]> git.proxmox.com Git - qemu.git/blob - exec-all.h
variable dynamic translation buffer size
[qemu.git] / exec-all.h
1 /*
2 * internal execution defines for qemu
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 /* allow to see translation results - the slowdown should be negligible, so we leave it */
22 #define DEBUG_DISAS
23
24 /* is_jmp field values */
25 #define DISAS_NEXT 0 /* next instruction can be analyzed */
26 #define DISAS_JUMP 1 /* only pc was modified dynamically */
27 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
28 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
29
30 struct TranslationBlock;
31
32 /* XXX: make safe guess about sizes */
33 #define MAX_OP_PER_INSTR 64
34 /* A Call op needs up to 6 + 2N parameters (N = number of arguments). */
35 #define MAX_OPC_PARAM 10
36 #define OPC_BUF_SIZE 512
37 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
38
39 /* Maximum size a TCG op can expand to. This is complicated because a
40 single op may require several host instructions and regirster reloads.
41 For now take a wild guess at 128 bytes, which should allow at least
42 a couple of fixup instructions per argument. */
43 #define TCG_MAX_OP_SIZE 128
44
45 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
46
47 extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
48 extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
49 extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
50 extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
51 extern target_ulong gen_opc_jump_pc[2];
52 extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
53
54 typedef void (GenOpFunc)(void);
55 typedef void (GenOpFunc1)(long);
56 typedef void (GenOpFunc2)(long, long);
57 typedef void (GenOpFunc3)(long, long, long);
58
59 extern FILE *logfile;
60 extern int loglevel;
61
62 int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
63 int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
64 void gen_pc_load(CPUState *env, struct TranslationBlock *tb,
65 unsigned long searched_pc, int pc_pos, void *puc);
66
67 unsigned long code_gen_max_block_size(void);
68 void cpu_gen_init(void);
69 int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
70 int *gen_code_size_ptr);
71 int cpu_restore_state(struct TranslationBlock *tb,
72 CPUState *env, unsigned long searched_pc,
73 void *puc);
74 int cpu_restore_state_copy(struct TranslationBlock *tb,
75 CPUState *env, unsigned long searched_pc,
76 void *puc);
77 void cpu_resume_from_signal(CPUState *env1, void *puc);
78 void cpu_exec_init(CPUState *env);
79 int page_unprotect(target_ulong address, unsigned long pc, void *puc);
80 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
81 int is_cpu_write_access);
82 void tb_invalidate_page_range(target_ulong start, target_ulong end);
83 void tlb_flush_page(CPUState *env, target_ulong addr);
84 void tlb_flush(CPUState *env, int flush_global);
85 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
86 target_phys_addr_t paddr, int prot,
87 int mmu_idx, int is_softmmu);
88 static inline int tlb_set_page(CPUState *env1, target_ulong vaddr,
89 target_phys_addr_t paddr, int prot,
90 int mmu_idx, int is_softmmu)
91 {
92 if (prot & PAGE_READ)
93 prot |= PAGE_EXEC;
94 return tlb_set_page_exec(env1, vaddr, paddr, prot, mmu_idx, is_softmmu);
95 }
96
97 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
98
99 #define CODE_GEN_PHYS_HASH_BITS 15
100 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
101
102 #define MIN_CODE_GEN_BUFFER_SIZE (1024 * 1024)
103
104 /* estimated block size for TB allocation */
105 /* XXX: use a per code average code fragment size and modulate it
106 according to the host CPU */
107 #if defined(CONFIG_SOFTMMU)
108 #define CODE_GEN_AVG_BLOCK_SIZE 128
109 #else
110 #define CODE_GEN_AVG_BLOCK_SIZE 64
111 #endif
112
113 #if defined(__powerpc__) || defined(__x86_64__) || defined(__arm__)
114 #define USE_DIRECT_JUMP
115 #endif
116 #if defined(__i386__) && !defined(_WIN32)
117 #define USE_DIRECT_JUMP
118 #endif
119
120 typedef struct TranslationBlock {
121 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
122 target_ulong cs_base; /* CS base for this block */
123 uint64_t flags; /* flags defining in which context the code was generated */
