]> git.proxmox.com Git - qemu.git/blob - exec-all.h
64 bit target support
[qemu.git] / exec-all.h
1 /*
2 * internal execution defines for qemu
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 /* allow to see translation results - the slowdown should be negligible, so we leave it */
22 #define DEBUG_DISAS
23
24 #ifndef glue
25 #define xglue(x, y) x ## y
26 #define glue(x, y) xglue(x, y)
27 #define stringify(s) tostring(s)
28 #define tostring(s) #s
29 #endif
30
31 #if GCC_MAJOR < 3
32 #define __builtin_expect(x, n) (x)
33 #endif
34
35 #ifdef __i386__
36 #define REGPARM(n) __attribute((regparm(n)))
37 #else
38 #define REGPARM(n)
39 #endif
40
41 /* is_jmp field values */
42 #define DISAS_NEXT 0 /* next instruction can be analyzed */
43 #define DISAS_JUMP 1 /* only pc was modified dynamically */
44 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
45 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
46
47 struct TranslationBlock;
48
49 /* XXX: make safe guess about sizes */
50 #define MAX_OP_PER_INSTR 32
51 #define OPC_BUF_SIZE 512
52 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
53
54 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * 3)
55
56 extern uint16_t gen_opc_buf[OPC_BUF_SIZE];
57 extern uint32_t gen_opparam_buf[OPPARAM_BUF_SIZE];
58 extern long gen_labels[OPC_BUF_SIZE];
59 extern int nb_gen_labels;
60 extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
61 extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
62 extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
63 extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
64
65 typedef void (GenOpFunc)(void);
66 typedef void (GenOpFunc1)(long);
67 typedef void (GenOpFunc2)(long, long);
68 typedef void (GenOpFunc3)(long, long, long);
69
70 #if defined(TARGET_I386)
71
72 void optimize_flags_init(void);
73
74 #endif
75
76 extern FILE *logfile;
77 extern int loglevel;
78
79 int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
80 int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
81 void dump_ops(const uint16_t *opc_buf, const uint32_t *opparam_buf);
82 int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
83 int max_code_size, int *gen_code_size_ptr);
84 int cpu_restore_state(struct TranslationBlock *tb,
85 CPUState *env, unsigned long searched_pc,
86 void *puc);
87 int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
88 int max_code_size, int *gen_code_size_ptr);
89 int cpu_restore_state_copy(struct TranslationBlock *tb,
90 CPUState *env, unsigned long searched_pc,
91 void *puc);
92 void cpu_resume_from_signal(CPUState *env1, void *puc);
93 void cpu_exec_init(void);
94 int page_unprotect(unsigned long address, unsigned long pc, void *puc);
95 void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
96 int is_cpu_write_access);
97 void tb_invalidate_page_range(target_ulong start, target_ulong end);
98 void tlb_flush_page(CPUState *env, target_ulong addr);
99 void tlb_flush(CPUState *env, int flush_global);
100 int tlb_set_page(CPUState *env, target_ulong vaddr,
101 target_phys_addr_t paddr, int prot,
102 int is_user, int is_softmmu);
103
104 #define CODE_GEN_MAX_SIZE 65536
105 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
106
107 #define CODE_GEN_HASH_BITS 15
108 #define CODE_GEN_HASH_SIZE (1 << CODE_GEN_HASH_BITS)
109
110 #define CODE_GEN_PHYS_HASH_BITS 15
111 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
112
113 /* maximum total translate dcode allocated */
114
115 /* NOTE: the translated code area cannot be too big because on some
116 archs the range of "fast" function calls is limited. Here is a
117 summary of the ranges:
118
119 i386 : signed 32 bits
120 arm : signed 26 bits
121 ppc : signed 24 bits
122 sparc : signed 32 bits
123 alpha : signed 23 bits
124 */
125
126 #if defined(__alpha__)
127 #define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024)
128 #elif defined(__powerpc__)
129 #define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024)
130 #else
131 #define CODE_GEN_BUFFER_SIZE (8 * 1024 * 1024)
132 #endif
133
134 //#define CODE_GEN_BUFFER_SIZE (128 * 1024)
135
136 /* estimated block size for TB allocation */
137 /* XXX: use a per code average code fragment size and modulate it
138 according to the host CPU */
139 #if defined(CONFIG_SOFTMMU)
