]> git.proxmox.com Git - qemu.git/blob - exec-all.h
m68k/ColdFire system emulation.
[qemu.git] / exec-all.h
1 /*
2 * internal execution defines for qemu
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 /* allow to see translation results - the slowdown should be negligible, so we leave it */
22 #define DEBUG_DISAS
23
24 #ifndef glue
25 #define xglue(x, y) x ## y
26 #define glue(x, y) xglue(x, y)
27 #define stringify(s) tostring(s)
28 #define tostring(s) #s
29 #endif
30
31 #if __GNUC__ < 3
32 #define __builtin_expect(x, n) (x)
33 #endif
34
35 #ifdef __i386__
36 #define REGPARM(n) __attribute((regparm(n)))
37 #else
38 #define REGPARM(n)
39 #endif
40
41 /* is_jmp field values */
42 #define DISAS_NEXT 0 /* next instruction can be analyzed */
43 #define DISAS_JUMP 1 /* only pc was modified dynamically */
44 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
45 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
46
47 struct TranslationBlock;
48
49 /* XXX: make safe guess about sizes */
50 #define MAX_OP_PER_INSTR 32
51 #define OPC_BUF_SIZE 512
52 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
53
54 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * 3)
55
56 extern uint16_t gen_opc_buf[OPC_BUF_SIZE];
57 extern uint32_t gen_opparam_buf[OPPARAM_BUF_SIZE];
58 extern long gen_labels[OPC_BUF_SIZE];
59 extern int nb_gen_labels;
60 extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
61 extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
62 extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
63 extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
64 extern target_ulong gen_opc_jump_pc[2];
65 extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
66
67 typedef void (GenOpFunc)(void);
68 typedef void (GenOpFunc1)(long);
69 typedef void (GenOpFunc2)(long, long);
70 typedef void (GenOpFunc3)(long, long, long);
71
72 #if defined(TARGET_I386)
73
74 void optimize_flags_init(void);
75
76 #endif
77
78 extern FILE *logfile;
79 extern int loglevel;
80
81 void muls64(int64_t *phigh, int64_t *plow, int64_t a, int64_t b);
82 void mulu64(uint64_t *phigh, uint64_t *plow, uint64_t a, uint64_t b);
83
84 int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
85 int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
86 void dump_ops(const uint16_t *opc_buf, const uint32_t *opparam_buf);
87 int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
88 int max_code_size, int *gen_code_size_ptr);
89 int cpu_restore_state(struct TranslationBlock *tb,
90 CPUState *env, unsigned long searched_pc,
91 void *puc);
92 int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
93 int max_code_size, int *gen_code_size_ptr);
94 int cpu_restore_state_copy(struct TranslationBlock *tb,
95 CPUState *env, unsigned long searched_pc,
96 void *puc);
97 void cpu_resume_from_signal(CPUState *env1, void *puc);
98 void cpu_exec_init(CPUState *env);
99 int page_unprotect(target_ulong address, unsigned long pc, void *puc);
100 void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
101 int is_cpu_write_access);
102 void tb_invalidate_page_range(target_ulong start, target_ulong end);
103 void tlb_flush_page(CPUState *env, target_ulong addr);
104 void tlb_flush(CPUState *env, int flush_global);
105 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
106 target_phys_addr_t paddr, int prot,
107 int is_user, int is_softmmu);
108 static inline int tlb_set_page(CPUState *env, target_ulong vaddr,
109 target_phys_addr_t paddr, int prot,
110 int is_user, int is_softmmu)
111 {
112 if (prot & PAGE_READ)
113 prot |= PAGE_EXEC;
114 return tlb_set_page_exec(env, vaddr, paddr, prot, is_user, is_softmmu);
