0b\n"
456 ".previous"
457 : "=r" (ret), "=m" (*p), "=r" (one)
458 : "m" (*p));
459 return ret;
460 }
461 #elif defined(__sparc__)
462 static inline int testandset (int *p)
463 {
464 int ret;
465
466 __asm__ __volatile__("ldstub [%1], %0"
467 : "=r" (ret)
468 : "r" (p)
469 : "memory");
470
471 return (ret ? 1 : 0);
472 }
473 #elif defined(__arm__)
474 static inline int testandset (int *spinlock)
475 {
476 register unsigned int ret;
477 __asm__ __volatile__("swp %0, %1, [%2]"
478 : "=r"(ret)
479 : "0"(1), "r"(spinlock));
480
481 return ret;
482 }
483 #elif defined(__mc68000)
484 static inline int testandset (int *p)
485 {
486 char ret;
487 __asm__ __volatile__("tas %1; sne %0"
488 : "=r" (ret)
489 : "m" (p)
490 : "cc","memory");
491 return ret;
492 }
493 #elif defined(__ia64)
494
495 #include <ia64intrin.h>
496
497 static inline int testandset (int *p)
498 {
499 return __sync_lock_test_and_set (p, 1);
500 }
501 #elif defined(__mips__)
502 static inline int testandset (int *p)
503 {
504 int ret;
505
506 __asm__ __volatile__ (
507 " .set push \n"
508 " .set noat \n"
509 " .set mips2 \n"
510 "1: li $1, 1 \n"
511 " ll %0, %1 \n"
512 " sc $1, %1 \n"
513 " beqz $1, 1b \n"
514 " .set pop "
515 : "=r" (ret), "+R" (*p)
516 :
517 : "memory");
518
519 return ret;
520 }
521 #else
522 #error unimplemented CPU support
523 #endif
524
525 typedef int spinlock_t;
526
527 #define SPIN_LOCK_UNLOCKED 0
528
529 #if defined(CONFIG_USER_ONLY)
530 static inline void spin_lock(spinlock_t *lock)
531 {
532 while (testandset(lock));
533 }
534
535 static inline void spin_unlock(spinlock_t *lock)
536 {
537 *lock = 0;
538 }
539
540 static inline int spin_trylock(spinlock_t *lock)
541 {
542 return !testandset(lock);
543 }
544 #else
545 static inline void spin_lock(spinlock_t *lock)
546 {
547 }
548
549 static inline void spin_unlock(spinlock_t *lock)
550 {
551 }
552
553 static inline int spin_trylock(spinlock_t *lock)
554 {
555 return 1;
556 }
557 #endif
558
559 extern spinlock_t tb_lock;
560
561 extern int tb_invalidated_flag;
562
563 #if !defined(CONFIG_USER_ONLY)
564
565 void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
566 void *retaddr);
567
568 #define ACCESS_TYPE (NB_MMU_MODES + 1)
569 #define MEMSUFFIX _code
570 #define env cpu_single_env
571
572 #define DATA_SIZE 1
573 #include "softmmu_header.h"
574
575 #define DATA_SIZE 2
576 #include "softmmu_header.h"
577
578 #define DATA_SIZE 4
579 #include "softmmu_header.h"
580
581 #define DATA_SIZE 8
582 #include "softmmu_header.h"
583
584 #undef ACCESS_TYPE
585 #undef MEMSUFFIX
586 #undef env
587
588 #endif
589
590 #if defined(CONFIG_USER_ONLY)
591 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
592 {
593 return addr;
594 }
595 #else
596 /* NOTE: this function can trigger an exception */
597 /* NOTE2: the returned address is not exactly the physical address: it
598 is the offset relative to phys_ram_base */
599 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
600 {
601 int mmu_idx, index, pd;
602
603 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
604 mmu_idx = cpu_mmu_index(env);
605 if (__builtin_expect(env->tlb_table[mmu_idx][index].addr_code !=
606 (addr & TARGET_PAGE_MASK), 0)) {
607 ldub_code(addr);
608 }
609 pd = env->tlb_table[mmu_idx][index].addr_code & ~TARGET_PAGE_MASK;
610 if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
611 #ifdef TARGET_SPARC
612 do_unassigned_access(addr, 0, 1, 0);
613 #else
614 cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
615 #endif
616 }
617 return addr + env->tlb_table[mmu_idx][index].addend - (unsigned long)phys_ram_base;
618 }
619 #endif
620
621 #ifdef USE_KQEMU
622 #define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
623
624 int kqemu_init(CPUState *env);
625 int kqemu_cpu_exec(CPUState *env);
626 void kqemu_flush_page(CPUState *env, target_ulong addr);
627 void kqemu_flush(CPUState *env, int global);
628 void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
629 void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
630 void kqemu_cpu_interrupt(CPUState *env);
631 void kqemu_record_dump(void);
632
633 static inline int kqemu_is_ok(CPUState *env)
634 {
635 return(env->kqemu_enabled &&
636 (env->cr[0] & CR0_PE_MASK) &&
637 !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
638 (env->eflags & IF_MASK) &&
639 !(env->eflags & VM_MASK) &&
640 (env->kqemu_enabled == 2 ||
641 ((env->hflags & HF_CPL_MASK) == 3 &&
642 (env->eflags & IOPL_MASK) != IOPL_MASK)));
643 }
644
645 #endif