140 #define CODE_GEN_AVG_BLOCK_SIZE 128
141 #else
142 #define CODE_GEN_AVG_BLOCK_SIZE 64
143 #endif
144
145 #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
146
147 #if defined(__powerpc__)
148 #define USE_DIRECT_JUMP
149 #endif
150 #if defined(__i386__) && !defined(_WIN32)
151 #define USE_DIRECT_JUMP
152 #endif
153
154 typedef struct TranslationBlock {
155 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
156 target_ulong cs_base; /* CS base for this block */
157 unsigned int flags; /* flags defining in which context the code was generated */
158 uint16_t size; /* size of target code for this block (1 <=
159 size <= TARGET_PAGE_SIZE) */
160 uint16_t cflags; /* compile flags */
161 #define CF_CODE_COPY 0x0001 /* block was generated in code copy mode */
162 #define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */
163 #define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */
164 #define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
165
166 uint8_t *tc_ptr; /* pointer to the translated code */
167 struct TranslationBlock *hash_next; /* next matching tb for virtual address */
168 /* next matching tb for physical address. */
169 struct TranslationBlock *phys_hash_next;
170 /* first and second physical page containing code. The lower bit
171 of the pointer tells the index in page_next[] */
172 struct TranslationBlock *page_next[2];
173 target_ulong page_addr[2];
174
175 /* the following data are used to directly call another TB from
176 the code of this one. */
177 uint16_t tb_next_offset[2]; /* offset of original jump target */
178 #ifdef USE_DIRECT_JUMP
179 uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
180 #else
181 uint32_t tb_next[2]; /* address of jump generated code */
182 #endif
183 /* list of TBs jumping to this one. This is a circular list using
184 the two least significant bits of the pointers to tell what is
185 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
186 jmp_first */
187 struct TranslationBlock *jmp_next[2];
188 struct TranslationBlock *jmp_first;
189 } TranslationBlock;
190
191 static inline unsigned int tb_hash_func(target_ulong pc)
192 {
193 return pc & (CODE_GEN_HASH_SIZE - 1);
194 }
195
196 static inline unsigned int tb_phys_hash_func(unsigned long pc)
197 {
198 return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
199 }
200
201 TranslationBlock *tb_alloc(target_ulong pc);
202 void tb_flush(CPUState *env);
203 void tb_link(TranslationBlock *tb);
204 void tb_link_phys(TranslationBlock *tb,
205 target_ulong phys_pc, target_ulong phys_page2);
206
207 extern TranslationBlock *tb_hash[CODE_GEN_HASH_SIZE];
208 extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
209
210 extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
211 extern uint8_t *code_gen_ptr;
212
213 /* find a translation block in the translation cache. If not found,
214 return NULL and the pointer to the last element of the list in pptb */
215 static inline TranslationBlock *tb_find(TranslationBlock ***pptb,
216 target_ulong pc,
217 target_ulong cs_base,
218 unsigned int flags)
219 {
220 TranslationBlock **ptb, *tb;
221 unsigned int h;
222
223 h = tb_hash_func(pc);
224 ptb = &tb_hash[h];
225 for(;;) {
226 tb = *ptb;
227 if (!tb)
228 break;
229 if (tb->pc == pc && tb->cs_base == cs_base && tb->flags == flags)
230 return tb;
231 ptb = &tb->hash_next;
232 }
233 *pptb = ptb;
234 return NULL;
235 }
236
237
238 #if defined(USE_DIRECT_JUMP)
239
240 #if defined(__powerpc__)
241 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
242 {
243 uint32_t val, *ptr;
244
245 /* patch the branch destination */
246 ptr = (uint32_t *)jmp_addr;
247 val = *ptr;
248 val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
249 *ptr = val;
250 /* flush icache */
251 asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
252 asm volatile ("sync" : : : "memory");
253 asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
254 asm volatile ("sync" : : : "memory");
255 asm volatile ("isync" : : : "memory");
256 }
257 #elif defined(__i386__)
258 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
259 {
260 /* patch the branch destination */
261 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
262 /* no need to flush icache explicitely */
263 }
264 #endif
265