115 }
116
117 #define CODE_GEN_MAX_SIZE 65536
118 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
119
120 #define CODE_GEN_PHYS_HASH_BITS 15
121 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
122
123 /* maximum total translate dcode allocated */
124
125 /* NOTE: the translated code area cannot be too big because on some
126 archs the range of "fast" function calls is limited. Here is a
127 summary of the ranges:
128
129 i386 : signed 32 bits
130 arm : signed 26 bits
131 ppc : signed 24 bits
132 sparc : signed 32 bits
133 alpha : signed 23 bits
134 */
135
136 #if defined(__alpha__)
137 #define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024)
138 #elif defined(__ia64)
139 #define CODE_GEN_BUFFER_SIZE (4 * 1024 * 1024) /* range of addl */
140 #elif defined(__powerpc__)
141 #define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024)
142 #else
143 #define CODE_GEN_BUFFER_SIZE (16 * 1024 * 1024)
144 #endif
145
146 //#define CODE_GEN_BUFFER_SIZE (128 * 1024)
147
148 /* estimated block size for TB allocation */
149 /* XXX: use a per code average code fragment size and modulate it
150 according to the host CPU */
151 #if defined(CONFIG_SOFTMMU)
152 #define CODE_GEN_AVG_BLOCK_SIZE 128
153 #else
154 #define CODE_GEN_AVG_BLOCK_SIZE 64
155 #endif
156
157 #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
158
159 #if defined(__powerpc__)
160 #define USE_DIRECT_JUMP
161 #endif
162 #if defined(__i386__) && !defined(_WIN32)
163 #define USE_DIRECT_JUMP
164 #endif
165
166 typedef struct TranslationBlock {
167 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
168 target_ulong cs_base; /* CS base for this block */
169 unsigned int flags; /* flags defining in which context the code was generated */
170 uint16_t size; /* size of target code for this block (1 <=
171 size <= TARGET_PAGE_SIZE) */
172 uint16_t cflags; /* compile flags */
173 #define CF_CODE_COPY 0x0001 /* block was generated in code copy mode */
174 #define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */
175 #define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */
176 #define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
177
178 uint8_t *tc_ptr; /* pointer to the translated code */
179 /* next matching tb for physical address. */
180 struct TranslationBlock *phys_hash_next;
181 /* first and second physical page containing code. The lower bit
182 of the pointer tells the index in page_next[] */
183 struct TranslationBlock *page_next[2];
184 target_ulong page_addr[2];
185
186 /* the following data are used to directly call another TB from
187 the code of this one. */
188 uint16_t tb_next_offset[2]; /* offset of original jump target */
189 #ifdef USE_DIRECT_JUMP
190 uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
191 #else
192 uint32_t tb_next[2]; /* address of jump generated code */
193 #endif
194 /* list of TBs jumping to this one. This is a circular list using
195 the two least significant bits of the pointers to tell what is
196 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
197 jmp_first */
198 struct TranslationBlock *jmp_next[2];
199 struct TranslationBlock *jmp_first;
200 } TranslationBlock;
201
202 static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
203 {
204 target_ulong tmp;
205 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
206 return (tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK;
207 }
208
209 static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
210 {
211 target_ulong tmp;
212 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
213 return (((tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK) |
