]> git.proxmox.com Git - qemu.git/blob - exec-all.h
Use spinlock_t for interrupt_lock, lock support for HPPA (Stuart Brady)
[qemu.git] / exec-all.h
1 /*
2 * internal execution defines for qemu
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 /* allow to see translation results - the slowdown should be negligible, so we leave it */
22 #define DEBUG_DISAS
23
24 /* is_jmp field values */
25 #define DISAS_NEXT 0 /* next instruction can be analyzed */
26 #define DISAS_JUMP 1 /* only pc was modified dynamically */
27 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
28 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
29
30 struct TranslationBlock;
31
32 /* XXX: make safe guess about sizes */
33 #define MAX_OP_PER_INSTR 32
34 /* A Call op needs up to 6 + 2N parameters (N = number of arguments). */
35 #define MAX_OPC_PARAM 10
36 #define OPC_BUF_SIZE 512
37 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
38
39 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
40
41 extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
42 extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
43 extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
44 extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
45 extern target_ulong gen_opc_jump_pc[2];
46 extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
47
48 typedef void (GenOpFunc)(void);
49 typedef void (GenOpFunc1)(long);
50 typedef void (GenOpFunc2)(long, long);
51 typedef void (GenOpFunc3)(long, long, long);
52
53 #if defined(TARGET_I386)
54
55 void optimize_flags_init(void);
56
57 #endif
58
59 extern FILE *logfile;
60 extern int loglevel;
61
62 int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
63 int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
64 unsigned long code_gen_max_block_size(void);
65 void cpu_gen_init(void);
66 int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
67 int *gen_code_size_ptr);
68 int cpu_restore_state(struct TranslationBlock *tb,
69 CPUState *env, unsigned long searched_pc,
70 void *puc);
71 int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
72 int max_code_size, int *gen_code_size_ptr);
73 int cpu_restore_state_copy(struct TranslationBlock *tb,
74 CPUState *env, unsigned long searched_pc,
75 void *puc);
76 void cpu_resume_from_signal(CPUState *env1, void *puc);
77 void cpu_exec_init(CPUState *env);
78 int page_unprotect(target_ulong address, unsigned long pc, void *puc);
79 void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
80 int is_cpu_write_access);
81 void tb_invalidate_page_range(target_ulong start, target_ulong end);
82 void tlb_flush_page(CPUState *env, target_ulong addr);
83 void tlb_flush(CPUState *env, int flush_global);
84 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
85 target_phys_addr_t paddr, int prot,
86 int mmu_idx, int is_softmmu);
87 static inline int tlb_set_page(CPUState *env, target_ulong vaddr,
88 target_phys_addr_t paddr, int prot,
89 int mmu_idx, int is_softmmu)
90 {
91 if (prot & PAGE_READ)
92 prot |= PAGE_EXEC;
93 return tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu);
94 }
95
96 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
97
98 #define CODE_GEN_PHYS_HASH_BITS 15
99 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
100
101 /* maximum total translate dcode allocated */
102
103 /* NOTE: the translated code area cannot be too big because on some
104 archs the range of "fast" function calls is limited. Here is a
105 summary of the ranges:
106
107 i386 : signed 32 bits
108 arm : signed 26 bits
109 ppc : signed 24 bits
110 sparc : signed 32 bits
111 alpha : signed 23 bits
112 */
113
114 #if defined(__alpha__)
115 #define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024)
116 #elif defined(__ia64)
117 #define CODE_GEN_BUFFER_SIZE (4 * 1024 * 1024) /* range of addl */
118 #elif defined(__powerpc__)
119 #define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024)
120 #else
121 /* XXX: make it dynamic on x86 */
122 #define CODE_GEN_BUFFER_SIZE (16 * 1024 * 1024)
123 #endif
124
125 //#define CODE_GEN_BUFFER_SIZE (128 * 1024)
126
127 /* estimated block size for TB allocation */
128 /* XXX: use a per code average code fragment size and modulate it
129 according to the host CPU */
130 #if defined(CONFIG_SOFTMMU)