266 static inline void tb_set_jmp_target(TranslationBlock *tb,
267 int n, unsigned long addr)
268 {
269 unsigned long offset;
270
271 offset = tb->tb_jmp_offset[n];
272 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
273 offset = tb->tb_jmp_offset[n + 2];
274 if (offset != 0xffff)
275 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
276 }
277
278 #else
279
280 /* set the jump target */
281 static inline void tb_set_jmp_target(TranslationBlock *tb,
282 int n, unsigned long addr)
283 {
284 tb->tb_next[n] = addr;
285 }
286
287 #endif
288
289 static inline void tb_add_jump(TranslationBlock *tb, int n,
290 TranslationBlock *tb_next)
291 {
292 /* NOTE: this test is only needed for thread safety */
293 if (!tb->jmp_next[n]) {
294 /* patch the native jump address */
295 tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
296
297 /* add in TB jmp circular list */
298 tb->jmp_next[n] = tb_next->jmp_first;
299 tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
300 }
301 }
302
303 TranslationBlock *tb_find_pc(unsigned long pc_ptr);
304
305 #ifndef offsetof
306 #define offsetof(type, field) ((size_t) &((type *)0)->field)
307 #endif
308
309 #if defined(_WIN32)
310 #define ASM_DATA_SECTION ".section \".data\"\n"
311 #define ASM_PREVIOUS_SECTION ".section .text\n"
312 #elif defined(__APPLE__)
313 #define ASM_DATA_SECTION ".data\n"
314 #define ASM_PREVIOUS_SECTION ".text\n"
315 #define ASM_NAME(x) "_" #x
316 #else
317 #define ASM_DATA_SECTION ".section \".data\"\n"
318 #define ASM_PREVIOUS_SECTION ".previous\n"
319 #define ASM_NAME(x) stringify(x)
320 #endif
321
322 #if defined(__powerpc__)
323
324 /* we patch the jump instruction directly */
325 #define JUMP_TB(opname, tbparam, n, eip)\
326 do {\
327 asm volatile (ASM_DATA_SECTION\
328 ASM_NAME(__op_label) #n "." ASM_NAME(opname) ":\n"\
329 ".long 1f\n"\
330 ASM_PREVIOUS_SECTION \
331 "b " ASM_NAME(__op_jmp) #n "\n"\
332 "1:\n");\
333 T0 = (long)(tbparam) + (n);\
334 EIP = (int32_t)eip;\
335 EXIT_TB();\
336 } while (0)
337
338 #define JUMP_TB2(opname, tbparam, n)\
339 do {\
340 asm volatile ("b " ASM_NAME(__op_jmp) #n "\n");\
341 } while (0)
342
343 #elif defined(__i386__) && defined(USE_DIRECT_JUMP)
344
345 /* we patch the jump instruction directly */
346 #define GOTO_TB(opname, n)\
347 do {\
348 asm volatile (".section .data\n"\
349 ASM_NAME(__op_label) #n "." ASM_NAME(opname) ":\n"\
350 ".long 1f\n"\
351 ASM_PREVIOUS_SECTION \
352 "jmp " ASM_NAME(__op_jmp) #n "\n"\
353 "1:\n");\
354 } while (0)
355
356 #define JUMP_TB(opname, tbparam, n, eip)\
357 do {\
358 asm volatile (".section .data\n"\
359 ASM_NAME(__op_label) #n "." ASM_NAME(opname) ":\n"\
360 ".long 1f\n"\
361 ASM_PREVIOUS_SECTION \
362 "jmp " ASM_NAME(__op_jmp) #n "\n"\
363 "1:\n");\
364 T0 = (long)(tbparam) + (n);\
365 EIP = (int32_t)eip;\
366 EXIT_TB();\
367 } while (0)
368
369 #define JUMP_TB2(opname, tbparam, n)\
370 do {\
371 asm volatile ("jmp " ASM_NAME(__op_jmp) #n "\n");\
372 } while (0)
373
374 #else
375
376 /* jump to next block operations (more portable code, does not need
377 cache flushing, but slower because of indirect jump) */
378 #define JUMP_TB(opname, tbparam, n, eip)\
379 do {\
380 static void __attribute__((unused)) *__op_label ## n = &&label ## n;\
381 static void __attribute__((unused)) *dummy ## n = &&dummy_label ## n;\
382 goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\
383 label ## n:\
384 T0 = (long)(tbparam) + (n);\
385 EIP = (int32_t)eip;\
386 dummy_label ## n:\
387 EXIT_TB();\
388 } while (0)
389
390 /* second jump to same destination 'n' */
391 #define JUMP_TB2(opname, tbparam, n)\
392 do {\
393 goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n - 2]);\
394 } while (0)
395
396 #endif
397
398 extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
399 extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
400 extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
401
402 #ifdef __powerpc__
403 static inline int testandset (int *p)
404 {
405 int ret;
406 __asm__ __volatile__ (
407 "0: lwarx %0,0,%1\n"
408 " xor. %0,%3,%0\n"
409 " bne 1f\n"
410 " stwcx. %2,0,%1\n"
411 " bne- 0b\n"
412 "1: "
413 : "=&r" (ret)
414 : "r" (p), "r" (1), "r" (0)
415 : "cr0", "memory");
416 return ret;
417 }
418 #endif
419
420 #ifdef __i386__