214 (tmp & TB_JMP_ADDR_MASK));
215 }
216
217 static inline unsigned int tb_phys_hash_func(unsigned long pc)
218 {
219 return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
220 }
221
222 TranslationBlock *tb_alloc(target_ulong pc);
223 void tb_flush(CPUState *env);
224 void tb_link_phys(TranslationBlock *tb,
225 target_ulong phys_pc, target_ulong phys_page2);
226
227 extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
228
229 extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
230 extern uint8_t *code_gen_ptr;
231
232 #if defined(USE_DIRECT_JUMP)
233
234 #if defined(__powerpc__)
235 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
236 {
237 uint32_t val, *ptr;
238
239 /* patch the branch destination */
240 ptr = (uint32_t *)jmp_addr;
241 val = *ptr;
242 val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
243 *ptr = val;
244 /* flush icache */
245 asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
246 asm volatile ("sync" : : : "memory");
247 asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
248 asm volatile ("sync" : : : "memory");
249 asm volatile ("isync" : : : "memory");
250 }
251 #elif defined(__i386__)
252 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
253 {
254 /* patch the branch destination */
255 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
256 /* no need to flush icache explicitely */
257 }
258 #endif
259
260 static inline void tb_set_jmp_target(TranslationBlock *tb,
261 int n, unsigned long addr)
262 {
263 unsigned long offset;
264
265 offset = tb->tb_jmp_offset[n];
266 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
267 offset = tb->tb_jmp_offset[n + 2];
268 if (offset != 0xffff)
269 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
270 }
271
272 #else
273
274 /* set the jump target */
275 static inline void tb_set_jmp_target(TranslationBlock *tb,
276 int n, unsigned long addr)
277 {
278 tb->tb_next[n] = addr;
279 }
280
281 #endif
282
283 static inline void tb_add_jump(TranslationBlock *tb, int n,
284 TranslationBlock *tb_next)
285 {
286 /* NOTE: this test is only needed for thread safety */
287 if (!tb->jmp_next[n]) {
288 /* patch the native jump address */
289 tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
290
291 /* add in TB jmp circular list */
292 tb->jmp_next[n] = tb_next->jmp_first;
293 tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
294 }
295 }
296
297 TranslationBlock *tb_find_pc(unsigned long pc_ptr);
298
299 #ifndef offsetof
300 #define offsetof(type, field) ((size_t) &((type *)0)->field)
301 #endif
302
303 #if defined(_WIN32)
304 #define ASM_DATA_SECTION ".section \".data\"\n"
305 #define ASM_PREVIOUS_SECTION ".section .text\n"
306 #elif defined(__APPLE__)
307 #define ASM_DATA_SECTION ".data\n"
308 #define ASM_PREVIOUS_SECTION ".text\n"
309 #else
310 #define ASM_DATA_SECTION ".section \".data\"\n"
311 #define ASM_PREVIOUS_SECTION ".previous\n"
312 #endif
313
314 #define ASM_OP_LABEL_NAME(n, opname) \
315 ASM_NAME(__op_label) #n "." ASM_NAME(opname)
316
317 #if defined(__powerpc__)
318
319 /* we patch the jump instruction directly */
320 #define GOTO_TB(opname, tbparam, n)\
321 do {\
322 asm volatile (ASM_DATA_SECTION\
323 ASM_OP_LABEL_NAME(n, opname) ":\n"\
324 ".long 1f\n"\
325 ASM_PREVIOUS_SECTION \
326 "b " ASM_NAME(__op_jmp) #n "\n"\
327 "1:\n");\
328 } while (0)
329
330 #elif defined(__i386__) && defined(USE_DIRECT_JUMP)
331
332 /* we patch the jump instruction directly */
333 #define GOTO_TB(opname, tbparam, n)\
334 do {\
335 asm volatile (".section .data\n"\
336 ASM_OP_LABEL_NAME(n, opname) ":\n"\
337 ".long 1f\n"\