124 uint16_t size; /* size of target code for this block (1 <=
125 size <= TARGET_PAGE_SIZE) */
126 uint16_t cflags; /* compile flags */
127 #define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */
128 #define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */
129 #define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
130
131 uint8_t *tc_ptr; /* pointer to the translated code */
132 /* next matching tb for physical address. */
133 struct TranslationBlock *phys_hash_next;
134 /* first and second physical page containing code. The lower bit
135 of the pointer tells the index in page_next[] */
136 struct TranslationBlock *page_next[2];
137 target_ulong page_addr[2];
138
139 /* the following data are used to directly call another TB from
140 the code of this one. */
141 uint16_t tb_next_offset[2]; /* offset of original jump target */
142 #ifdef USE_DIRECT_JUMP
143 uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
144 #else
145 unsigned long tb_next[2]; /* address of jump generated code */
146 #endif
147 /* list of TBs jumping to this one. This is a circular list using
148 the two least significant bits of the pointers to tell what is
149 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
150 jmp_first */
151 struct TranslationBlock *jmp_next[2];
152 struct TranslationBlock *jmp_first;
153 } TranslationBlock;
154
155 static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
156 {
157 target_ulong tmp;
158 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
159 return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK;
160 }
161
162 static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
163 {
164 target_ulong tmp;
165 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
166 return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK)
167 | (tmp & TB_JMP_ADDR_MASK));
168 }
169
170 static inline unsigned int tb_phys_hash_func(unsigned long pc)
171 {
172 return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
173 }
174
175 TranslationBlock *tb_alloc(target_ulong pc);
176 void tb_flush(CPUState *env);
177 void tb_link_phys(TranslationBlock *tb,
178 target_ulong phys_pc, target_ulong phys_page2);
179
180 extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
181 extern uint8_t *code_gen_ptr;
182 extern int code_gen_max_blocks;
183
184 #if defined(USE_DIRECT_JUMP)
185
186 #if defined(__powerpc__)
187 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
188 {
189 uint32_t val, *ptr;
190
191 /* patch the branch destination */
192 ptr = (uint32_t *)jmp_addr;
193 val = *ptr;
194 val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
195 *ptr = val;
196 /* flush icache */
197 asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
198 asm volatile ("sync" : : : "memory");
199 asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
200 asm volatile ("sync" : : : "memory");
201 asm volatile ("isync" : : : "memory");
202 }
203 #elif defined(__i386__) || defined(__x86_64__)
204 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
205 {
206 /* patch the branch destination */
207 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
208 /* no need to flush icache explicitely */
209 }
210 #elif defined(__arm__)
211 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
212 {
213 register unsigned long _beg __asm ("a1");
214 register unsigned long _end __asm ("a2");
215 register unsigned long _flg __asm ("a3");
216
217 /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */
218 *(uint32_t *)jmp_addr |= ((addr - (jmp_addr + 8)) >> 2) & 0xffffff;
219
220 /* flush icache */
221 _beg = jmp_addr;
222 _end = jmp_addr + 4;
223 _flg = 0;
224 __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg));
225 }
226 #endif
227
228 static inline void tb_set_jmp_target(TranslationBlock *tb,
229 int n, unsigned long addr)
230 {
231 unsigned long offset;
232
233 offset = tb->tb_jmp_offset[n];
234 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
235 offset = tb->tb_jmp_offset[n + 2];
236 if (offset != 0xffff)
237 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
238 }
239
240 #else
241
242 /* set the jump target */
243 static inline void tb_set_jmp_target(TranslationBlock *tb,
244 int n, unsigned long addr)
245 {