421 static inline int testandset (int *p)
422 {
423 char ret;
424 long int readval;
425
426 __asm__ __volatile__ ("lock; cmpxchgl %3, %1; sete %0"
427 : "=q" (ret), "=m" (*p), "=a" (readval)
428 : "r" (1), "m" (*p), "a" (0)
429 : "memory");
430 return ret;
431 }
432 #endif
433
434 #ifdef __x86_64__
435 static inline int testandset (int *p)
436 {
437 char ret;
438 int readval;
439
440 __asm__ __volatile__ ("lock; cmpxchgl %3, %1; sete %0"
441 : "=q" (ret), "=m" (*p), "=a" (readval)
442 : "r" (1), "m" (*p), "a" (0)
443 : "memory");
444 return ret;
445 }
446 #endif
447
448 #ifdef __s390__
449 static inline int testandset (int *p)
450 {
451 int ret;
452
453 __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
454 " jl 0b"
455 : "=&d" (ret)
456 : "r" (1), "a" (p), "0" (*p)
457 : "cc", "memory" );
458 return ret;
459 }
460 #endif
461
462 #ifdef __alpha__
463 static inline int testandset (int *p)
464 {
465 int ret;
466 unsigned long one;
467
468 __asm__ __volatile__ ("0: mov 1,%2\n"
469 " ldl_l %0,%1\n"
470 " stl_c %2,%1\n"
471 " beq %2,1f\n"
472 ".subsection 2\n"
473 "1: br 0b\n"
474 ".previous"
475 : "=r" (ret), "=m" (*p), "=r" (one)
476 : "m" (*p));
477 return ret;
478 }
479 #endif
480
481 #ifdef __sparc__
482 static inline int testandset (int *p)
483 {
484 int ret;
485
486 __asm__ __volatile__("ldstub [%1], %0"
487 : "=r" (ret)
488 : "r" (p)
489 : "memory");
490
491 return (ret ? 1 : 0);
492 }
493 #endif
494
495 #ifdef __arm__
496 static inline int testandset (int *spinlock)
497 {
498 register unsigned int ret;
499 __asm__ __volatile__("swp %0, %1, [%2]"
500 : "=r"(ret)
501 : "0"(1), "r"(spinlock));
502
503 return ret;
504 }
505 #endif
506
507 #ifdef __mc68000
508 static inline int testandset (int *p)
509 {
510 char ret;
511 __asm__ __volatile__("tas %1; sne %0"
512 : "=r" (ret)
513 : "m" (p)
514 : "cc","memory");
515 return ret == 0;
516 }
517 #endif
518
519 typedef int spinlock_t;
520
521 #define SPIN_LOCK_UNLOCKED 0
522
523 #if defined(CONFIG_USER_ONLY)
524 static inline void spin_lock(spinlock_t *lock)
525 {
526 while (testandset(lock));
527 }
528
529 static inline void spin_unlock(spinlock_t *lock)
530 {
531 *lock = 0;
532 }
533
534 static inline int spin_trylock(spinlock_t *lock)
535 {
536 return !testandset(lock);
537 }
538 #else
539 static inline void spin_lock(spinlock_t *lock)
540 {
541 }
542
543 static inline void spin_unlock(spinlock_t *lock)
544 {
545 }
546
547 static inline int spin_trylock(spinlock_t *lock)
548 {
549 return 1;
550 }
551 #endif
552
553 extern spinlock_t tb_lock;
554
555 extern int tb_invalidated_flag;
556
557 #if !defined(CONFIG_USER_ONLY)
558
559 void tlb_fill(target_ulong addr, int is_write, int is_user,
560 void *retaddr);
561
562 #define ACCESS_TYPE 3
563 #define MEMSUFFIX _code
564 #define env cpu_single_env
565
566 #define DATA_SIZE 1
567 #include "softmmu_header.h"
568
569 #define DATA_SIZE 2
570 #include "softmmu_header.h"
571
572 #define DATA_SIZE 4
573 #include "softmmu_header.h"
574
575 #define DATA_SIZE 8
576 #include "softmmu_header.h"
577
578 #undef ACCESS_TYPE
579 #undef MEMSUFFIX
580 #undef env
581
582 #endif
583
584 #if defined(CONFIG_USER_ONLY)
585 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
586 {
587 return addr;
588 }
589 #else
590 /* NOTE: this function can trigger an exception */
591 /* NOTE2: the returned address is not exactly the physical address: it
592 is the offset relative to phys_ram_base */
593 /* XXX: i386 target specific */
594 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
595 {
596 int is_user, index, pd;
597
598 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
599 #if defined(TARGET_I386)
600 is_user = ((env->hflags & HF_CPL_MASK) == 3);
601 #elif defined (TARGET_PPC)
602 is_user = msr_pr;
603 #elif defined (TARGET_SPARC)
604 is_user = (env->psrs == 0);
605 #else
606 #error "Unimplemented !"
607 #endif
608 if (__builtin_expect(env->tlb_read[is_user][index].address !=
609 (addr & TARGET_PAGE_MASK), 0)) {
610 ldub_code(addr);
611 }
612 pd = env->tlb_read[is_user][index].address & ~TARGET_PAGE_MASK;
613 if (pd > IO_MEM_ROM) {
614 cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x%08lx\n", addr);
615 }
616 return addr + env->tlb_read[is_user][index].addend - (unsigned long)phys_ram_base;
617 }
618 #endif