338 ASM_PREVIOUS_SECTION \
339 "jmp " ASM_NAME(__op_jmp) #n "\n"\
340 "1:\n");\
341 } while (0)
342
343 #else
344
345 /* jump to next block operations (more portable code, does not need
346 cache flushing, but slower because of indirect jump) */
347 #define GOTO_TB(opname, tbparam, n)\
348 do {\
349 static void __attribute__((unused)) *dummy ## n = &&dummy_label ## n;\
350 static void __attribute__((unused)) *__op_label ## n \
351 __asm__(ASM_OP_LABEL_NAME(n, opname)) = &&label ## n;\
352 goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\
353 label ## n: ;\
354 dummy_label ## n: ;\
355 } while (0)
356
357 #endif
358
359 extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
360 extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
361 extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
362
363 #if defined(__powerpc__)
364 static inline int testandset (int *p)
365 {
366 int ret;
367 __asm__ __volatile__ (
368 "0: lwarx %0,0,%1\n"
369 " xor. %0,%3,%0\n"
370 " bne 1f\n"
371 " stwcx. %2,0,%1\n"
372 " bne- 0b\n"
373 "1: "
374 : "=&r" (ret)
375 : "r" (p), "r" (1), "r" (0)
376 : "cr0", "memory");
377 return ret;
378 }
379 #elif defined(__i386__)
380 static inline int testandset (int *p)
381 {
382 long int readval = 0;
383
384 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
385 : "+m" (*p), "+a" (readval)
386 : "r" (1)
387 : "cc");
388 return readval;
389 }
390 #elif defined(__x86_64__)
391 static inline int testandset (int *p)
392 {
393 long int readval = 0;
394
395 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
396 : "+m" (*p), "+a" (readval)
397 : "r" (1)
398 : "cc");
399 return readval;
400 }
401 #elif defined(__s390__)
402 static inline int testandset (int *p)
403 {
404 int ret;
405
406 __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
407 " jl 0b"
408 : "=&d" (ret)
409 : "r" (1), "a" (p), "0" (*p)
410 : "cc", "memory" );
411 return ret;
412 }
413 #elif defined(__alpha__)
414 static inline int testandset (int *p)
415 {
416 int ret;
417 unsigned long one;
418
419 __asm__ __volatile__ ("0: mov 1,%2\n"
420 " ldl_l %0,%1\n"
421 " stl_c %2,%1\n"
422 " beq %2,1f\n"
423 ".subsection 2\n"
424 "1: br 0b\n"
425 ".previous"
426 : "=r" (ret), "=m" (*p), "=r" (one)
427 : "m" (*p));
428 return ret;
429 }
430 #elif defined(__sparc__)
431 static inline int testandset (int *p)
432 {
433 int ret;
434
435 __asm__ __volatile__("ldstub [%1], %0"
436 : "=r" (ret)
437 : "r" (p)
438 : "memory");
439
440 return (ret ? 1 : 0);
441 }
442 #elif defined(__arm__)
443 static inline int testandset (int *spinlock)
444 {
445 register unsigned int ret;
446 __asm__ __volatile__("swp %0, %1, [%2]"
447 : "=r"(ret)
448 : "0"(1), "r"(spinlock));
449
450 return ret;
451 }
452 #elif defined(__mc68000)
453 static inline int testandset (int *p)
454 {
455 char ret;
456 __asm__ __volatile__("tas %1; sne %0"
457 : "=r" (ret)
458 : "m" (p)
459 : "cc","memory");
460 return ret;
461 }
462 #elif defined(__ia64)
463
464 #include <ia64intrin.h>
465
466 static inline int testandset (int *p)
467 {
468 return __sync_lock_test_and_set (p, 1);
469 }
470 #elif defined(__mips__)
471 static inline int testandset (int *p)
472 {
473 int ret;
474
475 __asm__ __volatile__ (
476 " .set push \n"
477 " .set noat \n"
478 " .set mips2 \n"
479 "1: li $1, 1 \n"
480 " ll %0, %1 \n"
481 " sc $1, %1 \n"
482 " beqz $1, 1b \n"
483 " .set pop "
484 : "=r" (ret), "+R" (*p)
485 :
486 : "memory");
487
488 return ret;
489 }
490 #else
491 #error unimplemented CPU support
492 #endif
493
494 typedef int spinlock_t;
495
496 #define SPIN_LOCK_UNLOCKED 0
497
498 #if defined(CONFIG_USER_ONLY)