131 #define CODE_GEN_AVG_BLOCK_SIZE 128
132 #else
133 #define CODE_GEN_AVG_BLOCK_SIZE 64
134 #endif
135
136 #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
137
138 #if defined(__powerpc__) || defined(__x86_64__)
139 #define USE_DIRECT_JUMP
140 #endif
141 #if defined(__i386__) && !defined(_WIN32)
142 #define USE_DIRECT_JUMP
143 #endif
144
145 typedef struct TranslationBlock {
146 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
147 target_ulong cs_base; /* CS base for this block */
148 uint64_t flags; /* flags defining in which context the code was generated */
149 uint16_t size; /* size of target code for this block (1 <=
150 size <= TARGET_PAGE_SIZE) */
151 uint16_t cflags; /* compile flags */
152 #define CF_CODE_COPY 0x0001 /* block was generated in code copy mode */
153 #define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */
154 #define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */
155 #define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
156
157 uint8_t *tc_ptr; /* pointer to the translated code */
158 /* next matching tb for physical address. */
159 struct TranslationBlock *phys_hash_next;
160 /* first and second physical page containing code. The lower bit
161 of the pointer tells the index in page_next[] */
162 struct TranslationBlock *page_next[2];
163 target_ulong page_addr[2];
164
165 /* the following data are used to directly call another TB from
166 the code of this one. */
167 uint16_t tb_next_offset[2]; /* offset of original jump target */
168 #ifdef USE_DIRECT_JUMP
169 uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
170 #else
171 unsigned long tb_next[2]; /* address of jump generated code */
172 #endif
173 /* list of TBs jumping to this one. This is a circular list using
174 the two least significant bits of the pointers to tell what is
175 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
176 jmp_first */
177 struct TranslationBlock *jmp_next[2];
178 struct TranslationBlock *jmp_first;
179 } TranslationBlock;
180
181 static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
182 {
183 target_ulong tmp;
184 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
185 return (tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK;
186 }
187
188 static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
189 {
190 target_ulong tmp;
191 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
192 return (((tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK) |
193 (tmp & TB_JMP_ADDR_MASK));
194 }
195
196 static inline unsigned int tb_phys_hash_func(unsigned long pc)
197 {
198 return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
199 }
200
201 TranslationBlock *tb_alloc(target_ulong pc);
202 void tb_flush(CPUState *env);
203 void tb_link_phys(TranslationBlock *tb,
204 target_ulong phys_pc, target_ulong phys_page2);
205
206 extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
207
208 extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
209 extern uint8_t *code_gen_ptr;
210
211 #if defined(USE_DIRECT_JUMP)
212
213 #if defined(__powerpc__)
214 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
215 {
216 uint32_t val, *ptr;
217
218 /* patch the branch destination */
219 ptr = (uint32_t *)jmp_addr;
220 val = *ptr;
221 val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
222 *ptr = val;
223 /* flush icache */
224 asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
225 asm volatile ("sync" : : : "memory");
226 asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
227 asm volatile ("sync" : : : "memory");
228 asm volatile ("isync" : : : "memory");
229 }
230 #elif defined(__i386__) || defined(__x86_64__)
231 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
232 {
233 /* patch the branch destination */
234 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
235 /* no need to flush icache explicitely */
236 }
237 #endif
238
239 static inline void tb_set_jmp_target(TranslationBlock *tb,
240 int n, unsigned long addr)
241 {
242 unsigned long offset;
243
244 offset = tb->tb_jmp_offset[n];
245 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
246 offset = tb->tb_jmp_offset[n + 2];
247 if (offset != 0xffff)
248 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
249 }
250
251 #else
252
253 /* set the jump target */