246 tb->tb_next[n] = addr;
247 }
248
249 #endif
250
251 static inline void tb_add_jump(TranslationBlock *tb, int n,
252 TranslationBlock *tb_next)
253 {
254 /* NOTE: this test is only needed for thread safety */
255 if (!tb->jmp_next[n]) {
256 /* patch the native jump address */
257 tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
258
259 /* add in TB jmp circular list */
260 tb->jmp_next[n] = tb_next->jmp_first;
261 tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
262 }
263 }
264
265 TranslationBlock *tb_find_pc(unsigned long pc_ptr);
266
267 #ifndef offsetof
268 #define offsetof(type, field) ((size_t) &((type *)0)->field)
269 #endif
270
271 #if defined(_WIN32)
272 #define ASM_DATA_SECTION ".section \".data\"\n"
273 #define ASM_PREVIOUS_SECTION ".section .text\n"
274 #elif defined(__APPLE__)
275 #define ASM_DATA_SECTION ".data\n"
276 #define ASM_PREVIOUS_SECTION ".text\n"
277 #else
278 #define ASM_DATA_SECTION ".section \".data\"\n"
279 #define ASM_PREVIOUS_SECTION ".previous\n"
280 #endif
281
282 #define ASM_OP_LABEL_NAME(n, opname) \
283 ASM_NAME(__op_label) #n "." ASM_NAME(opname)
284
285 extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
286 extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
287 extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
288
289 #if defined(__hppa__)
290
291 typedef int spinlock_t[4];
292
293 #define SPIN_LOCK_UNLOCKED { 1, 1, 1, 1 }
294
295 static inline void resetlock (spinlock_t *p)
296 {
297 (*p)[0] = (*p)[1] = (*p)[2] = (*p)[3] = 1;
298 }
299
300 #else
301
302 typedef int spinlock_t;
303
304 #define SPIN_LOCK_UNLOCKED 0
305
306 static inline void resetlock (spinlock_t *p)
307 {
308 *p = SPIN_LOCK_UNLOCKED;
309 }
310
311 #endif
312
313 #if defined(__powerpc__)
314 static inline int testandset (int *p)
315 {
316 int ret;
317 __asm__ __volatile__ (
318 "0: lwarx %0,0,%1\n"
319 " xor. %0,%3,%0\n"
320 " bne 1f\n"
321 " stwcx. %2,0,%1\n"
322 " bne- 0b\n"
323 "1: "
324 : "=&r" (ret)
325 : "r" (p), "r" (1), "r" (0)
326 : "cr0", "memory");
327 return ret;
328 }
329 #elif defined(__i386__)
330 static inline int testandset (int *p)
331 {
332 long int readval = 0;
333
334 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
335 : "+m" (*p), "+a" (readval)
336 : "r" (1)
337 : "cc");
338 return readval;
339 }
340 #elif defined(__x86_64__)
341 static inline int testandset (int *p)
342 {
343 long int readval = 0;
344
345 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
346 : "+m" (*p), "+a" (readval)
347 : "r" (1)
348 : "cc");
349 return readval;
350 }
351 #elif defined(__s390__)
352 static inline int testandset (int *p)
353 {
354 int ret;
355
356 __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
357 " jl 0b"
358 : "=&d" (ret)
359 : "r" (1), "a" (p), "0" (*p)
360 : "cc", "memory" );
361 return ret;
362 }
363 #elif defined(__alpha__)
364 static inline int testandset (int *p)
365 {
366 int ret;
367 unsigned long one;
368
369 __asm__ __volatile__ ("0: mov 1,%2\n"
370 " ldl_l %0,%1\n"
371 " stl_c %2,%1\n"
372 " beq %2,1f\n"
373 ".subsection 2\n"
374 "1: br 0b\n"
375 ".previous"
376 : "=r" (ret), "=m" (*p), "=r" (one)
377 : "m" (*p));
378 return ret;
379 }
380 #elif defined(__sparc__)
381 static inline int testandset (int *p)
382 {
383 int ret;
384
385 __asm__ __volatile__("ldstub [%1], %0"
386 : "=r" (ret)
387 : "r" (p)
388 : "memory");
389
390 return (ret ? 1 : 0);
391 }
392 #elif defined(__arm__)
393 static inline int testandset (int *spinlock)
394 {
395 register unsigned int ret;
396 __asm__ __volatile__("swp %0, %1, [%2]"
397 : "=r"(ret)
398 : "0"(1), "r"(spinlock));
399
400 return ret;
401 }
402 #elif defined(__mc68000)
403 static inline int testandset (int *p)
404 {
405 char ret;
406 __asm__ __volatile__("tas %1; sne %0"
407 : "=r" (ret)
408 : "m" (p)
409 : "cc","memory");
410 return ret;
411 }
412 #elif defined(__hppa__)
413
414 /* Because malloc only guarantees 8-byte alignment for malloc'd data,
415 and GCC only guarantees 8-byte alignment for stack locals, we can't
416 be assured of 16-byte alignment for atomic lock data even if we
417 specify "__attribute ((aligned(16)))" in the type declaration. So,
418 we use a struct containing an array of four ints for the atomic lock