499 static inline void spin_lock(spinlock_t *lock)
500 {
501 while (testandset(lock));
502 }
503
504 static inline void spin_unlock(spinlock_t *lock)
505 {
506 *lock = 0;
507 }
508
509 static inline int spin_trylock(spinlock_t *lock)
510 {
511 return !testandset(lock);
512 }
513 #else
514 static inline void spin_lock(spinlock_t *lock)
515 {
516 }
517
518 static inline void spin_unlock(spinlock_t *lock)
519 {
520 }
521
522 static inline int spin_trylock(spinlock_t *lock)
523 {
524 return 1;
525 }
526 #endif
527
528 extern spinlock_t tb_lock;
529
530 extern int tb_invalidated_flag;
531
532 #if !defined(CONFIG_USER_ONLY)
533
534 void tlb_fill(target_ulong addr, int is_write, int is_user,
535 void *retaddr);
536
537 #define ACCESS_TYPE 3
538 #define MEMSUFFIX _code
539 #define env cpu_single_env
540
541 #define DATA_SIZE 1
542 #include "softmmu_header.h"
543
544 #define DATA_SIZE 2
545 #include "softmmu_header.h"
546
547 #define DATA_SIZE 4
548 #include "softmmu_header.h"
549
550 #define DATA_SIZE 8
551 #include "softmmu_header.h"
552
553 #undef ACCESS_TYPE
554 #undef MEMSUFFIX
555 #undef env
556
557 #endif
558
559 #if defined(CONFIG_USER_ONLY)
560 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
561 {
562 return addr;
563 }
564 #else
565 /* NOTE: this function can trigger an exception */
566 /* NOTE2: the returned address is not exactly the physical address: it
567 is the offset relative to phys_ram_base */
568 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
569 {
570 int is_user, index, pd;
571
572 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
573 #if defined(TARGET_I386)
574 is_user = ((env->hflags & HF_CPL_MASK) == 3);
575 #elif defined (TARGET_PPC)
576 is_user = msr_pr;
577 #elif defined (TARGET_MIPS)
578 is_user = ((env->hflags & MIPS_HFLAG_MODE) == MIPS_HFLAG_UM);
579 #elif defined (TARGET_SPARC)
580 is_user = (env->psrs == 0);
581 #elif defined (TARGET_ARM)
582 is_user = ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR);
583 #elif defined (TARGET_SH4)
584 is_user = ((env->sr & SR_MD) == 0);
585 #elif defined (TARGET_ALPHA)
586 is_user = ((env->ps >> 3) & 3);
587 #elif defined (TARGET_M68K)
588 is_user = ((env->sr & SR_S) == 0);
589 #else
590 #error unimplemented CPU
591 #endif
592 if (__builtin_expect(env->tlb_table[is_user][index].addr_code !=
593 (addr & TARGET_PAGE_MASK), 0)) {
594 ldub_code(addr);
595 }
596 pd = env->tlb_table[is_user][index].addr_code & ~TARGET_PAGE_MASK;
597 if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
598 #ifdef TARGET_SPARC
599 do_unassigned_access(addr, 0, 1, 0);
600 #else
601 cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
602 #endif
603 }
604 return addr + env->tlb_table[is_user][index].addend - (unsigned long)phys_ram_base;
605 }
606 #endif
607
608 #ifdef USE_KQEMU
609 #define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
610
611 int kqemu_init(CPUState *env);
612 int kqemu_cpu_exec(CPUState *env);
613 void kqemu_flush_page(CPUState *env, target_ulong addr);
614 void kqemu_flush(CPUState *env, int global);
615 void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
616 void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
617 void kqemu_cpu_interrupt(CPUState *env);
618 void kqemu_record_dump(void);
619
620 static inline int kqemu_is_ok(CPUState *env)
621 {
622 return(env->kqemu_enabled &&
623 (env->cr[0] & CR0_PE_MASK) &&
624 !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
625 (env->eflags & IF_MASK) &&
626 !(env->eflags & VM_MASK) &&
627 (env->kqemu_enabled == 2 ||
628 ((env->hflags & HF_CPL_MASK) == 3 &&
629 (env->eflags & IOPL_MASK) != IOPL_MASK)));
630 }
631
632 #endif