254 static inline void tb_set_jmp_target(TranslationBlock *tb,
255 int n, unsigned long addr)
256 {
257 tb->tb_next[n] = addr;
258 }
259
260 #endif
261
262 static inline void tb_add_jump(TranslationBlock *tb, int n,
263 TranslationBlock *tb_next)
264 {
265 /* NOTE: this test is only needed for thread safety */
266 if (!tb->jmp_next[n]) {
267 /* patch the native jump address */
268 tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
269
270 /* add in TB jmp circular list */
271 tb->jmp_next[n] = tb_next->jmp_first;
272 tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
273 }
274 }
275
276 TranslationBlock *tb_find_pc(unsigned long pc_ptr);
277
278 #ifndef offsetof
279 #define offsetof(type, field) ((size_t) &((type *)0)->field)
280 #endif
281
282 #if defined(_WIN32)
283 #define ASM_DATA_SECTION ".section \".data\"\n"
284 #define ASM_PREVIOUS_SECTION ".section .text\n"
285 #elif defined(__APPLE__)
286 #define ASM_DATA_SECTION ".data\n"
287 #define ASM_PREVIOUS_SECTION ".text\n"
288 #else
289 #define ASM_DATA_SECTION ".section \".data\"\n"
290 #define ASM_PREVIOUS_SECTION ".previous\n"
291 #endif
292
293 #define ASM_OP_LABEL_NAME(n, opname) \
294 ASM_NAME(__op_label) #n "." ASM_NAME(opname)
295
296 extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
297 extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
298 extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
299
300 #if defined(__hppa__)
301
302 typedef int spinlock_t[4];
303
304 #define SPIN_LOCK_UNLOCKED { 1, 1, 1, 1 }
305
306 static inline void resetlock (spinlock_t *p)
307 {
308 (*p)[0] = (*p)[1] = (*p)[2] = (*p)[3] = 1;
309 }
310
311 #else
312
313 typedef int spinlock_t;
314
315 #define SPIN_LOCK_UNLOCKED 0
316
317 static inline void resetlock (spinlock_t *p)
318 {
319 *p = SPIN_LOCK_UNLOCKED;
320 }
321
322 #endif
323
324 #if defined(__powerpc__)
325 static inline int testandset (int *p)
326 {
327 int ret;
328 __asm__ __volatile__ (
329 "0: lwarx %0,0,%1\n"
330 " xor. %0,%3,%0\n"
331 " bne 1f\n"
332 " stwcx. %2,0,%1\n"
333 " bne- 0b\n"
334 "1: "
335 : "=&r" (ret)
336 : "r" (p), "r" (1), "r" (0)
337 : "cr0", "memory");
338 return ret;
339 }
340 #elif defined(__i386__)
341 static inline int testandset (int *p)
342 {
343 long int readval = 0;
344
345 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
346 : "+m" (*p), "+a" (readval)
347 : "r" (1)
348 : "cc");
349 return readval;
350 }
351 #elif defined(__x86_64__)
352 static inline int testandset (int *p)
353 {
354 long int readval = 0;
355
356 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
357 : "+m" (*p), "+a" (readval)
358 : "r" (1)
359 : "cc");
360 return readval;
361 }
362 #elif defined(__s390__)
363 static inline int testandset (int *p)
364 {
365 int ret;
366
367 __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
368 " jl 0b"
369 : "=&d" (ret)
370 : "r" (1), "a" (p), "0" (*p)
371 : "cc", "memory" );
372 return ret;
373 }
374 #elif defined(__alpha__)
375 static inline int testandset (int *p)
376 {
377 int ret;
378 unsigned long one;
379
380 __asm__ __volatile__ ("0: mov 1,%2\n"
381 " ldl_l %0,%1\n"
382 " stl_c %2,%1\n"
383 " beq %2,1f\n"
384 ".subsection 2\n"
385 "1: br 0b\n"
386 ".previous"
387 : "=r" (ret), "=m" (*p), "=r" (one)
388 : "m" (*p));
389 return ret;
390 }
391 #elif defined(__sparc__)
392 static inline int testandset (int *p)
393 {
394 int ret;
395
396 __asm__ __volatile__("ldstub [%1], %0"
397 : "=r" (ret)
398 : "r" (p)
399 : "memory");
400
401 return (ret ? 1 : 0);
402 }
403 #elif defined(__arm__)
404 static inline int testandset (int *spinlock)
405 {
406 register unsigned int ret;
407 __asm__ __volatile__("swp %0, %1, [%2]"
408 : "=r"(ret)
409 : "0"(1), "r"(spinlock));
410
411 return ret;
412 }
413 #elif defined(__mc68000)
414 static inline int testandset (int *p)
415 {
416 char ret;
417 __asm__ __volatile__("tas %1; sne %0"
418 : "=r" (ret)
419 : "m" (p)
420 : "cc","memory");
421 return ret;
422 }
423 #elif defined(__hppa__)
424
425 /* Because malloc only guarantees 8-byte alignment for malloc'd data,
426 and GCC only guarantees 8-byte alignment for stack locals, we can't
427 be assured of 16-byte alignment for atomic lock data even if we
428 specify "__attribute ((aligned(16)))" in the type declaration. So,