419 type and dynamically select the 16-byte aligned int from the array
420 for the semaphore. */
421 #define __PA_LDCW_ALIGNMENT 16
422 static inline void *ldcw_align (void *p) {
423 unsigned long a = (unsigned long)p;
424 a = (a + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1);
425 return (void *)a;
426 }
427
428 static inline int testandset (spinlock_t *p)
429 {
430 unsigned int ret;
431 p = ldcw_align(p);
432 __asm__ __volatile__("ldcw 0(%1),%0"
433 : "=r" (ret)
434 : "r" (p)
435 : "memory" );
436 return !ret;
437 }
438
439 #elif defined(__ia64)
440
441 #include <ia64intrin.h>
442
443 static inline int testandset (int *p)
444 {
445 return __sync_lock_test_and_set (p, 1);
446 }
447 #elif defined(__mips__)
448 static inline int testandset (int *p)
449 {
450 int ret;
451
452 __asm__ __volatile__ (
453 " .set push \n"
454 " .set noat \n"
455 " .set mips2 \n"
456 "1: li $1, 1 \n"
457 " ll %0, %1 \n"
458 " sc $1, %1 \n"
459 " beqz $1, 1b \n"
460 " .set pop "
461 : "=r" (ret), "+R" (*p)
462 :
463 : "memory");
464
465 return ret;
466 }
467 #else
468 #error unimplemented CPU support
469 #endif
470
471 #if defined(CONFIG_USER_ONLY)
472 static inline void spin_lock(spinlock_t *lock)
473 {
474 while (testandset(lock));
475 }
476
477 static inline void spin_unlock(spinlock_t *lock)
478 {
479 resetlock(lock);
480 }
481
482 static inline int spin_trylock(spinlock_t *lock)
483 {
484 return !testandset(lock);
485 }
486 #else
487 static inline void spin_lock(spinlock_t *lock)
488 {
489 }
490
491 static inline void spin_unlock(spinlock_t *lock)
492 {
493 }
494
495 static inline int spin_trylock(spinlock_t *lock)
496 {
497 return 1;
498 }
499 #endif
500
501 extern spinlock_t tb_lock;
502
503 extern int tb_invalidated_flag;
504
505 #if !defined(CONFIG_USER_ONLY)
506
507 void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
508 void *retaddr);
509
510 #define ACCESS_TYPE (NB_MMU_MODES + 1)
511 #define MEMSUFFIX _code
512 #define env cpu_single_env
513
514 #define DATA_SIZE 1
515 #include "softmmu_header.h"
516
517 #define DATA_SIZE 2
518 #include "softmmu_header.h"
519
520 #define DATA_SIZE 4
521 #include "softmmu_header.h"
522
523 #define DATA_SIZE 8
524 #include "softmmu_header.h"
525
526 #undef ACCESS_TYPE
527 #undef MEMSUFFIX
528 #undef env
529
530 #endif
531
532 #if defined(CONFIG_USER_ONLY)
533 static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
534 {
535 return addr;
536 }
537 #else
538 /* NOTE: this function can trigger an exception */
539 /* NOTE2: the returned address is not exactly the physical address: it
540 is the offset relative to phys_ram_base */
541 static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
542 {
543 int mmu_idx, page_index, pd;
544
545 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
546 mmu_idx = cpu_mmu_index(env1);
547 if (__builtin_expect(env1->tlb_table[mmu_idx][page_index].addr_code !=
548 (addr & TARGET_PAGE_MASK), 0)) {
549 ldub_code(addr);
550 }
551 pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
552 if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
553 #if defined(TARGET_SPARC) || defined(TARGET_MIPS)
554 do_unassigned_access(addr, 0, 1, 0);
555 #else
556 cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
557 #endif
558 }
559 return addr + env1->tlb_table[mmu_idx][page_index].addend - (unsigned long)phys_ram_base;
560 }
561 #endif
562
563 #ifdef USE_KQEMU
564 #define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
565
566 int kqemu_init(CPUState *env);
567 int kqemu_cpu_exec(CPUState *env);
568 void kqemu_flush_page(CPUState *env, target_ulong addr);
569 void kqemu_flush(CPUState *env, int global);
570 void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
571 void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
572 void kqemu_cpu_interrupt(CPUState *env);
573 void kqemu_record_dump(void);
574
575 static inline int kqemu_is_ok(CPUState *env)
576 {
577 return(env->kqemu_enabled &&
578 (env->cr[0] & CR0_PE_MASK) &&
579 !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
580 (env->eflags & IF_MASK) &&
581 !(env->eflags & VM_MASK) &&
582 (env->kqemu_enabled == 2 ||
583 ((env->hflags & HF_CPL_MASK) == 3 &&
584 (env->eflags & IOPL_MASK) != IOPL_MASK)));
585 }
586
587 #endif