429 we use a struct containing an array of four ints for the atomic lock
430 type and dynamically select the 16-byte aligned int from the array
431 for the semaphore. */
432 #define __PA_LDCW_ALIGNMENT 16
433 static inline void *ldcw_align (void *p) {
434 unsigned long a = (unsigned long)p;
435 a = (a + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1);
436 return (void *)a;
437 }
438
439 static inline int testandset (spinlock_t *p)
440 {
441 unsigned int ret;
442 p = ldcw_align(p);
443 __asm__ __volatile__("ldcw 0(%1),%0"
444 : "=r" (ret)
445 : "r" (p)
446 : "memory" );
447 return !ret;
448 }
449
450 #elif defined(__ia64)
451
452 #include <ia64intrin.h>
453
454 static inline int testandset (int *p)
455 {
456 return __sync_lock_test_and_set (p, 1);
457 }
458 #elif defined(__mips__)
459 static inline int testandset (int *p)
460 {
461 int ret;
462
463 __asm__ __volatile__ (
464 " .set push \n"
465 " .set noat \n"
466 " .set mips2 \n"
467 "1: li $1, 1 \n"
468 " ll %0, %1 \n"
469 " sc $1, %1 \n"
470 " beqz $1, 1b \n"
471 " .set pop "
472 : "=r" (ret), "+R" (*p)
473 :
474 : "memory");
475
476 return ret;
477 }
478 #else
479 #error unimplemented CPU support
480 #endif
481
482 #if defined(CONFIG_USER_ONLY)
483 static inline void spin_lock(spinlock_t *lock)
484 {
485 while (testandset(lock));
486 }
487
488 static inline void spin_unlock(spinlock_t *lock)
489 {
490 resetlock(lock);
491 }
492
493 static inline int spin_trylock(spinlock_t *lock)
494 {
495 return !testandset(lock);
496 }
497 #else
498 static inline void spin_lock(spinlock_t *lock)
499 {
500 }
501
502 static inline void spin_unlock(spinlock_t *lock)
503 {
504 }
505
506 static inline int spin_trylock(spinlock_t *lock)
507 {
508 return 1;
509 }
510 #endif
511
512 extern spinlock_t tb_lock;
513
514 extern int tb_invalidated_flag;
515
516 #if !defined(CONFIG_USER_ONLY)
517
518 void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
519 void *retaddr);
520
521 #define ACCESS_TYPE (NB_MMU_MODES + 1)
522 #define MEMSUFFIX _code
523 #define env cpu_single_env
524
525 #define DATA_SIZE 1
526 #include "softmmu_header.h"
527
528 #define DATA_SIZE 2
529 #include "softmmu_header.h"
530
531 #define DATA_SIZE 4
532 #include "softmmu_header.h"
533
534 #define DATA_SIZE 8
535 #include "softmmu_header.h"
536
537 #undef ACCESS_TYPE
538 #undef MEMSUFFIX
539 #undef env
540
541 #endif
542
543 #if defined(CONFIG_USER_ONLY)
544 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
545 {
546 return addr;
547 }
548 #else
549 /* NOTE: this function can trigger an exception */
550 /* NOTE2: the returned address is not exactly the physical address: it
551 is the offset relative to phys_ram_base */
552 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
553 {
554 int mmu_idx, index, pd;
555
556 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
557 mmu_idx = cpu_mmu_index(env);
558 if (__builtin_expect(env->tlb_table[mmu_idx][index].addr_code !=
559 (addr & TARGET_PAGE_MASK), 0)) {
560 ldub_code(addr);
561 }
562 pd = env->tlb_table[mmu_idx][index].addr_code & ~TARGET_PAGE_MASK;
563 if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
564 #if defined(TARGET_SPARC) || defined(TARGET_MIPS)
565 do_unassigned_access(addr, 0, 1, 0);
566 #else
567 cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
568 #endif
569 }
570 return addr + env->tlb_table[mmu_idx][index].addend - (unsigned long)phys_ram_base;
571 }
572 #endif
573
574 #ifdef USE_KQEMU
575 #define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
576
577 int kqemu_init(CPUState *env);
578 int kqemu_cpu_exec(CPUState *env);
579 void kqemu_flush_page(CPUState *env, target_ulong addr);
580 void kqemu_flush(CPUState *env, int global);
581 void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
582 void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
583 void kqemu_cpu_interrupt(CPUState *env);
584 void kqemu_record_dump(void);
585
586 static inline int kqemu_is_ok(CPUState *env)
587 {
588 return(env->kqemu_enabled &&
589 (env->cr[0] & CR0_PE_MASK) &&
590 !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
591 (env->eflags & IF_MASK) &&
592 !(env->eflags & VM_MASK) &&
593 (env->kqemu_enabled == 2 ||
594 ((env->hflags & HF_CPL_MASK) == 3 &&
595 (env->eflags & IOPL_MASK) != IOPL_MASK)));
596 }
597
598 #endif